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Abstract: Doxorubicin is a potent chemotherapeutic drug; however, its clinical application has been
limited due to its cardiotoxicity. One of the major mechanisms of doxorubicin-induced cardiotox-
icity is the induction of oxidative stress. Evidence from in vitro and in vivo studies demonstrates
that melatonin attenuated the increase in ROS production and lipid peroxidation from doxorubicin.
Melatonin has been shown to exert protective effects on mitochondria damaged by doxorubicin
via attenuating the depolarization of the mitochondrial membrane, restoring ATP production, and
maintaining mitochondrial biogenesis. Doxorubicin increased mitochondrial fragmentation which
impaired mitochondrial function; however, these adverse effects were reversed by melatonin. Mela-
tonin also modulated cell death pathways by suppressing apoptotic and ferroptotic cell death caused
by doxorubicin. These beneficial effects of melatonin could be responsible for the attenuation of
changes in ECG, left ventricular dysfunction, and hemodynamic deterioration caused by doxorubicin.
Despite these potential benefits, clinical evidence regarding the impact of melatonin in reducing
cardiotoxicity induced by doxorubicin is still limited. Further clinical studies are justified to evaluate
the efficacy of melatonin in protecting against doxorubicin-induced cardiotoxicity. This valuable
information can be used to warrant the use of melatonin in a clinical setting under this condition.

Keywords: melatonin; doxorubicin; anthracycline; cardiotoxicity; mitochondria

1. Introduction

Doxorubicin, an anthracycline class chemotherapy drug, is a potent cancer treatment
and is effective in treating various types of malignancies, including lymphoma, sarcoma,
and breast cancer [1]. However, its clinical application is dose-limited due to the potential
side effects of cancer therapy-related cardiac dysfunction (CTRCD) [2]. With the increased
use of doxorubicin together with the advancement in cancer therapies and the increase in
the rate of survival of cancer patients, doxorubicin-induced cardiotoxicity has raised serious
concerns [2]. A prior retrospective study which included 4018 participants reported that
the incidence of symptomatic heart failure from doxorubicin was 2.2% [3]. A later study
that enrolled 630 breast and small cell lung cancer patients reported that the cumulative
incidence of doxorubicin-related heart failure, including subclinical left ventricular (LV)
dysfunction, was 5%, 26%, and 48% for the cumulative doses 400 mg/m2, 550 mg/m2, and
700 mg/m2, respectively [4]. Moreover, even a low dose of doxorubicin has been shown
to increase the risk of LV dysfunction [4,5]. Results from a prospective study showed that
patients who were treated with low to moderate doses of anthracycline, using doxorubicin
equivalent doses ranging from 50 to 375 mg/m2, also subsequently developed subclinical

Pharmaceutics 2023, 15, 785. https://doi.org/10.3390/pharmaceutics15030785 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15030785
https://doi.org/10.3390/pharmaceutics15030785
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0003-1677-7052
https://doi.org/10.3390/pharmaceutics15030785
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15030785?type=check_update&version=2


Pharmaceutics 2023, 15, 785 2 of 27

LV dysfunction [5]. The risk of doxorubicin-related heart failure persisted for many years
after chemotherapy completion, and the onset of symptoms could be delayed by up to two
decades [1,6–8].

Current guidelines recommend the use of angiotensin-converting enzyme inhibitors
(ACEIs) or angiotensin receptor blockers (ARBs) and beta-blockers for primary prevention
in cancer patients at high risk for cardiovascular (CV) toxicity who are undergoing an-
thracycline chemotherapy [2,9]. A meta-analysis of small randomized trials demonstrated
that ACEIs, ARBs, and beta-blockers effectively prevented a decline in LV ejection fraction
(LVEF), but did not affect the incidence of clinical heart failure [10]. Additionally, dexrazox-
ane, an iron chelator, is also recommended for patients at high risk of CV toxicity who are
receiving anthracycline therapy or those who are scheduled for high-dose anthracycline
chemotherapy [2,9,11]. A recent meta-analysis of both randomized and non-randomized
studies in breast cancer patients treated with anthracyclines showed that dexrazoxane
reduces the risk of heart failure, although the quality of evidence remains limited [12].

There are multiple mechanisms involved in doxorubicin-induced cardiotoxicity. One
of the major mechanisms is the increased oxidative stress by the overproduction of reac-
tive oxygen species (ROS) [13]. Doxorubicin has been shown to become highly concen-
trated within mitochondria due to the strong affinity to cardiolipin, a negatively charged
phospholipid component located at the inner mitochondrial membrane [14]. Since the
cardiomyocytes have abundant mitochondria with a relatively low level of superoxide
dismutase (SOD) and catalase (CAT) expression compared to other tissues, they were found
to be vulnerable to doxorubicin-induced oxidative damage [15,16]. As a result, attempts to
reduce the adverse effect of doxorubicin on the heart have been targeted on the reduction
of oxidative stress [15].

Among many antioxidants available, melatonin, a potent antioxidant has been exten-
sively investigated to prevent doxorubicin-induced cardiotoxicity [17]. Endogenous and
exogenous melatonin were found to be highly concentrated within the mitochondria, which
are the major source of ROS production and the targeted site of the doxorubicin [18,19].
Due to its amphiphilic property, melatonin was capable of crossing various biological mem-
branes, including that of the mitochondria [18]. The molecular docking studies showed
that the peptide transporters (PEPT) 1/2 and glucose transporter 1 (GLUT1) facilitated the
uptake of melatonin and its accumulation within the mitochondria [20,21]. Melatonin not
only exerted a protective effect against doxorubicin-induced cardiotoxicity via its direct an-
tioxidative properties, but it also modulated the mitochondrial function and regulated the
cell death pathways [22–24]. This review comprehensively summarizes the contemporary
evidence from in vitro and in vivo studies together with clinical reports investigating the
mechanisms regarding the potential protective effects of melatonin in doxorubicin-induced
cardiotoxicity. Search criteria with the keywords melatonin, doxorubicin, anthracycline,
chemotherapy, and cardiotoxicity were used to identify the relevant publications reported
in the English language in the PubMed database from its inception to October 2022.

2. Effect of Melatonin on Oxidative Stress and Inflammatory Cytokines in
Doxorubicin-Induced Cardiotoxicity: EVIDENCE from In Vitro and In Vivo Studies

Doxorubicin increased oxidative stress by generating ROS via a redox cycling mecha-
nism [25]. Doxorubicin, a quinone compound, was reduced to a semiquinone, primarily by
complex I of the electron transport chain (ETC) [25]. Subsequently, the semiquinone do-
nated an unstable electron to an oxygen molecule and formed a superoxide anion (O2

−) [25].
Normally, antioxidative enzymes defend against oxidative stress via the detoxification of
the generated ROS. The SOD converted the superoxide anion to hydrogen peroxide (H2O2),
which was then antioxidized by CAT or glutathione peroxidase enzyme (GPx) into a water
molecule [26]. The hydrogen peroxide could then react with iron via the Fenton reaction
and be converted to a potent hydroxyl radical (OH•) [26]. Doxorubicin also directly forms
a complex with iron via a non-enzymatic reaction which results in oxidative damage [27].
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Melatonin exerted antioxidative properties via direct scavenging of free radicals,
both ROS and reactive nitrogen species (RNS), mainly by single electron transfer, hy-
drogen transfer, and radical adduction formation [28]. Due to its electron-rich molecule,
melatonin was not found to undergo redox cycling like other antioxidants and did not
promote oxidation. With these properties, melatonin acts as a terminal or suicidal antioxi-
dant [29]. Melatonin was found to be converted to cyclic 3-hydroxymelatonin (3-OHM)
after reactions with hydroxy free radicals. After oxidation, 3-OHM was then converted to
N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), which subsequently deformylated
to N1-acetyl-5-methoxykynuramine (AMK) [17]. These melatonin metabolites also exerted
ROS scavenging capacity, and were considered as integral to a scavenging cascade reac-
tion [29]. Melatonin also suppressed the expression of pro-oxidant enzymes, including
nitric oxide synthase (NOS), and stimulated the expression of antioxidative enzymes in-
cluding SOD, GPx, and glutathione reductase in various models, including those involving
neuronal cells and hepatocytes [17,29]. In addition, melatonin modulated mitochondrial
function by maintaining mitochondrial homeostasis, improving mitochondrial respiration,
and stabilizing the mitochondrial membrane which attenuated the oxidative stress caused
by doxorubicin [17].

In H9c2 cells, doxorubicin increased ROS production, which was attenuated with
melatonin treatment [24,30–32]. The GPx activity was significantly decreased in H9c2
cells after being treated with doxorubicin, and melatonin pretreatment attenuated the
reduction of the GPx activity [24]. Malondialdehyde (MDA) levels were increased in
doxorubicin-treated H9c2 cells and isolated ventricular rat cardiomyocytes [30,33]. In
these models, melatonin effectively attenuated the increase in lipid peroxidation caused by
doxorubicin [30,33].

Consistent with in vitro reports, evidence from in vivo studies also demonstrated
increased ROS production in rats and mice after being treated with doxorubicin [22,30].
Melatonin attenuated the increase in ROS production caused by doxorubicin [22,30]. Dox-
orubicin also increased nitric oxide (NO) levels in both rat and mouse models, however
melatonin cotreatment effectively attenuated the increase in the NO level [34–36]. A re-
duced glutathione (GSH) level was also reduced in rats and mice treated with doxorubicin,
melatonin therapy attenuating the reduction of GSH level [36–41]. Doxorubicin treatment
reduced the activity of GPx in rats and mice, but melatonin pretreatment mitigated the
decrease [24,30,42,43].

Regardless of these reports, some inconsistent findings exist. Two studies reported an
increase in GPx activity after doxorubicin treatment [38,39], whereas melatonin treatment
was shown to attenuate the increase in the GPx activity caused by doxorubicin [39]. Some
studies even reported no effect after both doxorubicin and melatonin treatment on the GPx
activity [35,38]. These discrepancies could be attributed to the different cumulative doses
of doxorubicin, as well as the duration of cellular response to oxidative stress. Studies
that reported a decrease in GPx activity following doxorubicin treatment used greater
cumulative doses of doxorubicin and had longer intervals between doxorubicin treatment
and time of enzymatic measurement [24,30,42,43].

It has been shown that acute exposure to doxorubicin caused a decrease in SOD
activities in both rat and mouse models [30,34,35,42,43]. However, pretreatment with
melatonin attenuated the decrease in SOD activity [30,42,43]. In contrast, chronic exposure
to doxorubicin increased SOD activity, with several studies reporting no effect of melatonin
on the enzyme [34,35,38]. In a rat model, acute exposure to doxorubicin reduced CAT
activity, but melatonin pretreatment did not affect this [34]. Conversely, chronic exposure
to doxorubicin significantly increased the CAT activity, with this activity being further
increased by melatonin pretreatment [38]. The differences in cumulative dosage and
treatment duration could be responsible for the discrepancies in the SOD and CAT activity
induced by doxorubicin and melatonin treatments.

