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Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are destructive joint diseases, the
development of which are associated with the expansion of pathogenic T lymphocytes. Mesenchymal
stem cells may be an attractive therapeutic option for patients with RA or OA due to the regenerative
and immunomodulatory abilities of these cells. The infrapatellar fat pad (IFP) is a rich and easily
available source of mesenchymal stem cells (adipose-derived stem cells, ASCs). However, the
phenotypic, potential and immunomodulatory properties of ASCs have not been fully characterised.
We aimed to evaluate the phenotype, regenerative potential and effects of IFP-derived ASCs from
RA and OA patients on CD4+ T cell proliferation. The MSC phenotype was assessed using flow
cytometry. The multipotency of MSCs was evaluated on the basis of their ability to differentiate into
adipocytes, chondrocytes and osteoblasts. The immunomodulatory activities of MSCs were examined
in co-cultures with sorted CD4+ T cells or peripheral blood mononuclear cells. The concentrations of
soluble factors involved in ASC-dependent immunomodulatory activities were assessed in co-culture
supernatants using ELISA. We found that ASCs with PPIs from RA and OA patients maintain the
ability to differentiate into adipocytes, chondrocytes and osteoblasts. ASCs from RA and OA patients
also showed a similar phenotype and comparable abilities to inhibit CD4+ T cell proliferation, which
was dependent on the induction of soluble factors The results of our study constitute the basis for
further research on the therapeutic potential of ASCs in the treatment of patients with RA and OA.

Keywords: adipose-derived stem cells; rheumatoid arthritis; osteoarthritis; tissue regeneration;
immunomodulation

1. Introduction

Rheumatoid arthritis is a chronic, incurable, autoimmune disease affecting about
1% of the world population, mainly women [1]. The disease is caused by loss of im-
munological self-tolerance and is characterised by chronic inflammation and progressive
destruction of joints [2]. The aetiology of RA is unknown, and many factors contribute to
its development, i.e., genetic, environmental and immunological. The classic hallmark of
RA pathology is synovial membrane inflammation (synovitis) and hyperplasia. Synovial
membrane-building cells—fibroblast-like synoviocytes (FLS)—secrete excessive amounts of
proinflammatory cytokines, chemokines and enzymes, degrading joint cartilage and bone.
Moreover, FLSs proliferate excessively and are resistant to apoptosis [3]. The immunological
response in rheumatoid joint is abnormal due to the imbalance between immunoactivation
and immunosuppression.

Osteoarthritis is the most common joint disease. Concepts concerning the pathogenesis
of OA have evolved from one originally addressing only cartilage, to a more complex
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version, involving the entire joint structure. Many risk factors have been identified, of
which age and overweight appear to be the most important. Increasing importance is being
given to the involvement of low-grade systemic inflammation in the pathogenesis of this
disease [4–6].

Mesenchymal stem cells (MSCs) are multipotent cells of mesodermal origin. MSCs are
found in bone marrow, adipose tissue, Wharton’s jelly, periosteum, tendon, cartilage and
synovial membrane [7]. MSCs derived from adipose tissue (adipose-derived mesenchymal
stem cells—ASCs) are of special interest in terms of therapeutic application because of their
easy, non-invasive isolation (liposuction) and abundant number (500× more than in bone
marrow) [8]. These cells can differentiate in vivo into cells of the same embryonal origin,
e.g., chondrocytes, osteoblasts, adipocytes, myocytes and cardiomyocytes [9,10]. Moreover,
in vitro, MSCs can also differentiate into cells of ecto- and endodermal origin (e.g., epithe-
lial cells, or hepatocytes, respectively) [11,12]. Apart from regenerative potential, MSCs
have immunosuppressive properties. MSCs act via the paracrine pathway, microvesicles
secretion or by direct cell-to-cell contact with responder cells [13,14]. MSCs have reduced
immunogenicity due to the low expression of MHC I and the lack of expression of MHC
II and co-stimulatory molecules (CD40, CD80, CD86) [15,16], which makes them very
valuable as allogeneic cell transplants.

The proliferation and differentiation of MSCs depend on their niche and substrate,
which are the factors that influence the behaviour of cells in their surrounding microenvi-
ronment. As the articular cartilage is not supplied with blood, the oxygen concentration
in the knee joint is low. The inflammatory process can affect cellular niches. It has been
shown that hypoxia is increased in the inflamed joint [17]. Both hypoxia and inflammation
may influence the differentiation potential of ASCs obtained from the IFP. For example,
studies have shown that hypoxia can enhance the differentiation of MSCs into certain cell
types. In a low-oxygen environment, MSCs have been shown to differentiate more readily
into bone and cartilage cells. On the other hand, hypoxia has been shown to inhibit the
differentiation of MSCs into other cell types, such as adipocytes [18–20].

