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Abstract: Nanomedicine is a branch of medicine using nanotechnology to prevent and treat diseases.
Nanotechnology represents one of the most effective approaches in elevating a drug‘s treatment
efficacy and reducing toxicity by improving drug solubility, altering biodistribution, and controlling
the release. The development of nanotechnology and materials has brought a profound revolution to
medicine, significantly affecting the treatment of various major diseases such as cancer, injection, and
cardiovascular diseases. Nanomedicine has experienced explosive growth in the past few years. Al-
though the clinical transition of nanomedicine is not very satisfactory, traditional drugs still occupy a
dominant position in formulation development, but increasingly active drugs have adopted nanoscale
forms to limit side effects and improve efficacy. The review summarized the approved nanomedicine,
its indications, and the properties of commonly used nanocarriers and nanotechnology.

Keywords: nanomedicine; liposomes; nanocrystal; polymeric nanoparticles; cancer; cardiovascular
disease; infection

1. Introduction

Nanoparticles are particles with a size range of 1–100 nm or products with a par-
ticle size outside this range but whose preparation characteristics are generally related
to the particle size [1,2]. Nanomedicine uses nanoparticles such as polymeric micelles,
liposomes, and lipid nanoparticles in living organisms for disease prevention and treat-
ment [3]. The clinical use of traditional drugs is always limited due to their water-solubility,
stability, poor pharmacokinetics, low bioavailability, low targetability, toxicity, etc [4].
Nanomedicine emerged to overcome these problems and has made significant progress.
Nanomedicine improves the pharmacokinetic behavior of drugs and reduces toxicity by
improving drug solubility, altering biodistribution, and controlling the release [5]. The
large surface area of nanoparticles offers an enhanced interaction with cells and effectively
increases the intracellular drug concentration [6]. The surface modification also allows
increased drug accumulation in the lesions and penetrability [7]. In addition, through
codelivery, the advantages of synergistic therapy can be improved and compromise drug
resistance [8]. Nanomedicine has obtained breakthroughs in cancer treatment, diagnosis,
and gene delivery [9–13], as more than 90 nanoformulations were marketed [14–16].

The development progress of nanomedicine can be divided into three stages. The first
stage is a primary research stage that lasted for 30 years, from the discovery of liposome
structure in 1964 to the first approved nanomedicine by the Food and Drug Administration
(FDA) based on liposomal doxorubicin (DOX) delivery system, Doxil® in 1995 [17]. The
second stage lasted from 1995 to 2007 and mainly involved clinical validation and com-
mercialization. The third is the stage, including the rapid nanomedicine development, in
which various innovative nanomedicine appeared. Although nanomedicine had higher
treatment efficacy than traditional drugs, it could not balance pathological-tissue regulation
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and normal-organ protection. In order to solve this problem, smart nanomedicines with
the reaction to endogenous and exogenous stimuli have been developed to ensure more
precise disease treatment and minimize the non-specific and related toxicity. Several of
them have entered clinical trials [18]. Consequently, improved delivery using nanoscaled
drug delivery systems (NDDSs) to the lesions is the hottest research area in nanomedicine,
accounting for half of the articles published in the past 20 years. The NDDSs, with certain
therapeutic effects such as nanocrystals of insoluble drugs, deliver drugs to specific tissues
of the body. NDDSs developed rapidly over the few years. For instance, the research
articles regarding NDDSs increased over ten-fold from 2000 to 2019 [19]. Commonly used
NDDS include nanocrystals, nanoemulsions, liposomes and lipid nanoparticles, polymers,
protein-based nanoparticles, etc. [20]. So far, more than 90 NDDSs have been marketed.
NDDSs are attracting worldwide attention due to their excellent therapeutic effects and are
becoming one of the top five promising technologies, according to the Forbes report [21].
Several reviews summarized different types of nanomedicine against a specific disease,
and cancer accounts for the majority [22–24]. Other diseases, such as infection and car-
diovascular disease, are increasingly threatening human health. This review focuses on
NDDS-based medicine against major diseases that threaten human life. We introduced
the marketed nanomedicine and its main characteristics. Then, we analyzed the approved
formulations and outlooked the field.

2. Liposomes and Lipid Nanoparticles (LNPs)

Over the past few years, liposomes and LNPs have been through a long and tortuous
road from the concept to the mainstream status of lipid carriers in NDDSs. Since the first
liposomes entered clinical trials in 1985, over 20 liposomes and LNPs have been approved
for marketing (Table 1). The success of liposomal drugs further stimulated extensive clinical
research on lipid-related nanoparticles. They have been clinically explored for disease
treatment by vaccine and gene-drug delivery.

2.1. Liposomes

Since Alec Bangham first revealed that phospholipids could form a closed bilayer
structure in an aqueous system [25], liposomes, as a closed bilayer phospholipid system,
demonstrated the ability to load hydrophilic and hydrophobic drugs in a bilayer structure
and aqueous cores. Liposomes possess numerous advantages, such as high biocompati-
bility, low immunogenicity, and the ability to easily change the size, charge, and surface
properties by modifying the prescription or preparation methods, increasing efficiency
and decreasing toxicity [25]. Additionally, modifying the liposomal membrane allows
prolonged blood circulation time and increased lesion accumulation of the drug [26]. So far,
the liposomes have developed into mature drug carriers. The use of the extrusion technique
for homogeneous size and the PEGylated approach for long-circulating facilitated liposome
translation [27]. The emergency of enhanced permeability and retention (EPR) effect
first described in 1986 in solid tumors further derived the translation, allowing increased
accumulation of nanoparticles in tumor tissue due to the increased vascular permeability.
Liposomes are the first nanomedicine that is translated into clinical use. For example,
AmBisome® and Doxil® demonstrate considerable clinical success, with annual sales in
the hundreds of millions of dollars [28]. The section displayed the approved liposomal
formulations and their clinical use.

2.1.1. Liposomes against Cancer

Cancer is amongst the most severe public health problems menacing the world. Ap-
proximately 1.92 million new cancer cases and 0.61 million new cancer deaths will be
estimated in developed countries in 2022 [29]. Due to lacking selectivity, traditional small-
molecule chemotherapeutic drugs often cause severe damage to normal tissues and organs,
such as bone marrow and gastrointestinal tract, while killing tumor cells [30,31]. In recent
years, nanomedicines have been extensively used in antitumor therapy as increasing re-
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search focuses on efficient and low-toxic NDDSs. Among them, liposomes are a hot spot
with various antitumor liposomes being marketed.