Doxorubicin significantly increased the level of lipid peroxidation products, including
MDA, 4-hydroxyalkenals (4-HDA), thiobarbituric acid reactive substances (TBARS), conju-
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gated dienes (CD), and protein carbonyl in both rat and mouse models. Melatonin cotreatment
attenuated the doxorubicin-induced increase in lipid peroxidation [22,24,30,33–47]. Interest-
ingly, using the pinealectomized rat model, higher MDA levels were observed when
compared to the control group after the doxorubicin treatment [48]. Furthermore, an ex-
ogenous melatonin supplement further diminished lipid peroxidation in both groups [48].
These findings suggested that doxorubicin-induced oxidative damage could be prevented
by melatonin in both physiologic and pharmacologic doses [48].

In a rat model, daunorubicin exposure that was both acute and subacute led to an
increase in lipid peroxidation [38]. Treatment with melatonin markedly attenuated lipid
peroxidation following subacute daunorubicin exposure [38]. There was no change in
MDA and GSH levels after exposure to epirubicin and melatonin in rats [49]. Epirubicin
elevated the NO level in cases in which it was attenuated by melatonin cotreatment [49].
In a rat model, trastuzumab, which has been used to treat breast cancer concurrently
with doxorubicin, potentiated the doxorubicin-induced cardiotoxicity by increasing lipid
peroxidation, reducing GPx, and reducing SOD activity [42]. It was demonstrated that
these cardiotoxicities were abolished by melatonin cotreatment [42]. Some studies have
reported that doxorubicin increased the level of inflammatory cytokines, including IL-1,
IL-6, IL-18, and TNF-α [22,34,35]. These cytokines were markedly reduced after melatonin
treatment [22,34,35].

All of these in vitro and in vivo findings indicated that melatonin exerted antioxidative
effects by attenuating the increase in oxidative stress, lipid peroxidation, and inflammatory
cytokines caused by doxorubicin. These effects of melatonin on oxidative stress and
inflammatory cytokines reported from in vitro and in vivo studies are comprehensively
summarized in Table 1.

Table 1. Effects of melatonin on oxidative stress and inflammatory cytokines in doxorubicin-induced
cardiotoxicity: evidence from in vitro and in vivo studies.

Model Drug/Dose/Route/
Duration/Condition

Parameters
Interpretation Ref.Lipid

Peroxidation
Oxidative Stress and
Antioxidative Enzyme

Inflammatory
Cytokine

In vitro studies

Isolated ventricular rat
cardiomyocytes

Dox/300 µM/4 h ↑↑MDA - - Mel attenuated the increase
in lipid peroxidation from
Dox-induced toxicity.

[33]Dox + Mel/1 or 3 µM/
4 h/cotreat ↑MDA - -

H9c2 cells
Dox/1 µM/24 h - ↑↑ROS -

Mel attenuated oxidative
stress caused by Dox via
YAP activation.

[31]
Dox + Mel/10 µM/
24 h/pretreat 24 h - ↑ROS -

H9c2 cells + si-RNA
knockout YAP

Dox + Mel/10 µM/
24 h/pretreat 24 h - ↑↑ROS -

H9c2 cells
Dox/1 µM/24 h - ↑↑ROS, ↓↓GPx -

Mel attenuated the
increase in ROS and the
reduction in GPx caused
by Dox via YAP activation.

[24]
Dox + Mel/10 µM/
24 h/pretreat 24 h - ↑ROS, ↓GPx -

H9c2 cells + si-RNA
knockout YAP

Dox + Mel/10 µM/
24 h/pretreat 24 h - ↑↑ROS -

H9c2 cells

Dox/1 µM/24 h - ↑↑ROS -

Mel attenuated the increase
in ROS caused by Dox via
reducing AMPKα2.

[32]

Dox + Mel/1 mM/
24 h/cotreat - ↑ROS -

Dox + NAC/5 mM - ↑ROS -

Dox + Mel + NAC - ↔ROS -

H9c2 cells transfected
with AMPKα2 WT

Dox/1 µM/24 h - ↑↑↑ROS -

Dox + Mel/1 mM/
24 h/cotreat - ↑↑ROS -

H9c2 cells transfected
with AMPKα2 DN

Dox/1 µM/24 h - ↑↑ROS -

Dox + Mel/1 mM/
24 h/cotreat - ↑ROS -

Double knockout
(α1−/−α2−/−) MEFs

Dox/1 µM/24 h - ↑↑ROS -

Dox + Mel/1 mM/
24 h/cotreat - ↑ROS -
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Table 1. Cont.

Model Drug/Dose/Route/
Duration/Condition

Parameters
Interpretation Ref.Lipid

Peroxidation
Oxidative Stress and
Antioxidative Enzyme

Inflammatory
Cytokine

Ampkα2−/− MEFs
Dox/1 µM/24 h - ↑↑ROS -

Dox + Mel/1 mM/
24 h/cotreat - ↑ROS -

Ampkα1−/− MEFs
Dox/1 µM/24 h - ↑↑↑ROS -

Dox + Mel/1 mM/
24 h/cotreat - ↑↑ROS -

Ampkα WT MEFs
Dox/1 µM/24 h - ↑↑↑ROS -

Dox + Mel/1 mM/
24 h/cotreat - ↑↑ROS -

H9c2 cells
Dox/1 µM/24 h ↑↑↑MDA ↑↑↑ROS -

Mel attenuated the
increase in ROS and lipid
peroxidation caused by
Dox via AMPK and
PGC-1α activation.

[30]

Dox + Mel/100 µM/
24 h/cotreat ↑MDA ↑ROS -

H9c2 cells + si-RNA
knockdown AMPK

Dox + Mel/100 µM/
24 h/cotreat ↑↑MDA ↑↑ROS -

H9c2 cells + si-RNA
knockdown PGC-1α

Dox + Mel/100 µM/
24 h/cotreat ↑↑MDA ↑↑ROS -

In vivo studies

Male
Sprague-Dawley rats

Dox/15 mg/kg/
IP/1 dose ↑MDA - -

Mel reversed the increase
in lipid peroxidation
from Dox.

[46]Dox + Mel/10
MKD/sc/5 days/pretreat
2 days

↔MDA - -

Male
Sprague-Dawley rats

Dox/15 or
25 mg/kg/IP/1 dose ↑MDA - -

Mel reversed the increase
in lipid peroxidation
from Dox.

[33]

Dox + Mel/10 MKD/sc/
6 days/pretreat 2 days ↔MDA - -

Male Wistar rats

Dox/3 MKD/IP/6 doses ↑MDA ↑ROS ↑TNF-α,
↑IL-6 Mel attenuated the increase

in lipid peroxidation, ROS,
and inflammatory
cytokines from Dox.

[22]

Dox + Mel/10
MKD/PO/
30 days/cotreat

↔MDA ↔ROS ↔TNF-α,
↔IL-6

Non-Px Female Wistar
rats (sham)

Dox/20 mg/kg/
IP/1 dose ↑MDA - -

Both physiologic and
pharmacologic doses of
Mel attenuated the
increase in lipid
peroxidation from Dox.

[48]

Dox + Mel/4 MKD
/2 days/pretreat 1 h ↔MDA - -

Dox + Mel/4 MKD
/2 days/posttreat 24 h ↔MDA - -

Pinealectomized (Px)
Female Wistar rats

Compared to sham ↑MDA - -

Dox/20 mg/kg/
IP/1 dose ↑↑MDA - -

Dox + Mel/4 MKD
/2 days/posttreat 24 h ↔MDA - -

Male Buffalo strain rats

Dox/10 mg/kg/
IV/1 dose ↑MDA+4-HDA - -

Mel attenuated the
increase in lipid
peroxidation from Dox.

[38]

Dox + Mel/10 mg/kg/
sc/pre and posttreat ↔MDA+4-HDA - -

Dox/3 mg/kg/
wk/IV/x 3 wks ↑MDA+4-HDA - -

Dox +
Mel/10 mg/kg/sc/
pre and posttreat

↑MDA+4-HDA - -

Male
Sprague-Dawley rats

Dox/3 mg/kg/IV q
3 days/4 doses ↑↑TBARS, ↑CD - - Mel attenuated the

increase in lipid
peroxidation from Dox.

[45]
Dox + Mel/6
MKD/15 days/
pretreat 1 day

↑TBARS,↔CD - -

Male
Sprague-Dawley rats

Dox/2.5 mg/kg/
IP/6 doses ↑TBARS - -

Mel attenuated the
increase in lipid
peroxidation from Dox.

[44,50]Dox + Mel/4
mg/kg/IP/3 wks/
pretreat 1 wk

↔TBARS - -
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Table 1. Cont.

Model Drug/Dose/Route/
Duration/Condition

Parameters
Interpretation Ref.Lipid

Peroxidation
Oxidative Stress and
Antioxidative Enzyme

Inflammatory
Cytokine

Male Wistar rats

Dox/45 mg/kg/
IV/1 dose ↑↑MDA ↓GSH -

Mel attenuated the increase
in lipid peroxidation and a
decrease of GSH from Dox.

[37]
Dox + Mel/10
MKD/sc/7 days/
pretreat 7 days

↑MDA ↔GSH -

Dox + Mel/10
MKD/sc/7
days/posttreat

↔MDA ↑GSH -

Swiss albino mice
bearing Ehrlich
ascites carcinoma

Dox 4 mg/kg/wk/
IP/4 doses ↑MDA ↓GSH,↔SOD - Mel attenuated the increase

in lipid peroxidation and a
decrease of anti-oxidative
enzyme from Dox.

[40]Dox + Mel 5
MKD/PO/30 days/
pretreat 24 h

↔MDA ↔GSH, ↑SOD -

Male Swiss albino mice

Dox 2.5 MKD/IP/5 days ↑↑MDA ↓↓GSH, ↑↑NO -

Mel attenuated the
increase in lipid
peroxidation, RNS and a
decrease of GSH from Dox.

[36]

Dox + Mel 1
MKD/IP/5 days/
pretreat 30 mins

↑↑MDA ↓↓GSH, ↑↑NO -

Dox + Mel 5
MKD/IP/5 days/
pretreat 30 mins

↑MDA ↓GSH, ↑NO -

Male Wistar rats

Dox 20 mg/kg/
IP/1 dose ↑MDA + 4-HDA ↓GSH, ↓GPx - Mel normalized the

increase in lipid
peroxidation and a
decrease of GSH from Dox.

[41]Dox + Mel
50 µg/kg/day/IP/
10 days/pretreat 4 days

↔MDA + 4-HDA ↔GSH, ↓GPx -

Male
Sprague-Dawley rats

Dox 15 mg/kg/
IP/1 dose ↑↑MDA ↓↓SOD, ↓↓CAT, ↓↓GPx,

↑↑NO - Mel attenuated the
increase in lipid
peroxidation, RNS and a
decrease of anti-oxidative
enzyme from Dox.