Regarding immunosuppressive and regenerative properties of MSCs, the administra-
tion of these cells in patients suffering from autoimmune, inflammatory and degenerative
diseases has emerged as a promising treatment strategy. So far, encouraging results of
autologous or allogeneic MSC transplants have been obtained in various autoimmune
diseases and in the reconstruction of bone, cartilage or soft tissues [11,21–24]. The potential
of MSCs’ therapeutic use is also studied in rheumatoid arthritis (RA).

The aim of our study was to investigate the potential therapeutic use of tissue that
is waste from knee replacement surgery. We hypothesise that ASCs localised in the site
of ongoing inflammatory process (rheumatoid joint) have impaired regenerative and im-
munomodulatory properties and do not limit rheumatoid T cell proliferation.

2. Materials and Methods
2.1. Patients

Patients who fulfilled either the ACR/EULAR criteria for RA (n = 15) or the criteria
for OA (n = 15) were included in the study [25,26]. This study meets all criteria contained
in the Declaration of Helsinki and was approved by the Ethics Committee of the National
Institute of Geriatrics, Rheumatology, and Rehabilitation, Warsaw, Poland (approval num-
ber DL/14.01.2016) All patients gave their written informed consent prior to enrolment.
Demographic and clinical data of the patients are shown in Table 1.
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Table 1. Demographic and clinical characteristics of the patients.

Rheumatoid Arthritis (RA) (n = 18) Osteoarthritis (OA) (n = 16)

Demographics

Age, years 61 (44–69) 64 (39–69)

Sex, female (F)/male (M), n 12 F/6 M 10 F/6 M

BMI, kg/m2 28.4 (23.3–37.5) 34.2 (27.7–45.5) #

Laboratory values

CRP, mg/L 13.2 (2–36) 4 (1–14) ###

ESR, mm/h 19 (5–77) 14 (2–32) #

Treatment, %

Methotrexate 55% 0%

Glucocorticoids 66% 0%

Sulfasalazine 33% 0%

NSAIDs 66% 81%

Except where indicated otherwise, values are the median (min–max). BMI, body mass index; CRP, C-reactive
protein; ESR, erythrocyte sedimentation rate; NSAIDs, Non-steroidal anti-inflammatory drugs. # p = 0.05–0.01,
and ### p = 0.01–0.001 for RA vs. OAc comparisons.

2.2. ASC Isolation and Culture

Specimens of infrapatellar fat pad were taken from the patients undergoing total knee
replacement. The infrapatellar fat pad, also known as Hoffa body, is a small, cylinder-like
piece of adipose tissue located beneath the patella in front of the knee joint. ASC isolation
and culture were performed as described previously [27]. All experiments were performed
using ASCs at 3–5 passages. The medium used for ASC culture was purchased from Lonza
(Lonza Group, Lonza Walkershille Inc., Walkersville, MD, USA).

2.3. Flow Cytometry Analysis of ASCs Phenotype

For ASC phenotype analysis, cells were detached with non-enzymatic cell dissocia-
tion solution (ATCC Manassas, VA, USA). In the next step, ASCs were washed with FACS
buffer (phosphate-buffered saline, 0.1% NaN3, 1% FCS). Then, 5 × 104 cells were suspended
in 50 µL of FACS buffer and stained with antibodies against the following surface mark-
ers: CD90-FITC, CD105-PE, CD73-APC (eBioscience, San Diego, CA, USA), CD34-PE-Cy7,
CD45-PE, CD19-PE, and CD14-APC (BD Pharmingen, San Diego, CA, USA). After the wash-
ing step, cells were acquired and analysed using a FACSCanto cell sorter/cytometer and
Diva software. The gating strategy is shown in Figure S1 in the Supplementary Materials.

2.4. Adipogenic Differentiation of ASCs

ASCs were seeded into a 12-well culture plate at 35 × 105 per well in DMEM/F12/10%
FCS culture medium. Cells were cultured in order to obtain 100% of confluence. After this
time, the previous medium was harvested, the cells were washed with PBS buffer, and
complete culture medium was added to induce adipogenesis (Mesenchymal Stem Cell
Adipogenic Differentiation Medium, Cat No 7541, ScienCell, Carlsbad, CA, USA). Cultures
were carried out for 21 days. The culture medium was replaced every 3–4 days (except for
the negative control where the medium was replaced every 2 days). After completion of
culture, cells were stained with Oil Red O (Sigma-Aldrich, St. Louis, MO, USA) to identify
adipocytes and subjected to RNA isolation to analyse expression of relevant genes involved
in adipogenesis.