DOX liposomes are the most widely studied antitumor liposomes. DOX has strong
antitumor effects against several tumors by inhibiting DNA and RNA synthesis in tumor
cells [32]. DOX has potential mutagenic and carcinogenic activity and adverse effects,
including cardiotoxicity and bone marrow inhibition. Liposomes enable the passive tar-
geting of drugs to tumor tissues through the EPR effect in solid tumors and reduce drug
toxicity. The first marketed DOX liposome was Doxil® developed by Sequus in the United
States (US), mainly for treating recurrent ovarian cancer and human immunodeficiency
virus (HIV)-induced Kaposi’s sarcoma (KS) [33,34]. Doxil® uses STEALTH® technology
to encapsulate DOX in a polyethylene glycol (PEG)-modified stealth liposome composed
of synthetic phospholipids and has prolonged blood circulation, with a prescription com-
position molar ratio of HSPC:CHOL: DSPE-mPEG2000 = 56:39:5 and a particle size of
about 100 nm [35]. Using synthetic phospholipids as carriers offers enhanced stability,
accompanied by controlled release due to PEG modification, thus significantly reducing
the cardiotoxicity caused by DOX [36]. Nevertheless, PEG modification has also been
associated with concentration-dependent toxicity. When high doses of PEG-modified lipo-
somes are administrated, some of the leaked drugs may lead to “hand and foot syndrome”,
characterized by numbness of hands and feet [37,38]. Therefore, Myocet®, a non-PEGylated
modified DOX liposome developed by Elan Pharmaceuticals, was developed in Europe,
in which DOX is present in the form of citrate. Compared to Doxil®, Myocet® has a more
straightforward prescription composition with a 55:45 molar EPC to CHOL, a drug-lipid
ratio of 0.27, and a 150–250 nm diameter. Myocet® did not show apparent toxicity toward
the skin in treating metastatic breast cancer. Nevertheless, due to the lack of PEG modifi-
cation, Myocet® is rapidly phagocytosed by macrophages in vivo, showing no advantage
over PEGylated liposomes in terms of half-life and tumor targeting [39].

In addition to enhancing drug retention at the tumor site via the EPR effect, liposomes
can simultaneously deliver different antitumor drugs for efficacy improvement [40]. In
2017, Vyxeos® (CPX-351), characterized by the co-loading of cytarabine and daunorubicin,
was developed for treating therapy-related acute myeloid leukemia (t-AML) and AML with
myelodysplasia-related changes [41,42]. Sustained synergy-treatment efficacy and reduced
side effects were obtained by CombiPlex® technology (cytarabine: daunorubicin = 5:1) [42,43].

Currently, most of the marketed antitumor liposomes carry small molecule drugs.
Besides the mentioned liposomes above, there are other marketed small molecule antitumor
liposomes, such as Marqibo®, a vincristine liposome against acute lymphoblastic leukemia
(ALL) [44], Depocyt®, a cytarabine liposome for neoplastic meningitis (NM) [45], and
Onivyde™, an irinotecan liposome for advanced pancreatic cancer [46]. Additionally, there
are antitumor liposomes encapsulating macromolecular drugs on the market. Mepact® is
a mifamurtide (MFT) liposome developed by IDM Pharma, an orphan drug for treating
osteosarcoma. Mepact® is a multilayer liposome with a particle size of 2.0 to 3.5 µm,
containing the active ingredients cytosolic acyl tripeptide phosphatidylethanolamine (MTP-
PE), palmitoyl oil-based phosphatidylcholine (POPC) and dioleoyl phosphatidylserine
(OOPS) in a molar ratio of POPC: OOPS = 7:3 and MTP-PE: phospholipid = 1:250. This
particle size facilitates monocyte/macrophage recognition, phagocytosis, and drug release,
killing cancer cells by activating monocytes and macrophages [47].

2.1.2. Liposomes against Infection

Besides cancer, infectious diseases also threaten human health and life. Viruses, bac-
teria, and fungi are the three most common groups of pathogenic microorganisms [48].
Anti-infective drugs can be divided into several types, including anti-viral drugs (adaman-
tanamine, zidovudine, ribavirin, and interferon), anti-bacterial drugs (penicillin, macrolides,
metronidazole), anti-fungal drugs (fluconazole, itraconazole, and voriconazole) and anti-
parasitic drugs (albendazole and praziquantel), according to the different pathogens
of infection [49].
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Leishmaniasis is a zoonosis caused by intracellular protozoan parasites belonging
to Leishmania. The World Health Organization (WHO) estimates 2–2.5 million cases of
leishmaniasis each year [50]. Pentavalent antimonial is the first-line drug for treating
visceral leishmaniasis, but its adverse events or toxic reactions happen frequently, and even
ineffective reactions occur [51]. Amphotericin B, a polyene macrolide antibiotic that binds
to sterols in cell membranes, is currently the most effective anti-leishmanial drug [52]. Due
to its poor oral absorption, only dosing concentrations can be achieved by intravenous
injection. Moreover, it is easy to bind with serum protein and accumulate in the liver, lung,
spleen, and kidney, resulting in toxicity [53]. The application of liposomes significantly
reduced the drug‘s toxicity [54]. AmBisome® and Amphotec® marketed in 1990 and 1996,
respectively, are effective and well-tolerated to combat visceral leishmaniasis in immuno-
competent patients and other severe fungal infections. AmBisome® obtains fungicidal
activity and inhibits fungal replication by penetrating the fungal cell wall, entering the
cell, releasing the drug, and binding to the sterol component of the membrane (mainly
ergosterol) [55]. Abelcet® is composed of two lipids (dimyristoyl-phosphatidyl-choline
and dimyristoyl-phosphatidylglycerol) in a 7:3 molar ratio. The formulation is effective
in patients with invasive fungi who do not respond to or are intolerant to conventional
anti-fungal therapy [56]. Subsequently, increasing liposomal products against infection
were marketed with more administration routes, not limited to intravenous administration.

Inflexal® is an inactivated subunit influenza vaccine with a virion adjuvant and
was commercialized in 1997 [57]. It is tolerable, safe, and effective in all age groups in
various pre-and post-marketing studies [58]. Launching the Mosquirix® vaccine is an
essential step in fighting against malaria, a parasitic infection whose symptoms range
from moderate fever to nervous system disorders. Mosquirix® was advocated by the
WHO in 2021 for its inclusion in routine immunization schedules and existing malaria
control measures, although the economic cost of the vaccine is high [59]. Both vaccines are
administered by intramuscular injection. Launching Arikayce® Kit represents an advance
in the liposomal ultra-complex formulation. Arikayce® Kit is a liposomal inhalation
formulation administered using the eFlow nebulization system manufactured by PARI
Pharma GmbH for treating non-tuberculous mycobacterial (NTM) lung disease, specifically
NTM lung disease caused by Mycobacterium avium complex (MAC), the first and only
therapy specifically designed to treat this unique lung disease in the US [60].

As penicillin was invented, the human‘s ability against bacteria, viruses, and fungi
was significantly strengthened. More than 10 lipid-based products against infectious
diseases were marketed. However, the incidence of infectious diseases worldwide is
still growing, and the pathogens show a trend of diversification and complexity. Due to
the widespread application of antimicrobial drugs, bacterial resistance to drugs occurs.
Antibiotic Stewardship (ABS) is a crucial method to prevent the spread of drug-resistant
pathogens and the emergence of multidrug resistance [61]. The measurement to prevent
drug resistance includes implementing local guidelines, developing location-specific anti-
infection lists, regular quarantine visits, practice-oriented in-house training activities, and
minimizing antibiotic use in an outpatient setting. Liposomal formulations effectively
perform the ABS and combat drug resistance by reducing doses and frequency. Nonetheless,
there is still an urgent requirement to develop new anti-infective drugs. Virtual high-
throughput screening and structure-based rational drug design have been established as
powerful tools [62]. In addition, alternative non-antibiotic approaches must be actively
sought, such as identifying new targets in pathogenic microbial cells (quorum sensing,
riboswitches, transcriptional regulators, etc.) [63].