[47]Dox + Mel 5
MKD/IP/10
days/pretreat 3 days

↑MDA ↓SOD, ↓CAT, ↓GPx,
↑NO

Male Wistar Albino rats

Dox/45 mg/kg/
IV/1 dose ↑MDA

↓SOD, ↓CAT,↔GPx,
↑NO, ↑HIF-1α, ↓TAS,
↑TOS

↑IL-1, ↑IL-6,
↑IL-18,
↑TNF-α

Mel attenuated the increase
in lipid peroxidation, RNS,
and inflammatory
cytokines from Dox.

[34]
Dox + Mel/10
MKD/IP/7
days/pretreat 4 days

↔MDA
↓SOD, ↓CAT,↔GPx
↔NO, ↑HIF-1α, ↓TAS,
↑TOS

↔IL-1,↔IL-6,
↔IL-18,
↔TNF-α

Male Wistar albino rats

Dox/45 MKD/
IV/1 dose ↑MDA

↔NO,↔HIF-1α,
↔TAS,↔TOS,↔GPx,
↔CAT, ↓SOD

↑IL-1, ↑IL-6,
↑IL-18,
↔TNF-α

Mel reversed the increase
in lipid peroxidation and
inflammatory cytokines
from Dox.

[35]
Dox + Mel/10
MKD/IP/7
days/pretreat 4 days

↔MDA
↓NO,↔HIF-1α,↔TAS,
↔TOS,↔GPx,↔CAT,
↓SOD

↔IL-1,↔IL-6,
↓IL-18,
↔TNF-α

Male Wistar-albino rats

Dox/18 mg/kg/
IP/3 days ↑MDA ↓SOD, ↓ GPx - Mel attenuated the increase

in lipid peroxidation and a
decrease in anti-oxidative
enzymes from Dox.

[43]Dox + Mel/10
MKD/IP/7
days/pretreat 4 days

↔MDA ↑SOD,↔GPx -

Male C57BL/6 mice

Dox/10 mg/kg/
IP/2 days ↑↑↑MDA ↑↑↑ROS, ↓↓↓SOD,

↓↓↓GPx - Mel attenuated the
increase in lipid
peroxidation, ROS and
decrease of anti-oxidative
enzymes from Dox via
AMPK activation.

[30]
Dox + Mel/20
MKD/IP/8
days/pretreat 1 day

↑MDA ↑ROS, ↓SOD, ↓GPx -

Dox + Mel + selective
AMPK inhibitor ↑↑MDA ↑↑ROS, ↓↓SOD, ↓↓GPx -

Male Sprague
Dawley rats

Dox/5 mg/kg/
wk/5 wks ↑MDA ↓GPx -

Mel reversed the increase
in lipid peroxidation and
decrease in GPx from Dox
via YAP activation.

[24]
Dox +
Mel/10 mg/kg/wk/
IP/5 wks/pretreat 24 h

↔MDA ↔GPx -

Dox + Mel + Verteporfin
1 mg/100g/wk/IP/pre
Mel 5 wks

↑MDA ↔ GPx -

Male Sprague
Dawley rats

Dox/10 mg/kg/
IP/1 dose

↑↑TBARS,
↑↑protein
carbonyl

↓GSH, ↓GST, ↑↑GPx,
↑CAT -

Mel attenuated the increase
in lipid peroxidation and
decrease of GSH from Dox.

[39]
Dox + Mel/15
MKD/IP/10
days/pretreat 5 days

↑TBARS,
↑protein carbonyl

↔GSH,↔GST, ↑GPx,
↔CAT -



Pharmaceutics 2023, 15, 785 7 of 27

Table 1. Cont.

Model Drug/Dose/Route/
Duration/Condition

Parameters
Interpretation Ref.Lipid

Peroxidation
Oxidative Stress and
Antioxidative Enzyme

Inflammatory
Cytokine

Buffalo strain rats

Dox/2.5 mg/kg/wk/
IP/4 wks ↑↑MDA + 4-HDA ↑GPx, ↓↓GSH, ↑SOD,

↑CAT -
Mel attenuated the increase
in lipid peroxidation and a
decrease of GSH from Dox.

[38]Dox +
Mel/20 mg/kg/wk/sc/
4 wks/pretreat 15 min

↑MDA + 4-HDA ↑GPx,↔GSH, ↑SOD,
↑↑CAT -

Male Buffalo strain rats

Dau/10 mg/kg/
IV/1 dose ↑MDA + 4-HDA - -

Mel attenuated the
increase in lipid
peroxidation from Dau.

[38]

Dau +
Mel/10 mg/kg/sc/
pre and posttreat

↑MDA + 4-HDA - -

Dau/3 mg/kg/wk/
IV/x 3 wks ↑MDA + 4-HDA - -

Dau + Mel/
10 mg/kg/sc/pre
and posttreat

↔MDA + 4-HDA - -

Male Wistar rats

Epi/10 mg/kg/
IP/1 dose ↔MDA ↑NO,↔GSH -

Mel normalized the
increase in RNS from Epi. [49]Epi + Mel/200 µg/kg/

IP/10 days/cotreat ↔MDA ↔NO,↔GSH -

Male
Sprague-Dawley rats

Dox/20 mg/kg/
IP/1 dose ↑↑MDA ↓↓GPx, ↓↓SOD -

Mel attenuated the increase
in lipid peroxidation and a
decrease in anti-oxidative
enzymes from Dox
and Trast.

[42]

Dox +
Mel/10 mg/kg/PO
bid/pretreat 36 h and
posttreat 72 h

↑MDA ↓GPx, ↓SOD -

Dox + Trast/10 mg/kg/
IP/1 dose ↑↑↑MDA ↓↓↓GPx, ↓↓↓SOD -

Dox + Mel + Trast ↑MDA ↓ GPx, ↓SOD -

-Not applicable; AMPK, AMP-activated protein kinase; CAT, catalase, CD, conjugated dienes; Dau, daunorubicin;
DN, double negative; Dox, doxorubicin; Epi, Epirubicin; GPx, glutathione peroxidase; GSH, reduced glutathione;
HIF-1α, hypoxia-inducible factor 1-α; IP, intraperitoneal; MDA, malondialdehyde; MEFs, mouse embryonic
fibroblasts; Mel, melatonin; NAC, N-acetyl cysteine; NO, nitric oxide; PGC-1α, peroxisome proliferator-activated
receptor-γ coactivator-1α; ROS, reactive oxygen species; RNS, reactive nitrogen species; SOD, superoxide dismu-
tase; TAS, total anti-oxidative stress; TBARS, thiobarbituric acid reactive substances; Trast, trastuzumab; TOS,
total oxidative stress; WT, wild-type; YAP, Yes-associated protein; 4-HAD, 4-hydroxyalkenals. Each arrow symbol
represents a comparison to the control group: ↔ indicates no significant change compared to the control group.
↑, ↑↑, ↑↑↑ indicate a significant increase compared to the control group. ↑↑ indicates a further increase compared
to the previous condition in the same model, which showed a ↑ compared to the control group. ↑↑↑ indicates
a further increase compared to the condition in the same model, which showed a ↑↑ compared to the control
group. ↓, ↓↓, ↓↓↓ indicate a significant decrease compared to the control group. ↓↓ indicates a further decrease
compared to the previous condition in the same model, which showed a ↓ compared to the control group.
↓↓↓ indicates a further decrease compared to the condition in the same model, which showed a ↓↓ compared to
the control group.

3. Effects of Melatonin on Mitochondrial Functions, Biogenesis, and Dynamics in
Doxorubicin-Induced Cardiotoxicity: Evidence from In Vitro and In Vivo Studies
3.1. Effect of Melatonin on Mitochondrial Functions in Doxorubicin-Induced Cardiotoxicity

Cardiolipin was essential for the optimal functions of complexes I, III, and IV of the
ETC [51,52]. The interactions between doxorubicin and cardiolipin resulted in an inhibition
of mitochondrial complex proteins, which subsequently impaired mitochondrial respira-
tion, increased oxidative stress, and led to cell death [14]. The increase in mitochondrial
ROS production due to doxorubicin caused mitochondrial damage through impaired mito-
chondrial bioenergetics, damaged mitochondrial DNA (mt-DNA), decreased mitochondrial
membrane potential (MMP), and increased mitochondrial permeability transition pore
(mPTP) opening, all of which promoted cellular apoptosis [53].

Doxorubicin was shown to reduce MMP, ATP production, and mt-DNA content in
neonatal rat cardiomyocytes and H9c2 cells [23,24,30–32,45]. Treatment with melatonin
alleviated the doxorubicin-induced decrease in MMP, ATP production, and mt-DNA con-
tent [23,24,30–32,45]. A study in H9c2 cells showed that doxorubicin decreased the expres-
sion of complexes I-IV, which were attenuated with melatonin cotreatment [32]. Moreover,
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melatonin has been reported to enhance the mitochondrial respiratory chain activity in
other tissues. The results from studies in the brain and liver mitochondria from rats and
mice showed that melatonin increased the activity of complexes I, III, and IV [54,55].

Consistent with in vitro reports, in vivo studies in rat and mouse models also demon-
strated that doxorubicin increased mitochondrial swelling along with lowering MMP,
ATP production, and mt-DNA content [22,24]. Melatonin attenuated these mitochondrial
changes resulting from the doxorubicin treatment in these models [22,24]. Doxorubicin
decreased the expression of complex I in rats, and melatonin cotreatment normalized the
level of expression of complex I from the doxorubicin [22]. Studies in rat and mouse models
revealed that doxorubicin decreased stage 3 respiration, increased stage 4 respiration, and
lowered the respiratory control ratio between stages 3 and 4 [22,56–60]. Melatonin cotreat-
ment potentially prevented the decrease of the respiratory control ratio after doxorubicin
treatment [22].

The protective effects of melatonin on mitochondria were also demonstrated in var-
ious models. Evidence from an in vivo study showed that melatonin protected against
mitochondrial uncoupling from ruthenium red by attenuating the decrease of the activity
of mitochondrial complexes I and IV [18]. Melatonin increased complex IV activity along
with LV systolic function in a sepsis-induced cardiomyopathy rat model [61].