In order to stain oil droplets with Oil Red O, cells were fixed for 15 min in 4% formalde-
hyde at room temperature, then washed with PBS buffer. The wells were flooded with a
2.1% solution of Oil Red O. The plates were then incubated with gentle shaking in a humid
chamber for 30 min. Finally, the cells were washed with deionised water, and pictures were
taken to compare the staining effect. In order to more accurately estimate the differences
between the individual variants, after staining, dye was extracted with isopropanol. The
amount of dye was determined spectrophotometrically at a wavelength of 510 nm, in the
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Multiskan GO spectrophotometer (Thermo Fischer Scientific, Waltham, MA, USA) using
Skanit Software 3.2 (Thermo Fischer Scientific) for analysis.

2.5. Osteogenic Differentiation of ASCs

ASCs were seeded into a 12-well culture plate at 11 × 105 per well in DMEM/F12/10%
FCS culture medium. Cells were cultured for 24 h to adhere to the surface of the plate.
After this time, the previous medium was harvested, the cells were washed with PBS buffer,
and complete culture medium was added to induce osteogenesis (Mesenchymal Stem Cell
Osteogenic Differentiation Medium, Cat No 7531, ScienCell, Carlsbad, CA, USA). Cultures
were maintained for 21 days. The culture medium was replaced every 3–4 days (except
for the negative control where the medium was replaced every 2 days). After completion
of culture, cells were stained with Alizarin Red S (Alizarin Red S Staining Kit ScienCell,
Carlsbad, CA, USA) and subjected to RNA isolation to analyse expression of relevant genes
involved in osteogenesis.

In order to stain calcium deposits with Alizarin Red S, cells were fixed for 10 min in 4%
formaldehyde at room temperature, then washed with PBS buffer. The wells were flooded
with a 1% aqueous solution of Alizarin Red S, pH 6.4. The plates were then incubated in a
humid chamber for 1 h 20 min. Finally, the cells were washed with PBS and pictures were
taken to compare the staining effect. In order to more accurately estimate the differences
between the individual variants, after staining, dye was extracted. The amount of dye
was determined spectrophotometrically at a wavelength of 450 nm, in the Multiskan GO
spectrophotometer (Thermo Fischer Scientific) using Skanit Software 3.2 (Thermo Fischer
Scientific) for analysis.

2.6. Chondrogenic Differentiation of ASCs

Suspension of 0.5–1 × 106 undifferentiated ASCs in DMEM/F12/10% FCS culture
medium was placed in a 15 mL tube. The suspension was centrifuged at room temperature
for 5 min at 250 g. The supernatant was removed, followed by the addition of 1 mL
of complete chondrogenesis induction medium (Mesenchymal Stem Cell Chondrogenic
Differentiation Medium, Cat No 7551, ScienCell, Carlsbad, CA, USA), which contained
TGF-β1 at a concentration of 10 ng/mL. During this and following steps it was essential
that the cell pellet remained intact which ensured interactions between cells crucial for the
chondrogenesis process. The chondrogenic culture was maintained for 28 days. The culture
medium was replaced every 2–3 days. The caps of the test tubes were loosened to provide
the cells with access to oxygen. After completion of the chondrogenesis, the pellets were
subjected to RNA isolation to analyse expression of genes involved in chondrogenesis.

2.7. Gene Expression Analysis

At the end of the cultures, total RNA was isolated from the cells. TRIzol solution
(for pellets after homogenisation) was added to the cells. After 5 min of incubation, the
samples were frozen at −70 ◦C. After thawing, the samples were shaken with chloroform.
The resulting RNA-containing aqueous phase was purified using the RNAeasy kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The purity and concen-
tration of the isolated RNA was determined using the Multiskan GO spectrophotometer
(Thermo Fischer Scientific) and the Skanit Software 3.2 analysis software (Thermo Fischer
Scientific).

For the reverse-transcription polymerase chain reaction (RT-PCR), the cDNA High-
Capacity cDNA Reverse Transcription Kit (Thermo Fischer Scientific) was used. Samples
of 10 ng of total RNA were used to perform the reverse-transcription. Samples were
incubated for 10 min at 25 ◦C, then for 120 min at 37 ◦C, followed by 10 min at 85 ◦C.
Finally, samples were cooled to 4 ◦C. The reverse-transcription reaction was performed in a
Biometra Tgradient thermocycler (Analytik Jena, Jena, Germany).