2.1.3. Liposomes for Pain Relief and Other Disease Therapy

Liposomes are also being used in other treatment areas, such as pain management [64,65]
and photodynamic therapy (PDT) [66]. Two liposomal products are used for clinical analgesia:
the morphine liposome, DepoDur™, and the bupivacaine liposome, Exparel®. Both are pro-
duced using the slow-release multivesicular liposome preparation technology, Depofoam™.
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DepoDur™ is a liposome encapsulating morphine sulfate primarily used to relieve postop-
erative pain. DepoDur™ has an extended drug release time compared to regular morphine
preparations, with analgesic effects lasting up to 48 h after a single dose, approximately twice as
long as regular morphine preparations [67,68]. Exparel® also has a long-lasting analgesic effect,
achieving 72 h of pain relief after subcutaneous injection, whereas the pain suppression time of
regular bupivacaine injection is only 7 h [69,70].

Liposomes can release drugs in vivo in different ways, including in response to pH
alterations, temperature changes, or other conditions [71–73]. Visudyne® is a combined
PDT formulation of liposomes for treating age-related macular degeneration (AMD) and
choroidal neovascularization (CNV) [74]. Visudyne® irradiates the lesion with a non-
thermogenic red-light source at a specific wavelength of 689 ± 3 nm, where a photochemical
reaction forms singlet oxygen to produce local cytotoxic effects and generates reactive
oxygen radicals, which damage local neovascular endothelial cells and help vascular
closure [75]. The light-triggered release of the contents offers Visudyne® photodynamic
therapy with low toxicity and high selectivity.

Liposomes, one of the most successfully used nanomedicine, possess promising appli-
cation prospects and numerous advantages. However, several liposome formulations failed
in clinical trials because they did not reach the expected endpoints. The key to solving
liposomes’ clinical translation is technical issues, such as scale-up synthesis, performance
optimization, prediction, etc. In the future, we expect to see more liposome products suc-
cessfully applied in clinical practice, and we desire that liposome’s clinical and commercial
applications could stimulate and promote the clinical translation of other nanomedicines.

2.2. LNPs against Hereditary Transthyretin Amyloidosis (hATTR) and COVID-19 Infection

Liposomes are potent to encapsulate small-molecule drugs and improve their delivery;
however, they are always modest in delivering biopharmaceuticals due to poor encap-
sulation efficacy and endosomal escape. LNPs are appearing to enhance the delivery of
biologics with high-molecule weight and poor membrane penetrability and stability [76].
LNPs comprise ionizable lipids, phospholipids, cholesterol, and PEG-lipid conjugate. All
lipid components have their specific functions [77,78]. The phospholipids (distearoyl
phosphatidylcholine (DSPC), dipalmitoyl phosphatidylcholine (DPPC)) form the basic
backbone of lipid bilayers; cholesterol is mainly used to regulate the rigidity and mobility
of liposomes and to stabilize the structure of liposomes; ionizable lipids have pKa of 6–7
and contain amino groups such as G0-C14 and C12-200. The lipids are generally negatively
charged while becoming positively charged in weak acid conditions and facilitate the
lysosomal escape; other lipid components help reduce non-specific uptake [79–81].

LNPs, as one of the most studied nanocarriers, undergo rapid technological evolution
and get significant advances. For instance, the first siRNA drug, Onpattro™ (a new small
interfering RNA (siRNA) LNP), was launched in 2018 for treating hATTR polyneuropathy,
signifying a milestone advancement in LNP technology [82]. The key to Onpattro™ success
is the development of ionizable cationic lipids. Upon arrival at endosomes, the ionizable
lipids of LNPs undergo charge flipping to positive charge in an acidic environment, leading
to endosomal escape and significantly improving the efficiency of in vivo delivery of unsta-
ble nucleic acid drugs [83]. Nucleic acid therapies, such as mRNA, are evolving into precise
medicines that can manipulate specific genes. However, their large size and vulnerability
greatly limit their clinical use [84]. Under the current impact of COVID-19 [85,86], LNPs,
as a critical component of the messenger RNA (mRNA) vaccine, play an essential role in
protecting and delivering mRNA [87]. The two approved mRNA vaccines, mRNA-1273
and BNT162b2 used LNPs as carriers and showed significant effectiveness for infection
prevention. The effectiveness of the mRNA-1273 and BNT162b2 is 94.1% and 95.0%, re-
spectively. The robust efficacy is closely linked to the structure and active mechanism
(Figure 1). During the endosomal escape, ionizable lipids protonate [88] and interact with
the endosomal membrane to form destructive non-bilayer structures when pH is below
the pKa of ionizable lipids, ultimately leading to the release of mRNA [89]. The two
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COVID-19 mRNA vaccines are Comirnaty expressing the S protein from Moderna (Cam-
bridge, MA, USA) [90], and Spikevax encoding the RBD protein from BioNTech (Mainz,
Germany) [87,91]. Nonetheless, the mRNA COVID-19 vaccines from Moderna and BioN-
Tech/Pfizer (New York, NY, USA) must be kept between −15 and −25 ◦C and between
−60 and −90 ◦C, compared with 2–8 ◦C of other vaccines. These temperature-demanding
storage conditions make vaccine transportation and distribution costs dramatically higher.
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Overall, liposomes account for most of the nanomedicines marketed to date. The
two nanocarriers demonstrate advantages over other NDDSs, such as polymer micelles
and dendrimers, including higher payload ability, enhanced stability, drug protection,
biocompatibility, and more straightforward modification and industrialization. Moreover,
liposomes have two drug-loading sites and demonstrate unique advantages for co-delivery.
For instance, liposomes allowed the approval of co-delivery nanomedicine, Vyxeos®, to
treat AML. However, most products are dosed by intravenous route (most vaccines are
intramuscular injection) [92]. Gastrointestinal degradation of the carrier can reduce the
bioavailability of the drug, so oral administration is generally not appropriate for lipid-
carrier products [92].
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Table 1. Marketed liposome- and LNP products.

Trade Name Approval Year Drug Agent Company Clinical Applications Agency Administration Route Ref.

Ambisome® 1990 Amphotericin B Gilead Sciences (Foster,
CA, USA)

Fungal
infection/Anti-leishmanial EMA intravenous [55,93,94]

Epaxal® 1993
Inactivated hepatitis

A virus
(strain RGSB)

Crucell Berna Biotech (Berne,
Switzerland) Hepatitis A EMA intramuscular [95,96]

Abelcet® 1995 Amphotericin B Sigma-Tau Pharmaceutical Inc.
(Gaithersburg, MD, USA)

Invasive severe fungal
infections FDA intravenous [56]

Doxil®/Caelyx® 1995/1996 Doxorubicin Sequus Pharmaceuticals
(Santa Clara County, CA, USA) Ovarian cancer and KS FDA/EMA intravenous [33,34,97]

Amphotec® 1996 Amphotericin B Ben Venue Laboratories
(Bedford, OH, USA) Severe fungal infections FDA intravenous [98]

DaunoXome® 1996 Daunorubicin NeXstar Pharmaceuticals
(Foster, CA, USA) KS infected with HIV FDA intravenous [99]

Inflexal® V 1997

Inactivated
hemagglutinin of
Influenza virus
strains A and B

Crucell Berna Biotech (Berne,
Switzerland) Influenza EMA intramuscular [57]

Depocyt® 1999 Cytarabine Skye Pharm Inc. (San Diego,
CA, USA) Neoplastic meningitis FDA spinal [100,101]

Visudyne® 2000 Verteporfin Novartis AG (Basel,
Switzerland)

Choroidal
neovascularization FDA intravenous [75]

Myocet® 2001 Doxorubicin IDM Pharma (Irvine,
CA, USA)

Combination therapy with
cyclophosphamide in

metastatic
breast cancer

EMA intravenous [102]

Lipusu® 2003 Paclitaxel Luye Pharma (Nanjing, China) Ovarian cancer NMPA intravenously guttae [103]

DepoDur™ 2004 Morphine Sulfate SkyPharm Inc. (San Diego,
CA, USA) Pain management FDA Epidural [68]

Mepact® 2009 Mifamurtide Elan Pharmaceuticals (San
Diego, CA, USA)

Non-metastatic
osteosarcoma EMA intravenous [47,104]
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Table 1. Cont.