Yes-associated protein (YAP), a downstream effector of the Hippo signaling pathway,
is essential in various physiologic and pathologic processes [62,63]. Evidence from in vitro
studies in H9c2 cells and mouse cardiomyocytes showed that YAP promoted the tran-
scription of antioxidative enzymes, including CAT and SOD, which provided protective
effects in a cardiac I/R injury model [62]. Doxorubicin diminished YAP expression along
with its downstream targeted genes, including CTGF, Birc5, and Park2 in H9c2 cells and
mouse models [31]. Melatonin pretreatment mitigated the effect of doxorubicin on the
reduction of YAP and its downstream target gene expression [31]. In H9c2 cells and in
rats, doxorubicin also inhibited YAP activation and increased phosphorylated YAP (p-
YAP), and treatment with melatonin restored the p-YAP/YAP level [24]. In models of
YAP downregulation using si-RNA knockout in H9c2 cells and verteporfin-treated rats, it
has been demonstrated that the antioxidative effect and mitochondrial protection exerted
by melatonin were abolished in the case of induced doxorubicin cardiotoxicity [24,31].
After YAP was downregulated, the beneficial effects of melatonin on attenuating ROS
production, decreasing lipid peroxidation, and protecting the mitochondria including at-
tenuating MMP decline, ATP depletion, and reduced mt-DNA content from doxorubicin,
were reversed [24,31]. These results suggested that melatonin exerted the antioxidative
effects and preserved YAP in the mitochondria.

All of these findings suggested that melatonin protected mitochondria against dox-
orubicin by enhancing the mitochondrial respiratory complex activity, attenuating the
decrease in MMP, and restoring the decrease in the mt-DNA content. These reports are
comprehensively summarized in Table 2.

Table 2. Effects of melatonin on mitochondrial structure, function, biogenesis, and dynamics in
doxorubicin-induced cardiotoxicity: evidence from in vitro and in vivo studies.

Model Drug/Dose/
Route/Duration

Parameters
Interpretation Ref.Structure and

Function Biogenesis Dynamics

In vitro studies

Neonatal rat
cardiomyocytes

Dox/20 µM/24 h ↓MMP - - Mel attenuated the
decrease of MMP
from Dox.

[45]Dox + Mel/
1 mmol/L/pretreat 1 h ↔MMP - -

H9c2 cells
Dox/1 µM/24 h ↓↓MMP - -

Mel reversed the decrease
of MMP from Dox via
YAP activation

[31]
Dox + Mel/10 µM/
24 h/pretreat 24 h ↔MMP - -

H9c2 cells + si-RNA
knockout YAP

Dox + Mel/10 µM/
24 h/pretreat 24 h ↓MMP - -
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Table 2. Cont.

Model Drug/Dose/
Route/Duration

Parameters
Interpretation Ref.Structure and

Function Biogenesis Dynamics

H9c2 cells
Dox/1 µM/24 h ↓↓MMP, ↓↓ATP,

↓↓mtDNA
↑↑AMPKα2,
↑p-AMPKα2, ↓complex
I-V

-

Mel attenuated the
decrease of MMP, ATP, and
mt-DNA from Dox via
reducing AMPKα2

[32]

Dox + Mel/1 mM/
24 h/cotreat

↓MMP, ↓ATP,
↓mtDNA

↑AMPKα2,
↔p-AMPKα2 -

H9c2 cells transfected
with AMPKα2 WT

Dox/1 µM/24 h
↓↓↓MMP,
↓↓↓ATP,
↓↓↓mtDNA

- -

Dox + Mel/1 mM/
24 h/cotreat

↓↓MMP, ↓ATP,
↓mtDNA - -

H9c2 cells transfected
with AMPKα2 DN

Dox/1 µM/24 h ↓↓MMP, ↓↓ATP,
↓↓mtDNA - -

Dox + Mel/1 mM/
24 h/cotreat

↓MMP, ↓ATP,
↓mtDNA - -

Double knockout
(α1−/−α2−/−) MEFs

Dox/1 µM/24 h ↓↓ATP, ↓↓MMP,
↓mito length - -

Dox + Mel/1 mM/
24 h/cotreat

↓ATP, ↓MMP,
↓mito length - -

Ampkα2−/− MEFs
Dox/1 µM/24 h ↓↓ATP, ↓↓MMP,

↓mito length ↓↓AMPKα1 -

Dox + Mel/1 mM/
24 h/cotreat

↓ATP, ↓MMP,
↓mito length ↓AMPKα1 -

Ampkα1−/− MEFs
Dox/1 µM/24 h

↓↓↓ATP,
↓↓↓MMP, ↓↓mito
length

↑↑AMPKα2 -

Dox + Mel/1 mM/
24 h/cotreat

↓ATP, ↓↓MMP,
↓mito length ↑AMPKα2 -

Ampkα WT MEFs
Dox/1 µM/24 h

↓↓↓ATP,
↓↓↓MMP, ↓↓mito
length

↓AMPKα1, ↑↑AMPKα2 -

Dox + Mel/1 mM/
24 h/cotreat

↓ATP, ↓↓MMP,
↓mito length ↓AMPKα1, ↑AMPKα2 -

H9c2 cells

Dox/1 µM/24 h ↓↓↓ATP
↓↓PGC-1α, ↓↓↓NRF1,
↓↓↓UCP2, ↓↓↓TFAM,
↓↓p-AMPK

-

Mel attenuated the
decrease of ATP
production resulting from
Dox via AMPK and
PGC-1α activation.

[30]

Dox + Mel/100 µM/
24 h/cotreat ↓ATP

↓PGC-1α, ↓NRF1,
↓UCP2, ↓TFAM,
↓p-AMPK

-

H9c2 cells + si-RNA
knockdown AMPK

Dox + Mel/100 µM/
24 h/cotreat ↓↓ATP

↓↓PGC-1α, ↓↓NRF1,
↓↓UCP2, ↓↓TFAM,
↓↓↓p-AMPK

-

H9c2 cells + si-RNA
knockdown PGC-1α

Dox + Mel/100 µM/
24 h/cotreat ↓↓ATP

↓↓↓PGC-1α, ↓↓↓NRF1,
↓↓↓UCP2, ↓↓↓TFAM,
↓p-AMPK

-

H9c2 cells

Dox/3 µM/24 h

↓ATP, ↓mito
major/minor
aspect,
↓mito branching

- - Mel attenuated the
decrease of ATP
production and
mitochondrial
fragmentation, resulting
from Dox.

[23]

Dox + Mel/10 µM/
24 h/pretreat 24 h

↔ATP,↔mito
major/minor
aspect,
↔mito branching

- -

H9c2 cells
Dox/1 µM/24 h ↓↓MMP, ↓↓ATP,

↓↓mtDNA - ↑↑FUNDC1,
↓↓OPA1 Mel attenuated the

decrease of MMP, ATP,
mt-DNA, and
mitochondrial fusion from
Dox via YAP activation.

[24]Dox + Mel/10 µM/
pretreat 24 h

↓MMP, ↓ATP,
↓↓mtDNA - ↑FUNDC1,

↓OPA1

H9c2 cells +si-RNA
knockout YAP

Dox + Mel/10 µM/
pretreat 24 h ↓↓MMP - ↑↑FUNDC1,

↓↓OPA1

In vivo studies

Male Wistar rats

Dox/3 MKD/IP/6 doses ↓↓MMP
↑↑swelling

↓PGC-1α
↓complex I
↔complex II-V

↓Mfn-1,
↓↓Mfn-2,
↓↓OPA1,
↑p-Drp1

Mel attenuated the
decrease of MMP, complex
I of ETC, and
mitochondrial fusion and
an increase in
mitochondrial fission
from Dox.

[22]
Dox + Mel/10
MKD/PO/30
days/cotreat

↓MMP
↑swelling

↔PGC-1α,↔complex
I-V

↔Mfn-1,
↓Mfn-2,
↓OPA1,
↔p-Drp1
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Table 2. Cont.

Model Drug/Dose/
Route/Duration

Parameters
Interpretation Ref.Structure and

Function Biogenesis Dynamics

Male C57BL/6 mice

Dox/10 mg/kg/
IP/2 days -

↓↓PGC-1α, ↓↓↓NRF1,
↓↓↓UCP2, ↓↓↓TFAM,
↓↓p-AMPK

-

Mel attenuated the
decrease of PGC-1α and its
downstream signaling via
AMPK activation.

[30]Dox + Mel/20 MKD/IP/
8 days/pretreat 1 day -

↓PGC-1α, ↓NRF1,
↓UCP2, ↓TFAM,
↓p-AMPK

-

Dox + Mel + selective
AMPK inhibitor -

↓↓PGC-1α, ↓↓NRF1,
↓↓UCP2, ↓↓TFAM,
↓↓p-AMPK

-

Female Sprague Dawley
rats inoculates with LA7
rat mammary
adenocarcinoma
tumor cell

Dox/4 mg/kg/IP/
3 doses - ↓PGC-1α, ↓SIRT1

↔Mfn-1,
↓Mfn-2,
↑Drp1, ↑hFis1

Mel attenuated the
decrease of PGC-1α, SIRT1,
and mitochondrial fusion,
and an increase in
mitochondrial fission
from Dox.

[23]
Dox + Mel/6 MKD/PO/
14 days/pretreat 3 days - ↑PGC-1α,↔SIRT1

↔Mfn-1,
↔Mfn-2,
↔Drp1,
↔hFis1

Male Sprague
Dawley rats

Dox/5 mg/kg/wk/IP/
5 wks

↓↓ATP,
↓↓mtDNA,
↑swelling

- ↑↑FUNDC1,
↓↓OPA1

Mel attenuated the
decrease of ATP, mt-DNA,
and mitochondrial fusion
from Dox via
YAP activation.

[24]
Dox + Mel/10
mg/kg/wk/IP/ 5
wks/pretreat 24 h

↓ATP, ↓mtDNA,
↔swelling - ↑FUNDC1,

↓OPA1

Dox + Mel + Verteporfin
1 mg/100 g/wk/IP/pre
Mel 5 wks

↓↓ATP,
↓↓mtDNA,
↑swelling

- ↑↑FUNDC1,
↓↓OPA1

-Not applicable; AMPK, AMP-activated protein kinase; DN, double negative; Dox, doxorubicin; Drp1, dynamin-
related protein1; ETC, electron transport chain; FUNDC1, FUN14 domain containing 1; hFis1, human mitochon-
drial fission 1 protein; IP, intraperitoneal; MEFs, mouse embryonic fibroblasts; Mel, melatonin; Mfn, mitofusin;
mito, mitochondria; mtDNA, mitochondrial DNA; MKD, mg/kg/day; NRF, nuclear respiratory factor; OPA1,
optic atrophy 1; PGC-1α, peroxisome proliferator-activated receptor-γ coactivator-1α; SIRT1, Sirtuin 1; TFAM,
mitochondrial transcription factor A; UCP2, uncoupling protein 2; WT, wild-type; YAP, Yes-associated protein.
Each arrow symbol represents a comparison to the control group: ↔ indicates no significant change compared to
the control group. ↑, ↑↑, ↑↑↑ indicate a significant increase compared to the control group. ↑↑ indicates a further
increase compared to the previous condition in the same model, which showed a ↑ compared to the control group.
↑↑↑ indicates a further increase compared to the condition in the same model, which showed a ↑↑ compared to
the control group. ↓, ↓↓, ↓↓↓ indicate a significant decrease compared to the control group. ↓↓ indicates a further
decrease compared to the previous condition in the same model, which showed a ↓ compared to the control group.
↓↓↓ indicates a further decrease compared to the condition in the same model, which showed a ↓↓ compared to
the control group.