The PCR reaction was performed in a volume of 10 µL that included 2 µL of RT
product, 5 µL of TaqMan Gene Expression Master Mix, 0.5 µL of probe mix (TaqMan
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Thermo Fisher Scientific, Waltham, MA, USA), and 2.5 µL of water (Genoplast, Rokocin,
Poland). Used probes are shown in Table 2. Reactions were performed at 50 ◦C for 2 min,
95 ◦C for 10 min, followed by 50 cycles at 95 ◦C for 15 s, and 60 ◦C for 1 min. Samples were
analysed in triplicate using the QuantStudio 5 RT-qPCR machines (Thermo Fisher Scientific,
Waltham, MA, USA). Data were analysed in Quant Studio Design & Analysis Software
1.3.1 (Thermo Fisher Scientific, Waltham, MA, USA). Gene expression was evaluated using
the ∆∆CT-method. Values of CT ≥ 35 were treated as below quantification. The most stable
reference genes have been selected for adipogenesis (GUSB and EEF1) for osteogenesis and
chondrogenesis (TBP and RPL13a).

Table 2. List of analysed genes.

Gene Symbol Assay ID Gene Name

Markers of adipogenesis

CEBPB Hs00942496_s1 CCAAAT/enhancer-binding
protein beta

FABP4 Hs01086177_m1 Fatty acid binding protein 4

PPARG Hs01115513_m1 Peroxisome proliferator-activated
receptor gamma

Markers of osteogenesis

RUNX2 Hs01047973_m1 Runt-related transcription factor 2

OPN Hs00959010_m1 Osteopontin

COL1A1 Hs00164004_m1 Collagen type I α 1

OSX Hs01866874_s1 osterix

ALPL Hs01029144_m1 Alkaline phosphatase

Markers of chondrogenesis

SOX9 Hs00165814_m1 SRY (sex determining region
Y)-box 9

ACAN Hs00153936_m1 Aggrecan

COL2A1 Hs00264051_m1 Collagen type II α 1

Reference gene

GUSB Hs00939627_m1 Glucuronidase β

RPL13A Hs04194366_g1 Ribosomal protein L13a

TBP Hs00427620_m1 TATA-binding protein

eEF-1 Hs02339452_g1 eukaryotic elongation factor 1
gamma-like protein

2.8. Co-Cultures of ASCs with Purified Allogeneic CD4+ T-Cells or PBMCs and
Proliferation Assay

A total of 6 × 104 ASCs were seeded on each well of 24-well plates. Both untreated and
cytokine-pre-stimulated ASCs were used in the experiments. For pre-stimulation, ASCs
were treated for 24 h with recombinant human tumour necrosis factor (TNF) and interferon
(IFN-γ) (both from R&D Systems, Minneapolis, MN, USA; each used at 10 ng/mL).

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats by den-
sity gradient centrifugation with Ficoll-Paque (GE Healthcare, Uppsala, Sweden). PBMCs
were stained with cell trace violet (CTV) (Thermo Fisher Scientific) and stimulated with
2.5 µg/mL of PHA (Sigma Aldrich). Activated PBMCs were co-cultured with ASCs
(1.2 × 106 PBMCs/well/2 mL of medium).

The CD3+CD4+ cells were obtained from PBMCs using magnetic separation with the
EasySep Human CD4+ T-Cell Isolation Kit (Stemcell Technologies, Vancouver, Canada). In
the next step, purified CD3+CD4+ T lymphocytes or PBMCs were stained with CTV. Stained
CD4+ T-cells were activated with Dynabeads Human T-Activator CD3/CD28 (Thermo
Fisher Scientific) and then co-cultured with ASCs (1.2 × 106 CD4+ T cells/well/2 mL of
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medium). After 5 days of co-culture, CD4+ T-cells or PBMCs were harvested for cytometric
proliferation analysis. In order to achieve this, the percentage of proliferating cells and pro-
liferation index (PI—number of divisions per proliferating cell) were calculated as shown
before [28]. The gating strategy is shown in Figure S2 in the Supplementary Materials.

2.9. Determination of the Concentration of Soluble Factors Involved in the Antiproliferative
Properties of ASCs

In culture supernatants obtained at the end of ASCs and PBMCs co-culture, the con-
centrations of substances involved in the antiproliferative effects of ASCs were determined.
IL-10 and TGFb concentrations were determined using ELISA assays (Thermo Fischer
Scientifici), while PGE2 concentrations were determined using a competence ELISA (R&D,
Biotechne). Kynurenine production was determined using the method described previ-
ously [29].