Trade Name Approval Year Drug Agent Company Clinical Applications Agency Administration Route Ref.

Exparel® 2011 Bupivacaine Pacira BioSciences (San Diego,
CA, USA) Pain management FDA intravenous [105]

Marqibo® 2012 Vincristine Talon Therapeutics (San
Francisco, CA, USA) ALL FDA intravenous [44]

Onivyde™ 2015 Irinotecan Merrimack Pharmaceuticals
(Cambridge, UK) Metastatic pancreatic cancer FDA intravenous [46,106]

Vyxeos® 2017 Daunorubicin and
Cytarabine

Jazz Pharmaceuticals (San
Francisco, CA, USA) AML-MRC and t-AML FDA intravenous [41,42]

Shingrix® 2017 Recombinant VZV
glycoprotein E

Glaxo Smith Kline (Middlesex,
UK)

Against shingles and
post-herpetic neuralgia FDA intramuscular [107,108]

Onpattro™ 2018 siRNA Alnylam (Cambridge,
MA, USA)

Polyneuropathy caused by
hATTR FDA intravenous [82,109,110]

Arikayce® Kit 2018 Amikacin Insmed (Glen Allen, VA, USA) NTM lung disease caused
by MAC FDA inhalation

administration [111,112]

Mosquirix® 2021 Recombinant CSP Glaxo Smith Kline (Middlesex,
UK) Malaria EMA intramuscular [59]

Comirnaty® 2021 BNT162b2
Pfizer (New York, NY, USA)

and BioNTech (Mainz,
Germany)

COVID-19 FDA intramuscular [113]

mRNA-1273 2021 mRNA-1273 Moderna (Cambridge,
MA, USA) COVID-19 FDA intramuscular [114]

FDA: Food and Drug Administration; EMA: European Medicines Agency; NMPA: National Medical Products Administration.
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3. Drug Nanocrystals (NCs)

Over the last two decades, over 15 NCs were approved for clinical use (Table 2). Com-
pared to lipid-based and polymeric nanocarriers, NCs outstand delivering hydrophobic
drugs through multiple administration routes and excel in many different areas, such as
high drug-loading capacity, long-term stability, enhanced release, barrier penetration, and
easily scalable techniques [115]. Significantly, NCs are the most promising nanomedicine
for long-lasting activity against diseases due to their extremely high drug-loading capacity.
Mostly, two important techniques have been used for NCs fabrication, bottom-up and top-
down approaches [116–118]. In this part, an elaboration of approved clinical trials and some
encouraging preclinical NCs‘ characteristics and features will be found, catching a glimpse,
particularly for those used in cancer, cardiovascular diseases (CVDs), and infections.

3.1. NCs against CVDs

CVDs are one of the major causes of morbidity and mortality worldwide, which
include a diverse range of heart and circulatory system dysfunctions such as coronary
artery diseases, stroke, peripheral arterial diseases, myocardial infarction (MI), and aortic
diseases [10,119–122]. Increased blood cholesterol levels are a risk factor, biomarker, and
prediction of CVDs since cholesterol accumulates in blood vessel walls and can restrict or ob-
struct blood flow and oxygen delivery [121,123]. The first approved NCs product employed
to prevent the development of atherosclerosis and the plaques on the inner wall of arteries
that cause strokes and heart attacks were Tricor®, fenofibrate NCs back on 5 November
2004 [124]. Fenofibrate is a water-insoluble drug that belongs to class II in the Biopharma-
ceutical Classification System (BCS) and is clinically used to reduce the plasma level of
low-density lipoproteins (LDL) and cholesterol in patients with hypercholesterolemia [125].
To improve the oral bioavailability of fenofibrate, Abbott Lab developed Tricor® utilizing
the pearl mill technology, producing particles of below 30 nm in size; compared to mi-
cronized fenofibrate, it showed higher drug solubility and enhanced oral bioavailability by
9% without affecting its effect in a fed or fasted state [126]. The fenofibrate NCs were en-
capsulated in different water-soluble polymers, including polyvinylpyrrolidone, polyvinyl
alcohol (PVA), and hydroxypropyl methylcellulose (HPMC) [127]. Gite et al. fabricated PVA
containing surface-engineered fenofibrate NCs via the media milling method, and these
formulations showed a quick and complete dissolution within 30 min compared to Tricor®.
In vivo pharmacokinetics study demonstrated that the novel fenofibrate formulations had a
remarkably improved bioavailability and faster onset of action, with a 51.46% shorter Tmax,
82.63% higher Cmax, and 69.34% higher AUC0–24 h, respectively [128]. Other techniques
have also been used to prepare fenofibrate NCs, such as evaporation-assisted antisolvent
interaction using polymers HPMC, polyvinylpyridine (PVP) and PVA, high-pressure ho-
mogenization (HPH) method using poloxamer 188 (P188) and Tween 80. Both formulations
showed accelerated solubility and dissolution, vastly enhancing drug absorption [127,129].
Another advanced fenofibrate NCs product (Triglide®), approved on 7 May 2005, was
formulated via the HPH method, and each tablet of Triglide® contains active fenofibrate
(50 mg or 160 mg) and other inactive agents (crospovidone, lactose monohydrate, mannitol,
maltodextrin, carboxymethylcellulose sodium, egg lecithin, croscarmellose sodium, sodium
lauryl sulfate, colloidal silicon dioxide, magnesium stearate, and monobasic sodium phos-
phate). Triglide®, a 160-mg tablet, exhibits a 32% higher absorption rate than the 200 mg
micronized fenofibrate capsule under low-fat-fed conditions [130,131].

3.2. NCs against Infection

Anti-infective agents, including anti-bacterial, anti-fungal, anti-viral, and anti-parasitic
agents, have been employed to treat different infectious diseases such as severe acute
respiratory infections (coronaviruses: SARS-CoV-2/COVID, SARS-CoV, and MER), HIV
infection caused by various pathogenic agents, i.e., viruses, bacteria, fungus, and para-
sites [132,133]. The first NCs-based product to receive US FDA approval for the treatment
of fungal infection was orally administered Gris-PEG, which was manufactured by Recro
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Gainesville LLC (Gainesville, FL, USA) in 1998 and approved for oral administration of the
anti-fungal drug griseofulvin to treat ringworm infection. Each Gris-PEG® tablet (Ultra-
microsize: 10–30 µm) was available with griseofulvin ultra-micro size, PEG 400 and 8000,
and PVP as polymer matrix and other excipients (colloidal silicon dioxide, lactose, mag-
nesium stearate, methylcellulose, methylparaben and, titanium dioxide). In non-fasting
groups, the peak serum level of griseofulvin was twice higher than fasting groups [134].