3.2. Effect of Melatonin on Mitochondrial Biogenesis in Doxorubicin-Induced Cardiotoxicity

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was the main
regulator of mitochondrial biogenesis, a process which involved the expression of multiple
metabolic enzymes and mitochondrial respiratory complexes [64]. The PGC-1α activity
was enhanced by AMP-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1) via post-
translational phosphorylation and deacetylation, respectively [64]. The active PGC-1α
stimulated multiple downstream transcriptional factors, including the nuclear respiratory
factor (NRF) which regulated the expression of the mitochondrial respiratory chain proteins
and mitochondrial antioxidative enzymes, mitochondrial transcription factor A (TFAM),
which was responsible for the replication and transcription of the mt-DNA, and uncoupling
protein 2 (UCP2), which reduced oxidative stress [15,64,65].

Evidence from an in vitro study showed that doxorubicin significantly decreased the
expression of PGC-1α and its downstream signaling compounds which included NRF1,
TFAM, and UCP2 in H9c2 cells [30]. Moreover, phosphorylated AMPK (p-AMPK) was
decreased after treatment with doxorubicin. Melatonin treatment attenuated the decrease of
PGC-1α, NRF1, UCP2, TFAM, and p-AMPK [30]. Knockdown of AMPK or PGC-1α in H9c2
cells partially reversed the protective effects of melatonin on a decrease in ROS production,
and lipid peroxidation, and increased ATP production from the doxorubicin [30].

AMPK was also found to be an important regulator of cellular homeostasis and mi-
tochondrial biogenesis [66]. AMPK is composed of three subunits, including the catalytic
domain (α subunit) and 2 regulatory domains (β, γ subunits) [66,67]. There were two



Pharmaceutics 2023, 15, 785 11 of 27

different AMPKα isoforms, including AMPKα1, which is ubiquitously expressed, and
AMPKα2, which is mainly expressed in tissues with a high metabolism, such as cardiomy-
ocytes [66,67]. In the mouse embryonic fibroblasts (MEFs), doxorubicin was shown to
decrease AMPKα1 expression in those cells [32]. Moreover, the AMPKα1-deficient MEFs
had significantly higher apoptotic rates after being treated with doxorubicin, compared
to the wild type, indicating the pro-survival effect of AMPKα1 [68]. Conversely, doxoru-
bicin increased the expression of AMPKα2 at the transcriptional level via transcription
factor E2F1 and induced apoptosis in H9c2 cells and MEFs [32,69]. The overexpression
of AMPKα2 in H9c2 cells potentiated the effect of doxorubicin with regard to increasing
ROS production, decreasing MMP, impairing ATP production, reducing mt-DNA content,
and inducing cellular apoptosis [32]. Consistently, AMPKα2-deficient MEFs showed the
attenuation of those adverse effects caused by the doxorubicin [32]. Interestingly, evidence
from H9c2 cells, MEFs, and mouse models demonstrated that melatonin attenuated an
increase in transcription factor E2F1 activity, an increase in both cellular and mitochondrial
AMPKα2 expression, and a decrease of the AMPKα1 expression caused by doxorubicin,
which could be responsible for the protective effects of melatonin [32].

The SIRT1, an NAD+-dependent histone, deacetylase, mediated the survival of car-
diomyocytes and protected against apoptosis in various stress conditions [70]. Evidence
from studies in H9c2 cells, neonatal rat cardiomyocytes, and mice showed that doxorubicin
downregulated the expression of SIRT1 [70–72]. A study in a tumor-bearing rat model
showed that doxorubicin decreased SIRT1 expression, and melatonin cotreatment attenu-
ated the reduction of SIRT1 expression in this model [23]. Thus, melatonin could exert a
protective effect via SIRT1 preservation.

All of these findings indicated that melatonin maintained mitochondrial biogenesis by
attenuating the decrease of PGC-1α, together with its downstream and upstream signaling
in doxorubicin-induced cardiotoxicity models. Moreover, melatonin preserved mitochon-
drial function and attenuated cell death, which had resulted from doxorubicin through
the upregulation of SIRT1 expression and downregulation of AMPKα2. These reports are
comprehensively summarized in Table 2.

3.3. Effect of Melatonin on Mitochondrial Dynamics in Doxorubicin-Induced Cardiotoxicity

Mitochondria are dynamic organelles and their morphologies can shift between iso-
lated organelles and extensive networks in response to alterations in signaling cascades and
stress conditions, which is essential for cell survival and function [73]. The fusion process of
mitochondria involves the activity of mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2), which are
located at the outer mitochondrial membrane, and optic atrophy 1 (OPA1), which is located
at the inner mitochondrial membrane [73]. Mitochondrial fission involves the activity of
dynamin-related protein1 (Drp1) and human mitochondrial fission 1 protein (hFis1) [73].
Doxorubicin-induced cardiotoxicity could be the result of an imbalance in mitochondrial
dynamics by suppressing mitochondrial fusion and promoting mitochondrial fission [15].
Doxorubicin has been shown to enhance mitochondrial fission, resulting in mitochondrial
fragmentation which impaired mitochondrial function, increased oxidative stress, and
subsequently led to cellular apoptosis [15,74].

Evidence from an in vitro study showed that doxorubicin decreased OPA1 and in-
creased the FUN14 domain containing 1 (FUNDC1), and melatonin pretreatment attenuated
these effects in H9c2 cells [24]. Previous in vivo studies reported consistent findings that
doxorubicin decreased the expression of mitochondrial fusion proteins, including Mfn1,
Mfn2, and OPA1, and increased mitochondrial fission proteins, including Drp1, phospho-
rylated Drp1, hFis1, and FUNDC1, in rats [22–24]. Melatonin attenuated the decrease in
mitochondrial fusion proteins and the increase in mitochondrial fission proteins, resulting
from the doxorubicin [22–24]. The histologic examination also revealed that melatonin
decreased mitochondrial fragmentation from the doxorubicin [23,32]. YAP downregu-
lation was shown to abrogate the beneficial effects of melatonin on the impairment of
mitochondrial dynamic balance resulting from doxorubicin treatment [24].
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All of these findings indicated that melatonin attenuated the increase in mitochondrial
fission and restored the impairment of mitochondrial fusion proteins caused by doxoru-
bicin. Treatment with melatonin restored mitochondrial dynamic balance, resulting in the
maintenance of mitochondrial function, reducing oxidative stress, and attenuating cell
death. The effects of melatonin on mitochondrial functions, biogenesis, and dynamics from
in vitro and in vivo studies are comprehensively summarized in Table 2.

4. Effect of Melatonin on Cellular Death Pathways in Doxorubicin-Induced
Cardiotoxicity: Evidence from In Vitro and In Vivo Studies
4.1. Effect of Melatonin on Apoptosis in Doxorubicin-Induced Cardiotoxicity

Doxorubicin triggered cardiomyocyte cell death via multiple regulated cell death path-
ways [75]. Apoptosis has been the most extensively studied and was one of the major regu-
lated cell death mechanisms responsible for the doxorubicin-induced cardiotoxicity [75,76].
Doxorubicin increased the opening of mPTP and induced mitochondrial calcium accumu-
lation, which induced MMP disruption, and cytochrome c release, and led to apoptotic
cell death [77]. The oxidative stress from doxorubicin also enhanced apoptosis since the
cardiolipin, which was sensitive to oxidative stress, became peroxidized and subsequently
induced mPTP opening and the release of cytochrome c [15,78].

Melatonin potentially attenuated apoptotic cell death from doxorubicin by induc-
ing antioxidative effects and maintaining mitochondrial function [77]. Previous studies
showed that the mPTP inhibitor, cyclosporine, could attenuate the doxorubicin-induced
cardiotoxicity in isolated rat hearts and human atrial cardiomyocytes [79,80].

Evidence from in vitro and in vivo studies supported the antiapoptotic role of mela-
tonin in protecting against doxorubicin-induced cell death. Previous in vitro studies
showed that doxorubicin increased the pro-apoptotic protein, Bcl-2 associated X pro-
tein (Bax), and decreased the anti-apoptotic protein, Bcl-2, in H9c2 cell and zebrafish
models [24,30–32]. The rate of apoptosis and hence apoptotic markers including cleaved
caspase (c-caspase) 3, c-caspase 9, and cleaved poly (ADP-ribose) polymerase-1 (c-PARP-1)
were also increased after being treated with doxorubicin [24,30–32]. Melatonin attenuated
the increase in Bax/Bcl-2 and decreased the apoptotic rate and apoptotic markers in H9c2
cells, zebrafish, and mouse fibroblast cells [24,30–32,81].

Previous in vivo studies also reported enhanced apoptosis, increased Bax, and de-
creased Bcl-2 in rats and mice after being treated with the doxorubicin [22–24,30,82]. Mela-
tonin effectively attenuated the increase in the rate of apoptosis, and the levels of apoptotic
markers and Bax/Bcl-2 caused by doxorubicin [22–24,30,82].

The down regulation of YAP in H9c2 cells and in rats showed that the anti-apoptotic effects
of melatonin against doxorubicin-induced apoptotic cell death were diminished [24,31]. This
result suggested that the anti-apoptotic effect of melatonin against doxorubicin-induced
cardiotoxicity was partly through YAP activation [24,31].

All of these findings indicated that melatonin prevented doxorubicin-induced cellular
apoptosis by exerting antioxidative effects, inhibiting the opening of mPTP, attenuating the
increase in pro-apoptotic proteins, and decreasing anti-apoptotic proteins, which occur as a
consequence of doxorubicin treatment. These reports are comprehensively summarized in
Table 3.
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Table 3. Effects of melatonin on cellular death pathways in doxorubicin-induced cardiotoxicity:
evidence from in vitro and in vivo studies.

Model Drug/Dose/
Route/Duration

Parameters
Interpretation Ref.

Apoptosis Autophagy
and Mitophagy Ferroptosis

In vitro studies

H9c2 cells
Dox/1 µM/24 h ↑↑Bax, ↓↓Bcl-2,

↑↑↑apoptosis - -
Mel attenuated the
increase in apoptosis
from Dox via
YAP activation.

[31]Dox + Mel/10 µM/24 h/
pretreat 24 h

↑Bax, ↓Bcl-2,
↑apoptosis - -

H9c2 cells +si-RNA
knockout YAP

Dox + Mel/10 µM/
24 h/pretreat 24 h

↑↑Bax, ↓↓Bcl-2,
↑↑apoptosis - -

H9c2 cells

Dox/1 µM/24 h
↑↑↑apoptosis,
↑↑↑c-PARP1,
↑↑↑c-caspase3

- -

Mel attenuated the
increase in apoptosis
from Dox via reducing
AMPKα2.

[32]

Dox + Mel/1 mM/
24 h/cotreat

↑↑apoptosis,
↑c-PARP1,
↑c-caspase3

- -

Dox + NAC/5 mM ↑↑apoptosis - -

Dox + Mel + NAC/5 mM ↑apoptosis - -

Dox + Mel + 4-P-PDOT/
10 µM

↑↑c-PARP1,
↑↑c-caspase3 - -

Dox + Mel + 4-P-PDOT/
20 µM

↑↑↑c-PARP1,
↑↑↑c-caspase3 - -

H9c2 cells transfected
with AMPKα2 WT

Dox/1 µM/24 h ↑↑↑↑apoptosis - -

Dox + Mel/1 mM/
24 h/cotreat ↑↑↑apoptosis - -

H9c2 cells transfected
with AMPKα2 DN

Dox/1 µM/24 h ↑↑apoptosis - -

Dox + Mel/1 mM/
24 h/cotreat ↑apoptosis - -

Double knockout
(α1−/−α2−/−) MEFs

Dox/1 µM/24 h ↑↑apoptosis - -

Dox + Mel/1 mM/
24 h/cotreat ↑apoptosis - -

Ampkα2−/− MEFs
Dox/1 µM/24 h ↑↑apoptosis - -

Dox + Mel/1 mM/
24 h/cotreat ↑apoptosis - -

Ampkα1−/− MEFs
Dox/1 µM/24 h ↑↑↑apoptosis - -

Dox + Mel/1 mM/
24 h/cotreat ↑↑apoptosis - -

Ampkα WT MEFs
Dox/1 µM/24 h ↑↑↑apoptosis - -

Dox + Mel/1 mM/
24 h/cotreat ↑↑apoptosis - -

NIH3T3 cells
Dox/2.6 µM/24 h ↑↑apoptosis - - Mel attenuated the

increase in apoptosis
from Dox.

[81]Dox + Mel/1 µM/
24 h/cotreat ↑apoptosis - -

H9c2 cells

Dox/1 µM/24 h
↑↑↑Bax, ↓↓↓Bcl2,
↑↑↑c-caspase3,
↑↑↑apoptosis

- -

Mel attenuated the
increase in apoptosis
from Dox via AMPK and
PGC-1α activation.

[30]
Dox + Mel/100 µM/
24 h/cotreat

↑Bax, ↓Bcl2,
↑c-caspase3,
↑apoptosis

- -

H9c2 cells + si-RNA
knockdown AMPK

Dox/1 µM/24 h + Mel/
100 µM/24 h/cotreat

↑↑Bax, ↓↓Bcl2,
↑↑c-caspase3 - -

H9c2 cells + si-RNA
knockdown PGC-1α

Dox/1 µM/24 h + Mel/
100 µM/24 h/cotreat ↑↑apoptosis - -

zebrafish

Dox 15 µM/120 h
↑↑BAX/Bcl-2,
↑c-caspase9,
↓↓caspase9

- -
Mel attenuated the
increase in apoptosis
from Dox.

[24]

Dox + Mel/50 µM/
120 h/cotreat

↑BAX/Bcl-2,
↔c-caspase9,
↓caspase9

- -
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Table 3. Cont.

Model Drug/Dose/
Route/Duration

Parameters
Interpretation Ref.

Apoptosis Autophagy
and Mitophagy Ferroptosis

H9c2 cells

Dox/1 µM/24 h
↑BAX/Bcl-2,
↑c-caspase9,
↓caspase9

- ↑ACSL4,
↓↓GPX4

Mel attenuated the
increase in apoptosis
and ferroptosis from
Dox via YAP activation.

[24]Dox + Mel/10 µM/
24 h/pretreat 24 h

↔BAX/Bcl-2,
↔c-caspase9,
↔caspase9

- ↔ACSL4,
↓GPX4

H9c2 cells +si-RNA
knockout YAP

Dox/1 µM/24 h + Mel/
10 µM/24 h/pretreat 24 h

↑BAX/Bcl-2,
↑c-caspase9,
↓caspase9

- ↑ACSL4,
↓GPX4

In vivo studies

Male Wistar rats

Dox/3 MKD/IP/6 doses
↑↑Bax/Bcl2,
↑↑c-caspase3,
↑↑apoptosis

↔PINK1,↔Parkin,
↑Beclin-1, ↑p62,
↑LC3-II/LC3-I

- Mel attenuated the
increase in apoptosis
and autophagy
from Dox.

[22]

Dox + Mel/10 MKD/PO/
30 days/cotreat

↑Bax/Bcl2,
↑c-caspase3,
↑apoptosis

↔PINK1,↔Parkin,
↔Beclin-1,↔p62,
↔LC3-II/LC3-I

-

Male C57BL/6 mice

Dox/10 mg/kg/IP/2 days
↑↑↑Bax, ↓↓↓Bcl2,
↑↑↑c-caspase3,
↑↑↑apoptosis

- -

Mel attenuated the
increase in apoptosis
from Dox via
AMPK activation.

[30]Dox + Mel/20 MKD/IP/
8 days/pretreat 1 day

↑Bax, ↓Bcl2,
↑c-caspase3,
↑apoptosis

- -

Dox + Mel + selective
AMPK inhibitor

↑↑Bax, ↓↓Bcl2,
↑↑c-caspase3,
↑↑apoptosis

- -

Female Sprague Dawley
rats inoculated with LA7
rat mammary
adenocarcinoma
tumor cells

Dox/4 mg/kg/IP/3 doses ↑c-PARP,
↑c-caspase3 ↑↑Pink1, ↑Parkin - Mel attenuated the

increase in apoptosis
and Pink1 from Dox.

[23]
Dox + Mel/6 MKD/PO/
14 days/pretreat 3 days

↔c-PARP,
↔c-caspase3 ↔Pink1, ↑Parkin -

ICR mice
Dox 22.5 mg/kg/IP/1 dose ↑↑apoptosis - - Mel attenuated the

increase in apoptosis
from Dox.

[82]Dox + Mel/2.5 µg/hr/sc/
5 days/pretreat 24 h ↑apoptosis - -

Male Sprague
Dawley rats

Dox/5 mg/kg/wk/IP/5 wks
↑BAX/Bcl-2,
↑c-caspase9,
↓caspase9

- ↑ACSL4,
↓↓GPX4

Mel attenuated the
increase in apoptosis
and ferroptosis from
Dox via YAP activation.

[24]Dox + Mel/10 mg/kg/wk/IP/
5 wks/pretreat 24 h

↔BAX/Bcl-2,
↔c-caspase9,
↔caspase9

- ↔ACSL4,
↓GPX4

Dox + Mel + Verteporfin
1 mg/100 g/wk/IP/
pre Mel 5 wks

↑BAX/Bcl-2,
↑c-caspase9,
↓caspase9

- ↑ACSL4,
↓GPX4

- Not applicable; ACSL4, acyl-CoA synthase long-chain family member 4; AMPK, AMP-activated protein ki-
nase; Bax, Bcl-2 associated X protein; c-caspase, cleaved caspase; DN, double negative; Dox, doxorubicin;
GPx, glutathione peroxidase; IP, intraperitoneal; LC3, microtubule-associated protein 1A/1B-light chain 3; Mel,
melatonin; PARP1, poly (ADP-ribose) polymerase-1; Pink1, PTEN-induced kinase 1; WT, wild-type; YAP, Yes-
associated protein. Each arrow symbol represents a comparison to the control group: ↔ indicates no significant
change compared to the control group. ↑, ↑↑, ↑↑↑ indicate a significant increase compared to the control group.
↑↑ indicates a further increase compared to the previous condition in the same model, which showed a ↑ compared
to the control group. ↑↑↑ indicates a further increase compared to the condition in the same model, which showed
a ↑↑ compared to the control group. ↓, ↓↓, ↓↓↓ indicate a significant decrease compared to the control group.
↓↓ indicates a further decrease compared to the previous condition in the same model, which showed a ↓ com-
pared to the control group. ↓↓↓ indicates a further decrease compared to the condition in the same model, which
showed a ↓↓ compared to the control group.

4.2. Effect of Melatonin on Autophagy and Mitophagy in Doxorubicin-Induced Cardiotoxicity

Autophagy is a degradative cellular process using lysosomes that prevent cellular
damage, promote cell survival, and maintain cellular function in response to various stim-
uli [83]. The results from earlier studies on the effect of doxorubicin on autophagy were
found to be conflicting [84]. Previous in vitro and in vivo studies in neonatal rat cardiomy-
ocyte, H9c2 cell, and rat models reported that doxorubicin enhanced autophagy [85–88].
However, several studies using H9c2 cells and in mice showed that doxorubicin decreased
autophagy [89,90]. This discrepancy could be due to the use of different models, variations
in the cumulative doses of doxorubicin, and intervals from doxorubicin exposure to au-
tophagic measurement [75,84]. Recent evidence from studies in neonatal rat ventricular
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cardiomyocyte and mouse models suggested that doxorubicin enhanced the early steps of
autophagy, but inhibited the later steps by disrupting lysosomal acidification which leads
to the accumulation of undegraded autolysosomes [91,92]. This accumulation of dysfunc-
tional autolysosomes enhances oxidative damage and cell death [91,92]. The inhibition of
the early steps of autophagy could reduce the accumulation of autolysosomes and ROS
production from the doxorubicin [91]. In rats, it has been shown that doxorubicin increased
Beclin-1, p62, and microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I. In-
terestingly, cotreatment with melatonin effectively attenuated the increase in autophagy
caused by doxorubicin [22].

Damaged mitochondria could be specifically removed by selective autophagy, known
as mitophagy [83]. After a mitochondrial damage insult, PTEN-induced kinase 1 (Pink1)
and Parkin were found to be involved in the labeling of damaged mitochondria for the
process of mitophagy to occur [83]. Evidence from in vitro and ex vivo studies in AC16 cells
and Langendorff perfused heart models showed that doxorubicin enhanced mitophagy,
and treatment with the mitophagy inhibitor, mdivi-1, exerted protective effects against
doxorubicin by attenuating the decrease of MMP and PGC-1α, along with associated down-
stream signaling [93,94]. However, there was evidence that indicated that there was an
inhibitory effect on mitophagy via the Pink/parkin pathway by doxorubicin [95]. The
discrepancy found with regard to the Pink/parkin pathway associated mitophagy could
be explained by the different models of doxorubicin treatment and the time frame of mito-
chondrial damage due to the biphasic change of the Pink/parkin level after mitochondrial
damage [96,97].

An ROS scavenger was involved in mitophagy regulation, as evidenced by the attenu-
ation of the increase in mitophagy and the protective effects caused by the mitochondrial
ROS scavenger mito-tempo in AC16 cells treated with doxorubicin [94]. Melatonin, as a mi-
tochondrial ROS scavenger, could potentially also decrease mitophagy and protect against
doxorubicin. Evidence from an in vivo study showed that doxorubicin increased Pink1 and
Parkin levels in rats, and, although melatonin pretreatment normalized the Pink1 level, it
did not affect the Parkin level [23]. However, another study in rats reported no significant
change in Pink1 and Parkin after being treated with doxorubicin and melatonin [22].