Recently, long-acting injectables (LAIs) of antiretroviral drugs are being explored
as prospective substitutes for pill-based regimens against HIV/AIDS infection [135,136].
LAIs nano-formulations possess several advantages over conventional treatment, such as
sustained drug release, increased drug bioavailability, decreased dosage and frequency
of drug administration, enhanced drug stability in biological environments, decreased
side effects, avoid unfavorable drug interactions, and impart specificity for pathogen-
infected cells [137,138]. In 2021, two controlled/extended-release injectable NCs products
under the trade name Cabenuva® and Apretude® were approved by the FDA against
HIV-type-one (HIV-1) infection. Both products are available as a gluteal intramuscular
injection in a single-dose vial. Cabenuva® is a novel LAI formulation (once-monthly)
with an extended-release of two drugs, cabotegravir (CAB), which is an HIV integrase
nucleoside strand transfer inhibitor (INSTI), and rilpivirine, as an HIV non-nucleoside
reverse transcriptase inhibitor (NNRTI) [139]. The CAB suspension was fabricated (size of
200 nm) using PEG 3350, polysorbate 20, and CAB, while the poloxamer 338 was utilized
to stabilize rilpivirine suspension.

Apretude®, CAB extended-release injectable suspension, as referred by the manufac-
turer, is prepared by wet bead milling method and then sterilized via gamma irradiation,
generalizing 200-nm particles. It is indicated for the treatment of HIV in at-risk patients
or adolescents weighing more than 35 kg for pre-exposure prophylaxis (PrEP) to lower
the risk of sexually acquired HIV-1 infection. The mechanism of Apretude® is based on
inhibiting HIV-1 viral replication (Figure 2) [140].
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phase, which is required for the HIV replication cycle.
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3.3. NCs for Psychosis and Other Disease Treatment

Besides the diseases mentioned above, NCs products have also been employed against
various conditions such as organ rejection in renal transplantation, anorexia, psychosis,
chronic pain, nausea, vomiting, etc. For instance, Rapamune®, immunosuppressant
sirolimus NCs, was indicated to prevent organ rejection in patients aged ≥13 years receiv-
ing renal transplants. Rapamune® was manufactured in 2000 by Wyeth Pharmaceuticals
(Philadelphia, PA, USA) using the pearl mill method, and its oral bioavailability was found
to be 21% higher than conventional formulations of sirolimus [141]. By using the same
method, Megace®ES, an appetite stimulant NC dispersion, was developed, and it showed
an increased drug dissolution rate and reduced single dose volume, thereby improving its
oral bioavailability and patient compliance [142].

Invega Sustenna® (2009), Invega Trinza® (2015), and Invega Hafyera® (2021), three
NC-based products of the anti-psychotic agent (paliperidone palmitate), with extended
drug release for 1 month, 3 months, and 6 months, respectively, have been approved to
treat schizophrenia and schizoaffective disorder as well as to supplement mood stabilizers
or antidepressants in adults. All three products with an average size of 150–200 nm were
prepared via the wet media milling method using polysorbate 20 as a stabilizer and are
provided in single-dose prefilled syringes with various fill volumes and strengths for
intramuscular administration [140,143]. Invega Sustenna® is available at a strength of
156 mg/mL. After receiving adequate treatment with Invega Sustenna for at least 4 months,
patients are switched to Invega Trinza®, which is provided in strengths of 273 mg/0.88 mL,
410 mg/1.32 mL, 546 mg/1.75 mL, and 819 mg/2.63 mL. After completing treatment
with Invega Trinza for at least one cycle, patients can begin receiving treatment with
Invega Hafyera® [144].
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Table 2. Approved NC-based products.

Trade Name Approval Year Drug Agent Company Clinical Applications Administration Route Agency Ref.

Gris-PEG® 1998 Griseofulvin Recro Gainesville LLC (Gainesville,
FL, USA) Ringworm infections Oral FDA [134]

Rapamune® 2000 Rapamycin/sirolimus Wyeth (Philadelphia, PA, USA) Immunosuppressive therapy in
renal transplantation Oral FDA [141]

Avinza® 2002 Morphine sulfate King Pharma (Bristol, TN, USA) Chronic pain Oral FDA [145]

Ritalin LA® 2002 Methylphenidate
hydrochloride

Novartis Novartis (Basel,
Switzerland)

Attention-deficit-hyperactivity
disorder Oral FDA [146]

Emend® 2003 Aprepitant Merck (Rahway, NJ, USA) Chemotherapy-induced nausea
and vomiting Oral FDA [147]

Tricor® 2004 Fenofibrate Abbott (North Chicago, IL, USA) Hypercholesterolemia Oral FDA [124]
Triglide® 2005 Fenofibrate Skye Pharma (San Diego, CA, USA) Hypercholesterolemia Oral FDA [131]

Megace®ES 2005 Megestrol acetate Par Pharma (Petaluma, CA, USA) Anorexia Oral FDA [142]
Naprelan® 2006 Naproxen sodium Wyeth (Philadelphia, PA, USA) Inflammation Oral FDA [148]
Cesamet® 2009 Nabilone Lilly (Indianapolis, IN, USA) Nausea and vomiting Oral FDA [149]

Invega
Sustenna® 2009 Paliperidone

palmitate
Janssen Pharmaceuticals Inc.

(Titusville, NJ, USA) Schizophrenia Intramuscular FDA [150]

Invega Trinza® 2015 Paliperidone
palmitate

Janssen Pharmaceuticals Inc.
(Titusville, NJ, USA) Schizophrenia Intramuscular FDA [151]

Aristada Initio® 2018 Aripiprazole lauroxil Alkermes Inc (Waltham, MA, USA) Schizophrenia Intramuscular FDA [152]
Invega

Hafyera® 2021 Paliperidone
palmitate

Janssen Pharmaceuticals Inc.
(Titusville, NJ, USA) Schizophrenia Intramuscular FDA [144]

Cabenuva® 2021 Cabotegravir Viiv Healthcare Co. (Brentford,
London, UK) HIV-1 infection Gluteal intramuscular FDA [139]

Apretude® 2021 Cabotegravir Viiv Healthcare Co. (Brentford,
London, UK) HIV-1 infection Gluteal intramuscular FDA [140]
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4. Polymeric Nanoparticles

Polymeric nanomedicines usually refer to nanoparticles loaded with active compounds
encapsulated into the polymeric core or adsorbed onto the surface of the polymeric core.
Besides lipid-based nanomedicines and NCs, polymeric nanomedicines also contribute to
treating various diseases. Polymeric nanomedicines approved are listed in Table 3. The
polymers used in polymeric nanomedicines are various, including natural, semi-synthetic,
and synthetic polymers. From the perspective of the nanostructure, it can be divided into
polymeric micelles, polymeric nanoparticles, and dendrimer-based nanoparticles [153,154].

4.1. Polymeric Micelles for Cancer Treatment

Polymeric micelles, formed by the self-assembly of amphiphilic block copolymers in
an aqueous solution, has hydrophobic core and hydrophilic shell [155]. The hydrophobic
core encapsulates drugs with low water solubility; as for the hydrophilic shell, it protects
cargos and maintains the stability of the micelles [155]. The commonly used hydrophobic
polymers [156–158] include polylactic acid (PLA), polylactide glycolide acid (PLGA), and
polyamine acid (PAA), while the commonly used hydrophilic polymers are PEG, chitosan,
hyaluronic acid (HA) and PVP [159–161]. The design of polymeric micelles aims to encap-
sulate active compounds to protect them from the external environment, improve their
pharmacokinetic profile, and reduce the side effect [162,163]. The functionalities of the
formulation depend on the properties of amphiphilic block copolymers, such as composi-
tion, surface charge, length, and molecular weight [164–167]. For example, the hydrophilic
shell had a prominent place in minimizing the interaction between polymeric micelles and
endogenous substances (serum proteins and complement system), avoiding unexpected
leakage of drugs and quick removal by the reticuloendothelial system (RES) [165]. Xiao
et al. studied the biodistribution of polymeric micelles with different surface charges [165].
The results showed extensive liver uptake of micelles with highly positive and negative
charges, which may be due to the active phagocytosis of Kupffer cells in the liver. However,
when the surface charge of micelles is slightly negative, the liver uptake is very low, while
the tumor uptake is very high. A slightly negative charge on the surface of micelles is
suggested to reduce the clearance of RES and improve blood compatibility [165]. Besides
surface charge, the molecular weight of hydrophilic polymers also affects the stability
and biodistribution of micelles [166,167]. Hydrophobic polymers mainly contribute to
dissolving insoluble drugs and controlling drug release from the micelles [155]. The hy-
drophobic interaction between drugs and hydrophobic polymers is the key driving force
for drug dissolving, keeping active molecules in the core and slowing its release rate [168].
Many hydrophobic polymers with a high capacity for solubilizing drugs have been synthe-
sized [169]. There are various methods for the production of polymeric micelles, including
thin film hydration [170], cosolvent evaporation [171], freeze-drying [172], dialysis [173],
and supercritical fluids [174]. Particularly, thin film hydration is the most excellent among
them, appropriate for large-scale production due to the fewest steps and easy removal of
organic solvent [155].

So far, there have been three polymeric micelles-based nanomedicines on the mar-
ket: Genexol® PM, Nanoxel® M, and Paclical®. Genexol® PM is the earliest polymeric
nanomedicine approved for human use in South Korea, the Philippines, India, and Viet-
nam in 2007. The API of Genexol® PM is paclitaxel (PTX), and its indication includes
metastatic breast cancer (MBC), non-small cell lung cancer (NSCLC), and ovarian cancer.
The amphiphilic di-block copolymers used in Genexol® PM are mPEG and poly-D,L-lactide
(PDLLA) (mPEG: 2000 g/mol, PDLLA: 1750 g/mol, PDI: 1.0–1.2), having good biocompati-
bility and degradability [175]. The micelles are produced by thin film hydration with a size
of 20–50 nm in diameter and 16.7% drug loading of PTX [175]. A preclinical study showed
that the maximum tolerable dose (MTD) and median lethal dose (LD50) of Genexol® PM
were higher than those of Taxol®, and the biodistribution of PTX after administration
of Genexol® PM showed 2 to 3-fold higher levels in tissues and tumor as compared to
Taxol® (PTX injection, a tumor chemotherapy drug of Bristol Myers Squibb SRL, with
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indications of ovarian cancer and breast cancer), exhibiting a significant advantage over
chemotherapy with Taxol® [175]. The phase I clinical trial in South Korea recorded that
the MTD for patients treated with Genexol® PM was 390 mg/m2 while that of Taxol® was
200 mg/m2 [176]. In the phase II clinical trial, Genexol® PM disclosed a better therapeutic
effect than Taxol® for treating NSCLC and MBC. In terms of safety, due to toxic excipients
removal (Cremophor EL), Genexol® PM has fewer side effects than Taxol®, increasing the
compliance of patients [177].

Nanoxel® M is a polymeric micelle-based preparation for cancer treatment and re-
ceived approval in 2012, with docetaxel as the active drug. Similar to Genexol® PM,
the amphiphilic block copolymers used in Nanoxel® M are mPEG and PDLLA (mPEG:
2000 g/mol, PDLLA: 1765 g/mol, PDI: 1.0~1.2) [178]. With a hydrodynamic size of 25.4 nm
in diameter, the micelles are produced by the thin film hydration method. A preclinical
study indicated that the IC50 of Nanoxel® M in H-460, MCF-7, and SKOV-3 cancer cells (2.33,
1.73, and 2.19 ng/mL) were comparable to those of Taxotere® (4.66, 1.83, and 3.25 ng/mL).
Pharmacokinetic parameters (Cmax, AUC, t1/2, CL, Vss) in mice, rats, and beagle dogs of
Nanoxel® M had no significant differences with those of Taxotere® (docetaxel injection,
a tumor chemotherapy drug of Sanofi, with the indication of gastric cancer) [178]. These
results suggested that Nanoxel® M had comparable therapeutic effects with Taxotere®.

Paclical®, whose active compound is PTX, was approved for ovarian-cancer treatment
in Russia in 2015 [179]. Notably, the amphiphilic surfactant XR-17 is introduced into the
micellar structure of Paclical®. XR-17, a vitamin A analog, can form water-soluble particles
with PTX. In a phase III clinical trial, Paclical® demonstrated a positive risk/benefit ratio
compared to a treatment based on Taxol® [180]. It offers a treatment option of a higher PTX
dose with a shorter infusion time without mandatory premedication [180].

In addition, many new types of polymeric micelles-based nanomedicines are in the
stage of clinical trials. These polymeric micelles are primarily prepared of PEG and PAA
with good biocompatibility.

4.2. Polymeric Nanoparticles for Cancer Treatment

Polymeric nanoparticles are solid colloidal particles composed of polymers with a
size of 10~1000 nm [163]. According to nanostructure, polymeric nanoparticles can be
divided into nanospheres and nanocapsules [163,181]. Nanocapsules are vesicular systems
in which the drug is confined to a cavity surrounded by a unique polymer membrane,
while nanospheres are matrix systems in which the drug is physically and uniformly
dispersed [181]. The frequently used method for producing nanocapsules is nanoprecipi-
tation [163]. In contrast, the methods for nanospheres are various, including nanoprecipi-
tation, solvent evaporation, emulsification/solvent diffusion, and emulsification/reverse
salting-out [163,182]. Polymeric nanoparticles share similar properties with liposomes and
polymeric micelles, such as enhanced solubility, reduced toxicity, and longer circulation
times [183]. In addition, compared with the two nanocarriers, polymeric nanoparticles
have better stability, more uniform size distribution, and more controllable drug release
through polymer matrix diffusion or erosion and particle degradation [184]. The commonly
utilized polymers include natural polymers such as albumin, dextran, HA, and chitosan
and synthetic polymers such as PLA, PLGA, PEG, PAA, etc. [185]. Synthetic polymers are
more frequently used to produce polymeric nanoparticles due to non-required purification,
easy manufacture, and sustained drug release [186].