All of these findings suggested that melatonin attenuated the increase in autophagy
and might inhibit the mitophagy which result from doxorubicin treatment. A comprehen-
sive summary of these reports is shown in Table 3.

4.3. Effect of Melatonin on Ferroptosis in Doxorubicin-Induced Cardiotoxicity

Ferroptosis is a form of a regulated cell death pathway which is characterized by
iron-dependent lipid peroxidation, and could be prevented by iron chelation [98,99]. Evi-
dence from neonatal rats, mice, and the cardiomyocytes from doxorubicin-treated patients
showed that doxorubicin increased the accumulation of mitochondrial iron [100]. The
study models, which showed the attenuation of the accumulation of iron in the mitochon-
dria, including one in transgenic mice overexpressing the mitochondrial iron exporting
protein ABC protein-B8 (ABCB8) and another in cardiomyocytes of neonatal rat treated
with dexrazoxane, illustrated protective effects of melatonin against the doxorubicin-
induced cardiotoxicity [100]. Ferroptosis was one of the major cell death pathways in
the doxorubicin-induced cardiotoxicity, and ferroptosis inhibition could exert cardiopro-
tective effects [76,101]. Doxorubicin-induced cell death was partially prevented by us-
ing ferrostatin-1 (a ferroptosis inhibitor) [76]. Ferrostatin-1 increased the survival rate
of mice treated with a single dose of doxorubicin, whereas emricasan (an apoptosis in-
hibitor), necrostatin-1 (a necroptosis inhibitor), and 3-methyladenine (3-MA, an autophagy
inhibitor), had no effect on survival [101]. Melatonin has been shown to exert an antiferrop-
totic effect in various models [102–104].

An in vitro study in H9c2 cells and an in vivo study in rat models demonstrated that
doxorubicin increased the level of Acyl-CoA synthase long-chain family member 4 (ACSL4)
and decreased glutathione peroxidase 4 (GPx4), which then promoted ferroptosis [24].
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Melatonin attenuated these doxorubicin-induced effects [24]. Cardiomyocytes from mice
treated with doxorubicin displayed histologic changes consistent with the process of
ferroptosis, including mitochondrial swelling, the loss of cristae, and the rupture of the
outer mitochondrial membrane [24]. The melatonin therapy reversed these changes in
the mitochondrial ultrastructure [24]. Interestingly, YAP downregulation in both H9c2
cells and rat models reversed the antiferroptotic effect of melatonin on attenuating the
increase in ACSL4 and ferroptosis-like mitochondrial morphological changes from the
doxorubicin [24]. These results suggested that the antiferroptotic activity of melatonin was
partly via the preservation of the YAP expression impaired by doxorubicin [24].

All of these findings indicated that melatonin exerted cardioprotection against doxorubicin-
induced cardiotoxicity which occurred via ferroptosis inhibition. The effect of melatonin
on apoptosis, autophagy, mitophagy, and ferroptosis from in vitro and in vivo studies are
comprehensively summarized in Table 3. The potential mechanisms conferring the benefits
of melatonin in doxorubicin-induced cardiotoxicity are illustrated in Figure 1.
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Figure 1. Potential effects of melatonin on oxidative stress, mitochondrial function, biogenesis, and
dynamics, and cell death pathways in doxorubicin-induced cardiotoxicity. Red arrows indicate
the changes occurring in a doxorubicin model compared to the control. Blue arrows indicate the
changes after being treated with melatonin in comparison to the doxorubicin model. Figure created
with BioRender.com (accessed on 7 January 2023). ACSL4 Acyl-CoA synthase long-chain family
member 4; AMPK, AMP-activated protein kinase; Bax, Bcl-2 associated X protein; CAT, catalase; Cyt
C, cytochrome c; Dox, doxorubicin; Drp1, dynamin-related protein1; ETC, electron transport chain;
GPx, glutathione peroxidase; hFis1, human mitochondrial fission 1 protein; MDA, malondialdehyde;
Mfn, mitofusin; mPTP, mitochondrial permeability transition pore; mt-DNA, mitochondrial DNA;
NO, nitric oxide; NRF, nuclear respiratory factor; OPA1, optic atrophy 1; PGC-1α, peroxisome
proliferator-activated receptor-γ coactivator-1α; ROS, reactive oxygen species; SIRT1, Sirtuin 1; SOD,
superoxide dismutase; TFAM, mitochondrial transcription factor A; UCP2, uncoupling protein 2;
∆Ψ mitochondrial membrane potential.
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5. Effect of Melatonin on ECG, LV Function, and Hemodynamics in
Doxorubicin-Induced Cardiotoxicity: Evidence from In Vivo and Ex Vivo Studies

In addition to molecular mechanisms, functional evidence, including ECG, LV function,
and hemodynamic changes, are also key factors determining the potential clinical benefits
of melatonin against doxorubicin-induced cardiotoxicity. Various ECG parameters were
reported as being affected by doxorubicin exposure. In rats, doxorubicin increased both QT
and corrected QT (QTc) intervals, and pretreatment with melatonin effectively attenuated
these changes [24,34,35,105]. However, one study reported that melatonin had no effect
on the QT and QTc prolongation caused by doxorubicin [34]. Doxorubicin also increased
the amplitude of the ST-segment elevation, and pretreatment with melatonin attenuated
this change [43,105]. One study also reported that doxorubicin increased ST-segment
depression, and melatonin pretreatment reversed this change [24]. The PR interval was
also prolonged in rats treated with doxorubicin; however, melatonin did not affect this
parameter [34,35]. Doxorubicin was also shown to reduce the duration of the QRS complex,
whereas melatonin pretreatment prevented this change caused by doxorubicin [43,105].
However, one study did report that doxorubicin increased the duration of the QRS complex,
whereas melatonin cotreatment had no impact on this [34]. Although there were some
discrepancies in the effects of doxorubicin and melatonin on ECG parameters, most studies
demonstrated that melatonin had beneficial effects on the attenuation of ECG changes
caused by doxorubicin. These discrepancies in ECG changes could be due to the use
of different animal models, pharmacologic treatment protocols, and intervals between
medication and ECG assessment. Future studies are needed to verify this issue.

Doxorubicin has been linked to cardiac arrhythmias in both acute and chronic settings,
potentially due to its impact on abnormal automaticity, trigger activities, and reentrant
circuits [106]. The short-term exposure of doxorubicin has been associated with a decrease
in connexin-43 expression in mice, even after a single dose of doxorubicin [107]. This
reduction of connexin-43 expression has resulted in abnormal electrical conduction and
APD dispersion, which facilitates the arrhythmogenesis [108]. Melatonin has been shown
to possess anti-arrhythmic properties, preventing ventricular fibrillation inducibility in ex
vivo study using an old guinea pig heart model [109]. In addition, melatonin has been
found to enhance connexin-43 expression in a spontaneous hypertensive rat model, leading
to a reduction in susceptibility to arrhythmias [110]. Melatonin has also been shown to
mitigate the decrease in connexin-43 expression, its lateralization, cardiac fibrosis, and
arrhythmic susceptibility in catecholamine overdrive in normotensive and hypertensive rat
models [111]. Furthermore, melatonin has been found to reduced ventricular fibrillation
in obesity rat models by attenuating the decrease in connexin-43 expressions and its
lateralization [112]. Oxidative stress has been identified as a potential mechanism of
arrhythmogenesis in doxorubicin-treated patients [113]. Treatment with antioxidants, such
as vitamin E and N-acetylcysteine, has been shown to attenuate the APD prolongation in
rats treated with doxorubicin [114]. As a potent antioxidant, melatonin may also provide
an anti-arrhythmic effect in this setting. Further studies on the anti-arrhythmic effect of
melatonin on doxorubicin-induced cardiotoxicity are essentially needed to fully understand
its mechanism and potential clinical applications.

With regard to the aspect of echocardiographic assessment, LV systolic function pa-
rameters, including LVEF and fractional shortening (FS) were impaired after being treated
with doxorubicin in rat and mouse models [22,24,30,31,44,50]. LV diastolic function param-
eters, including early to late diastolic transmitral flow velocity (E/A), were also impaired
following doxorubicin treatment [22]. Melatonin attenuated the decrease of the LVEF,
FS, and E/A from the doxorubicin [22,24,30,31,44,50]. Doxorubicin also increased LV
end-diastolic pressure (LVEDP), and melatonin cotreatment effectively attenuated this
change [22,33,45,82].

Doxorubicin impaired other cardiac function parameters in rat and mouse models, in-
cluding the treatment showing a correlation with a decrease in stroke volume (SV), dP/dtmax,
dP/dtmin, and cardiac output (CO), but melatonin attenuated these changes [22,23,33,82]. Dox-
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orubicin was reported to reduce heart rate (HR), and melatonin treatment attenuated
this decrease [22,24,31,33,43,45,82]. However, some studies reported no change in HR
from the doxorubicin and melatonin treatment [23,82]. In rat models, doxorubicin re-
duced systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial
blood pressure (MAP) but melatonin effectively restored those parameters in these in vivo
models [22,44,45].

Heart rate variability (HRV) was a noninvasive test that reflected the activity of the
sympathetic and vagal components of the autonomic nervous system [115]. Previous
studies assessing the effect of doxorubicin on HRV showed that the drug increased the low
frequency (LF)/high frequency (HF) ratio which indicated cardiac sympathetic overactivity
or parasympathetic withdrawal [22,116]. Melatonin cotreatment attenuated the increase in
LF/HF resulting from the doxorubicin [22].

All of these findings indicated that melatonin attenuated the ECG changes from
doxorubicin, including QT prolongation and ST-segment amplitude. Both LV systolic
and diastolic dysfunction from doxorubicin were improved with melatonin cotreatment.
Melatonin also improved the SV, CO, HR, and BP changes resulting from doxorubicin. The
effect of melatonin on ECG, LV function, and hemodynamics from in vivo and ex vivo
studies are comprehensively summarized in Table 4.

Table 4. Effects of melatonin on ECG, LV function, and hemodynamics in doxorubicin-induced
cardiotoxicity: evidence from in vivo and ex vivo studies.

Model Drug/Dose/
Route/Duration

Parameters
Interpretation Ref.

ECG LVEF E/A Hemodynamics

In vivo studies

Male Wistar rats

Dox/3 MKD/IP/6 doses - ↓↓ ↓↓
↓SBP, ↓DBP,
↓HR, ↓↓SV,
↑↑LF/HF Mel attenuated the LV

systolic and diastolic
dysfunction from Dox.

[22]
Dox + Mel/10 MKD/PO/
30 days/cotreat - ↓ ↓

↔SBP,↔DBP,
↔HR, ↓SV,
↑LF/HF

C57BL/6 mice

Dox/5 mg/kg/wk/IP/
5 wks - ↓↓ - ↓↓HR Mel attenuated the LV

systolic dysfunction and a
decrease of HR from Dox.