Polymeric nanoparticles can be loaded with various active compounds, such as anti-
tumor drugs, siRNA, proteins, and contrast agents [183]. So far, there has been only one
commercialized polymeric nanoparticle: Abraxane®. FDA approved Abraxane® in 2005
for the treatment of pancreatic cancer and MBC. Abraxane® is an albumin-bound, 130-nm
particle formulation of PTX [187] (Figure 3). In a clinical trial, Abraxane® not only maintains
the antitumor effect of PTX but also eliminates the toxicity related to Cremophor® EL in
Taxol® [188]. The pharmacokinetic study showed that the PTX clearance rate and tumor
distribution capacity of Abraxane® were higher than Taxol® due to the ligand-receptor
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targeting effect by the active albumin transport pathway [188]. In addition, Abraxane®

was approved to treat NSCLC in 2012, and its phase III clinical trial for the treatment of
malignant melanoma is undergoing [189,190].
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could highly deliver the encapsulated PTX via albumin carrier and enhance the PTX distribution in
tumor tissues mediated by gp-60 and SPARC, which has been applied in the treatment of several
kinds of malignant melanoma.

4.3. Dendrimer-Based Nanoparticles against Infection

Dendrimers are branched polymers with repeating units, which are spherical and sym-
metrical in an aqueous solution [191]. The most widely used dendrimers involve polyamide
amine (PAMAM), polyether-copolyester (PEPE), polyimide (PPI), and gallic acid-triethylene
glycol (GATG) [192]. These dendrimers have unique structural and physicochemical prop-
erties, including (1) spherical, highly branched structure; (2) mono-dispersity, low viscosity;
(3) various drug loading methods and high payload capacity; (4) controllable nanometer
size; (5) the terminal amino group is convenient for functional modification [193,194]. The
distinctive molecular structure of dendrimers leads to a dense periphery and a loose core
of the particles, which can be used to carry various drugs such as small molecular drugs,
nucleic acids, and diagnostic agents [195–198]. Dendrimers are rich in amino groups on the
surface and can also be loaded with drugs through chemical coupling [199,200]. Therefore,
dendrimer-based nanoparticles can deliver various drugs to different lesions.

So far, there has been only one marketed dendrimer nanomedicine: Viva-Gel®. Viva-
Gel® was approved in 2006 for preventing HIV and herpes simplex virus (HSV) indication.
SPL7013, the active ingredient of Viva-Gel®, is a dendrimer with a specifically designed
polyanionic surface, which enables SPL7013 to attach to viruses, blocking viral attachment
or adsorption to cells, thereby preventing infection [201]. Numerous preclinical studies
showed that SPL7013 effectively protected human cells from HIV and HSV infection,
indicating a therapeutic potential for SPL7013 [202–204]. In a clinical trial, 36 healthy
women received either VivaGel™ containing 0.5–3.0% w/w SPL7013 or a placebo (the base
Carbopol® formulation without SPL7013) once daily intravaginally for a week [205]. All
SPL7013 concentrations of VivaGel™ exhibited good safety and tolerance as a placebo [205].
Besides, SPL7013 was not absorbed into the systemic circulation, verifying its safety [205].
Further clinical studies showed that VivaGel™ containing >0.5% SPL7013 could inhibit
more than 70% of HIV-1 and HSV-2, with activity maintained for at least 3 h post-dose [206].
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Table 3. Approved polymeric nanoparticle-based products.

Trade Name Approval Year Drug Agent Company Clinical
Applications

Administration
Route Agency Ref.

Genexol® PM 2007 PTX
Samyang

Pharmaceuticals (Seoul,
Republic of Korea)

MBC, NSCLC,
and ovarian

cancer
Intravenous

MFDS, PDH,
CDSCO and

DAV
[175]

Nanoxel® M 2012 Docetaxel
Samyang

Pharmaceuticals (Seoul,
Republic of Korea)

MBC, NSCLC,
and ovarian

cancer
Intravenous MFDS [178]

Paclical® 2015 PTX
Oasmia

Pharmaceuticals
(Uppsala, Sweden)

Ovarian cancer Intravenous RFMPH [180]

Abraxane® 2005 PTX
Abraxis Bioscience,

(Los Angeles,
CA, USA)

Pancreatic
cancer and

MBC
Intravenous FDA [187]

MFDS, Ministry of Food and Drug Safety (Status elevated from Republic of Korea Food and Drug Administration);
PDH, Philippines: Department of Health; CDSCO, Central Drug Standards Control Organization of India; DAV,
Drug Administration of Vietnam; RFMPH, Russian Federation: Ministry of Public Health.

5. Other Nanomedicines for Disease Treatment

In addition to the marketed nanomedicines previously described, there are currently
a variety of other nanomedicines approved for the clinical treatment of various diseases
(Table 4). With the rapid development of NDDSs via advanced synthetic or natural biologi-
cal materials, various novel nanomedicines, different from conventional nanomedicines,
have been developed into antibody-drug conjugates, cell-derived vehicles, viral vectors,
inorganic nanoparticles, protein-based nanoparticles [15,207]. These nanomedicines have
been broadly applied to treat or diagnose specific indications, including cancer, infectious
diseases, inflammation, blood disorders, immunological diseases, CVDs, nervous system
diseases, mental diseases, endocrine and metabolic diseases, etc. [208]. Meanwhile, many
new nanomedicines or some previous nanomedicines applied for different indications are
still in clinical trials (phase I/II/III), which need to be validated with extensive clinical data
before their final transition [209–211].

Ontak® (Denileukin diftitox, Seragen Inc., Teynampet, India) is the first genetically
constructed fusion protein and is considered a recombinant molecule that combines a
targeting mechanism with a cytocidal moiety [212]. Possessing a unique mechanism of
action, Ontak® can direct and lead the cytocidal action of diphtheria toxin toward all the
cells overexpressing the interleukin-2 (IL-2) receptor. This medicine could be effectively
internalized into IL-2 receptor-bearing cells by endocytosis, and the IL-2 gene inside is
genetically fused to the enzymatically active and translocating domains of diphtheria toxin,
inducing apoptosis. So far, Ontak® has been proven for clinical application in various
diseases, such as Hodgkin’s disease, rheumatoid arthritis, psoriasis, B-cell non-Hodgkin’s
lymphoma, cutaneous T-cell lymphoma (CTCL), and HIV infection.

Furthermore, nanomedicine can also be used for the topical treatment of eye dis-
eases. Dry eye disease (DED) is caused by various genetic and/or environmental factors,
characterized by excessive tear evaporation or tear deficiency, the pathogenesis of which
is lacrimal gland inflammation and hyperpermeability of the tear film and has become
a common chronic disease [213,214]. Cyclosporine is widely used in treating DED due
to its anti-inflammatory activity, but its hydrophobic properties greatly limit its ocular
administration [215]. Restasis®, a cyclosporin nanoemulsion, can significantly improve
cyclosporine’s solubility and prolong the ocular surface’s retention time by emulsions [216].
A large number of clinical application results confirmed that, after being administrated
with Restasis®, the tear secretion was significantly increased, and the therapeutic effect in
patients with systemic disease is better than in patients without systemic disease.



Pharmaceutics 2023, 15, 774 17 of 29

Table 4. Summary of other launched nanomedicine for treating multiple diseases.

Trade Name Approval Year Formulation Type Drug Agent Company Clinical Applications Administration Route Agency Ref.