[31]
Dox + Mel/10 mg/kg/
IP/pretreat 24 h - ↓ - ↓HR

Male C57BL/6 mice

Dox/10 mg/kg/IP/2 days - ↓↓↓ - -
Mel attenuated the LV
systolic dysfunction from
AMPK activation.

[30]Dox + Mel/20 MKD/IP/
8 days/pretreat 1 day - ↓ - -

Dox + Mel + selective
AMPK inhibitor - ↓↓ - -

Male Wistar rats
Dox/18 MKD/IP/3 days ↑STE, ↑QT, ↓P, ↓QRS - - -

Mel normalized the ECG
changes from Dox. [105]Dox + Mel/40 MKD/IP/

7 days/pretreat 4 days
↔STE,↔QT,↔P,
↔QRS - - -

Male Sprague-Dawley rats

Dox/3 mg/kg/IV q
3 days/4 doses - - - ↓SBP, ↓DBP,

↓MAP, ↓HR Mel attenuated the
decrease in blood pressure
and HR from Dox.

[45]
Dox + Mel/6 MKD/IP/
15 days/pretreat 1 day - - - ↔SBP,↔DBP,

↔MAP,↔HR
Female Sprague Dawley rats
inoculated with LA7 rat
mammary adenocarcinoma
tumor cell

Dox/4 mg/kg/IP/3 doses - - - ↓CO, ↓SV,↔HR Mel attenuated the
decrease in CO and SV
from Dox.

[23]Dox + Mel/6 MKD/PO/
14 days/pretreat 3 days - - - ↔CO,↔SV,

↔HR

Male Wistar albino rats
Dox/45 MKD/IV/1 dose ↑PR, ↑QRS, ↑QT,

↑↑QTc, ↑RR - - -
Mel attenuated the QTc
prolongation from Dox. [35]

Dox + Mel/10 MKD/IP/
7 days/pretreat 4 days

↑PR, ↑QRS, ↑QT,
↑QTc, ↑↑RR - - -

Male Wistar-albino rats
Dox/18 mg/kg/IP/3 days ↑STE, ↓R, ↑P, ↓QRS,

↔QT, ↑RR - - ↑HR
Mel attenuated the ECG
changes from Dox. [43]

Dox + Mel/10 MKD/IP/
7 days/pretreat 4 days

↔STE, ↓R, ↓P,↔QRS,
↔QT,↔RR - - ↔HR

ICR mice
Dox 22.5 mg/kg/IP/1 dose - - - ↔HR, ↓SV, ↓CO Mel attenuated the

decrease in CO and SV
from Dox.

[82]Dox + Mel/2.5 µg/hr/sc/
5 days/pretreat 24 h - - - ↔HR,↔SV,

↔CO



Pharmaceutics 2023, 15, 785 19 of 27

Table 4. Cont.

Model Drug/Dose/
Route/Duration

Parameters
Interpretation Ref.

ECG LVEF E/A Hemodynamics

Male Sprague Dawley rats

Dox/5 mg/kg/wk/IP/
5 wks ↑↑QT, ↑↑RR, ↓↓ST ↓ - -

Mel attenuated the LV
systolic dysfunction from
Dox via YAP activation.

[24]

Dox + Mel/
10 mg/kg/wk/IP/
5 wks/pretreat 24 h

↑QT, ↑RR, ↓ST ↔ - -

Dox + Mel + Verteporfin
1 mg/100 g/wk/IP/pre
Mel 5 wks

↑↑QT, ↑↑RR, ↓↓ST ↓ - -

Ex vivo study

ICR mice
Dox/5 µM/for 60 min - - - ↓HR

Mel attenuated the
decrease of HR from Dox.

[82]Dox + Mel/1 µM/
60 min/pretreat 5 min - - - ↔HR

-Not applicable; AMPK, AMP-activated protein kinase; CO, cardiac output; Dox, doxorubicin; IP, intraperitoneal;
HR, heart rate; LF/HF, low frequency/high frequency; MAP, mean arterial pressure; Mel, melatonin; MKD,
mg/kg/day; p, p wave interval; PR, PR interval; QRS, QRS duration; QT, QT interval; QTc, corrected QT interval;
R, R wave amplitude; RR, R-R interval; ST, ST segment amplitude; STE, ST-elevation amplitude; SV, stroke volume;
YAP, Yes-associated protein. Each arrow symbol represents a comparison to the control group: ↔ indicates no
significant change compared to the control group. ↑, ↑↑, ↑↑↑ indicate a significant increase compared to the control
group. ↑↑ indicates a further increase compared to the previous condition in the same model, which showed a ↑
compared to the control group. ↑↑↑ indicates a further increase compared to the condition in the same model,
which showed a ↑↑ compared to the control group. ↓, ↓↓, ↓↓↓ indicate a significant decrease compared to the
control group. ↓↓ indicates a further decrease compared to the previous condition in the same model, which
showed a ↓ compared to the control group. ↓↓↓ indicates a further decrease compared to the condition in the
same model, which showed a ↓↓ compared to the control group.

6. Effect of Melatonin on Tumor Cells and Future Clinical Perspectives

Due to the antioxidative and antiapoptotic effects of melatonin, the potential inter-
ference in the efficacy of doxorubicin cancer treatment is a major concern. Evidence from
various in vitro and in vivo studies demonstrated that melatonin had dual effects on apop-
tosis by selectively modulating the antiapoptotic effect on normal cells, and triggering the
apoptotic pathways in cancer cells [117]. Treatment with melatonin alone has the potential
to reduce cell proliferation and enhance apoptosis in many cancer cell lines, including
breast cancer, those involving hematologic malignancies, and prostate cancer [117–121].
Studies in various cancer models have been extensively reported regarding the mechanisms
behind melatonin’s anticancer effects, including the induction of tumor cell apoptosis
and the reduction of cell proliferation though the upregulation of p53, increased Bax, and
decreased Bcl-2 in gastric, renal, and breast cancer cells, as well as ovarian cancer rats
models [122–126]. Melatonin also increased the expressions of Bim, a pro-apoptotic Bcl-2
protein, in liver and renal cancer cells [127,128]. Additionally, melatonin has been found to
increase oxidative stress in colorectal cancer cells and to have an anti-angiogenesis effect
by downregulating VEGF in breast and liver cancer cells [129–131]. Moreover, melatonin
has a potential to decrease tumor invasiveness by suppressing expressions of matrix metal-
lopeptidase (MMP) 2 and 9, which play a key role in the degradation of the extracellular
matrix, in breast and liver cancer cell lines [132,133].

Melatonin also synergized the anti-tumor effects with doxorubicin in breast cancer cell
lines and tumor-bearing rat models [22,23,134]. A randomized study in advanced-stage
solid tumor patients reported the efficacy of melatonin in enhancing the action of the
chemotherapy on tumor regression [135]. A small study in advanced-stage cancer patients
reported that the subgroup of patients without tumor progression had a decline in VEGF
levels after being treated with melatonin [136]. A randomized study on metastatic colorectal
cancer patients who did not respond to 5-FU treatment revealed that melatonin combined
with low-dose IL-2 improved 1-year survival, compared to supportive treatment alone [137].
Further, a randomized study on advanced solid organ tumors showed that melatonin
treatment increased patients’ survival rate compared to supportive treatment alone [138].
Additionally, a randomized study in advanced solid organ tumors found that melatonin
supplementation reduced chemotherapy toxicity, including neurotoxicity, cytopenia, and
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cachexia, and improved the survival rate and tumor regression [139]. A randomized
study in advanced stage breast cancer also showed that the combination of melatonin and
tamoxifen improved tumor response compared to tamoxifen alone [140]. These studies
supported the potential role of melatonin as a preventive strategy in doxorubicin-induced
cardiotoxicity without interfering with the cancer treatment effects of doxorubicin.

The research on the combination of anthracycline chemotherapy and radiotherapy is
still limited. Evidence suggests that melatonin enhances the radiotherapy effect on cancer
cells. Previous in vitro studies have indicated that melatonin improves the radiotherapy
effect on breast cancer cells through the modulation of p53 and DNA break repaired
proteins [141,142]. A small randomized study in glioblastoma patients found that melatonin
treatment dose 20 mg in conjunction with radiotherapy at 60 Gy significantly improved
1-year survival and reduced radiotherapy-associated toxicity compared to the radiotherapy
alone group [143]. On the other hand, a study of brain metastasis patients who underwent
whole-brain radiotherapy reported no benefit of melatonin dose 20 mg on survival [144].

Melatonin has also been shown to prevent the radiotherapy effect on normal cells.
In vitro and in vivo studies have demonstrated that melatonin has a radioprotective effect
in various cell types, including lymphocytes, germ cells, and mice exposed to whole-body
irradiations [145]. Clinical studies have indicated that melatonin can mitigate the potential
side effects of radiotherapy, such as alopecia and oral mucositis [143,146]. However, the
protective effect of melatonin on cardiotoxicity from radiotherapy remains uncertain due
to limited evidence. In vivo studies in rats showed that pretreatment with 50 mg/kg
of melatonin IP before radiation 18 Gy can prevent fibrosis, vasculitis, and myocardial
necrosis [147]. Another study in xenograft mice with colon cancer found that pretreatment
with melatonin 20 mg/kg IP prior to radiotherapy 5 Gy reduced oxidative damage to
cardiac tissue. Overall, the evidence suggests that the protective effect of melatonin on
doxorubicin-induced cardiotoxicity would persist with concurrent radiotherapy treatment.

Although extensive evidence from both in vitro and in vivo studies demonstrated
the effectiveness of melatonin in attenuating doxorubicin-induced cardiotoxicity, there
are still limited clinical studies. A randomized study in 250 advanced-stage solid tumor
patients with poor functional status reported that melatonin potentially improved the 1-
year survival rate and reduced the incidence of cardiotoxicity [135]. Further clinical studies
are warranted, and indeed to be recommended to further evaluate the use of melatonin as a
preventative strategy for ameliorating the effects of the cardiotoxicity cause by doxorubicin.

7. Conclusions

Evidence from both in vitro and in vivo studies demonstrates the potential benefits
of melatonin on doxorubicin-induced cardiotoxicity. Melatonin exerted antioxidative
properties, had mitochondrial protective effects, and prevented cell death from doxorubicin
by suppressing apoptosis, attenuating autophagy dysregulation, and decreasing ferroptosis.
The ECG change and LV dysfunction from doxorubicin was also attenuated with melatonin.
Melatonin has the potential to exert anti-arrhythmic properties against doxorubicin, but
further studies are necessary to fully comprehend its underlying mechanisms and assess its
clinical potential. Melatonin provided protection for cardiomyocytes without interfering
with the efficacy of cancer treatment from doxorubicin. Overall, melatonin could be a
potential candidate for a therapeutic strategy in the prevention of doxorubicin-induced
cardiotoxicity. However, further high-quality clinical studies are still required to validate
the efficacy of melatonin for future clinical application.
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