Ontak® 1999 Protein-based
formulation

Denileukin
diftitox Eisai (Norcross, GA, USA) Cutaneous T-cell

lymphoma therapy Intravenous FDA [212]

Oncaspar® 1994 Pegylated enzyme L-asparaginase

Enzon Pharmaceuticals
(Cranford, NJ, USA); Baxter

BioScience (Deerfield, IL,
USA)

Acute lymphocytic
leukemia Intravenous FDA [217]

Restasis® 2002 Nanoemulsions Cyclosporin Allergan (Lansing, MI,
USA)

Severe keratitis in dry eye
patient Topical FDA [216]

Feraheme™ 2009 Semi-synthetic iron
oxide nanoparticles

Iron oxide
particles

AMAG Pharmaceuticals
(Waltham, MA, USA)

Anemia related to chronic
kidney disease (CKD) Intravenous FDA [218]

Injectafer® 2013 Iron nanoparticles
Polynuclear iron

(III) oxyhydroxide
iron particles

For Int. (Waltham, MA,
USA) Iron deficiency anemia Oral FDA [219]

Monofer® 2010 Iron nanoparticles

Iron molecule
with unbranched
carbohydrate iron

particles

Pharmacosmos
(Rorvangsvej, Holbæk,

Denmark)
Iron deficiency anemia Oral EMA/FDA [220]

Mircera® 2007 Polymer-protein
conjugate

Methoxy
polyethylene

glycol-epoetin
beta

Hoffman-LaRoche (Basel,
Switzerland) CKD associated anemia Intravenous FDA [221]

Adynovate® 2015 Polymer-protein
conjugate

Recombinant
anti-hemophilic

factor VIII

Baxalta (Montgomery, AL,
USA) Hemophilia A Intravenous FDA [222]

Neulasta® 2002 Polymer-protein
conjugate

Recombinant
human

granulocyte-
colony stimulating

factor (G-CSF)

Amgen (Thousand Oaks,
CA, USA) Febrile neutropenia Intravenous FDA [223]

Pegasys® 2002 Pegylated
nanoparticles Interferon alfa-2a Genentech biotechnology

(San Francisco, AL, USA) Hepatitis B and C therapy Intravenous FDA [224]
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Table 4. Cont.

Trade Name Approval Year Formulation Type Drug Agent Company Clinical Applications Administration Route Agency Ref.

Pegintron® 2001 Pegylated
nanoparticles Interferon alfa-2b Merck (Rahway, NJ, USA) Hepatitis C Intravenous FDA [225]

Copaxone® 1996
Polypeptide

colloidal
formulation

Glatiramer acetate Teva Pharmaceuticals
(Marietta, GA, USA)

Relapsing or remitting
type of multiple sclerosis Intravenous FDA [226]

Estrasorb® 2003 Emulsion Estradiol Novavax (Lutherville
Timonium, MD, USA) Estrogen therapy Topical FDA [227]

Nanocoll® 1995
Albumin-based ra-
diopharmaceutical

nanocolloid

Albumin and
stannous

GE Healthcare (Raleigh,
NC, USA)

Breast cancer and also
melanoma Intravenous FDA [228]

Nanocis® 2000 Radiopharmaceutical
colloid

Chloride
dehydrates Radio-

pharmaceutical
colloid

CIS Bio (Berlin, Germany)

As inflammation
scintigraphy, bone

marrow scintigraphy, and
by cutaneous route for
lymphatic scintigraphy

Intravenous FDA [229]

FDA: Food and Drug Administration; EMA: European Medicines Agency.
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6. Conclusions and Perspectives

Nanomedicine has obtained significant advancement, evident by the vast number of
publications and commercialized products (about 90 approved nanomedicines). Signifi-
cantly, the co-delivery nanomedicine Vyxeos (for AML, 2017) and siRNA-loaded LNPs,
Onpattro (for treating hATTR polyneuropathy), were approved. Since 2005, the FDA has
streamlined the filing process for nanomedicines to facilitate their development [230,231].
The process enabled dozens of liposomes, NCs, and LNPs to be marketed in the last decade,
including two products for COVID-19 treatment, Comirnaty and mRNA-1273. Liposomes
and NCs are the two most successful nanomedicine, accounting for over 60% of the mar-
keted products. The two NDDSs have significant advantages in drug-loading capacity
compared to other nanocarriers; meanwhile, liposomes often demonstrate well-acceptable
safety and robust ability to protect the drugs from degradation due to their closed structure.
As a result, the three factors are vital to nanomedicine translation.

Given over 90 nanomedicines have been commercialized, the transition proportion is
still low compared to the massive number of publications. Over 50,000 research articles on
nanomedicine in 2018–2022, only nine products entered the market [17,232]. The factors that
hinder the clinical application are complex, such as the modest EPR effect in cancer patients,
unclear in vivo fate, and toxicity. The EPR effect is often demonstrated in animal tumor
models and, in contrast, is humble in patients with tumors. The EPR differences between
animal models and humans are an unignored factor limiting transition [233]. Safety is the
most important aspect of drug development. For the accumulation improvement in the le-
sion site, it is generally inclined to reduce the particle size of nanomedicine, but the smaller
size also increases accumulation in the spleen and liver, resulting in safety concerns [234].
Third, the in vivo fate of nanomedicine is poorly demonstrated because of the absence
of effective strategies to explore the metabolism. Fortunately, the in vivo fate is being
concerned. Increasing novel techniques are emerging for the fate exploration of nanoparti-
cles, e.g., radioactive tracing and fluorescence bioimaging using environment-responsive
fluorescent probes based on aggregation-caused quenching and aggregation-induced emis-
sion and förster resonance energy transfer [235–237]. Additionally, researchers found the
protein corona (PC) in the nanoparticles in the blood dramatically affects the in vivo fate of
nanomedicine, such as target ability, biodistribution, stability, and toxicity [238]. A deep
understanding of the PC on the nanocarriers’ biological fate could, in turn, facilitate the
rational design of nanoformulation and application. Additionally, nanoformulation’s qual-
ity control, i.e., diameter and size distribution, morphology, surface charge, drug loading,
and release profile, remains challenging. The involvement of quality by design (QBD)
to combine process and product development, GMP-compliant production conditions,
and multidisciplinary effort may help the translation [239]. The microfluidic technique,
especially, represents a promising approach for the quality management of nanomedicine
because it can offer several advantages for manufacturing, including process control and
feedback for constantly managing production and procedure control, outstanding design
flexibility, parameter setting, etc. [239].

Nonetheless, the difficulty in translation would not impede the rapid development
of nanomedicine due to its considerable benefits in improving the delivery of biopharma-
ceuticals with high specificity and potency. Always, nanoencapsulation enables side-effect
reduction for small molecular drugs. For instance, DOX liposomes exhibited similar anti-
tumor activity with the free drug but significantly decreased cardiotoxicity. Whereas, for
biological drugs, nanotechnology is potent to enhance their treatment efficacy and reduce
side effects by elevating their stability, barrier-crossing capacity, and intracellular delivery.
E.g., nucleic acid drugs display huge potential to treat various major human diseases; yet,
their application problem was not addressed over decades due to the drawbacks, including
large size, hydrophilicity, instability, negative charge, and poor membrane penetration. The
emergence of LNPs allows their clinical use to be achieved. The first siRNA drug, Onpat-
tro™, approved in 2018, represents a breakthrough for genetic medicine from concept to
clinical use and opens an era for the clinical use of biopharmaceuticals. Afterward, increas-
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ing nucleic acid drugs were commercialized using the LNP technology, such as two mRNA
vaccines, mRNA-1273 and BNT162b2. As a result, we can anticipate that nanotechnology
will continuously make a considerable impact on biopharmaceutical development and
increasing biologics-related nanomedicine will be marketed in the future.
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