2.10. Blocking Experiments

To further investigate soluble factors in the immunomodulatory capacity of ASCs,
experiments were performed to block the action of these factors in ASCs/PBMCS co-culture.
Neutralising antibodies were used to neutralise the effect of cytokines: 50 mg/mL TGFb
neutralising antibody (1D11.16.8), or 5 mg/mL IL-10 neutralising antibody (JES3-9D7) (both
from Thermo Fisher Scientific). To inhibit PGE2 synthesis, 1 mM indomethacin (Sigma
Aldrich) was used. A total of 1 mM 1-methyltryptophan (1-MT, Sigma Aldrich, Germany)
was used to inhibit kynurenine production. Concentration of blocking agents was chosen
on the basis of a previous experiment [28,30]. All blocking agents were added to the ASC
cultures. After 48 h, PHA-activated PBMCs and CTV staining were added to the culture.
After 5 days of co-culture, PBMCs were harvested for cytometric analyses.

2.11. Statistical Analysis

Data were analysed using GraphPad Prism software version 7 (GraphPad Software,
Boston, MA, USA). The Shapiro–Wilk test was used to assess data distribution. Mann–
Whitney or Kruskal–Wallis tests (for unpaired samples) were used to compare the ASCs
obtained from RA and OA patients. For the analysis of the effect of blocking agents on
T-cell proliferation, the Friedman test with Dunn’s multiple comparison tests were used.
Probability values less than 0.05 were considered significant.

3. Results
3.1. Phenotype

The cytometric analysis confirmed that 98% of ASCs from RA and OA patients,
expressed CD105, CD73 and CD90 molecules. Less than 1% of these cells showed expression
of CD45, CD19, CD14 and HLADR proteins (Figure 1). These results are in agreement
with the recommendations of the International Society for Cellular Therapy. CD34, whose
expression, according to the aforementioned recommendation, should not be present in
more than 2% of the cells, was detected in more than 10% of the ASCs analysed in this study.
ASCs from RA patients had a significantly higher expression of this protein compared to
cells isolated from OA patients. A schematic presentation of the cytometric analysis (gating
strategy) is shown in Supplementary Figure S1.
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Figure 1. Phenotype of ASCs from RA and OA patients. Plots demonstrate the percentages of
RA- and OA-ASCs expressing a given surface protein: CD105 (A), CD90 (B), CD73 (C), CD34 (D),
HLADR (E). Results are shown as single values (dots) and medians (line). A p value is expressed as
follows: 0.05 > p > 0.01 as *.

3.2. ASC Differentiation

In the experimental set-up presented here, ASCs cultured in chondrogenic medium
increased the expression of mRNAs encoding proteins that are markers of the chondro-
genesis: transcription factor SoX9, aggrecan (ACAN) and collagen 2a (COL2A1). At the
same time, ASCs secreted extracellular matrix glycosaminoglycans, which were visualised
by alcian blue staining of sections obtained from the cell pellets (Figure 2). Expression of
chondrogenesis markers at the mRNA level increased to a similar extent in ASCs from RA
and OA patients. There were also no differences in glycosaminoglycan deposition.

Culture of ASCs in osteogenic medium resulted in increased transcription of genes that
are markers of osteogenesis—the transcription factors Runx2 (RUNX2) and osterix (OSX),
osteopontin (OPN), alkaline phosphatase (ALPL) and collagen 1 (COLA1A). Significantly
lower expression of ALPL, OPN and RUNX2 was observed in cells isolated from RA patients
but Alizarin Red S staining showed no apparent differences between mineralisation in
ASCs from RA and OA patients (Figure 3).
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Figure 2. Chondrogenic differentiation of ASCs. The expression of selected chondrogenesis markers at
the mRNA level in ASCs cultured in DMEM/F12 medium and in chondrogenic medium was assessed
by RT–qPCR (A–C). Alcian blue staining of pellet scrapings showing deposition of extracellular matrix
glycosaminoglycans. The photograph shows the representative staining results of ASCs from OA
patients (D) and RA patients (E). Individual values (circles and squares) and medians a (black line)
are shown in the figure. p values are expressed as follows: 0.05 > p > 0.01 as *; 0.01 > p > 0.001 as **; p
< 0.001 as ***.
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Figure 3. Differentiation of ASCs towards osteoblasts. The expression of selected osteogenesis
markers at the mRNA level in cells cultured in DMEM/F12 medium and in osteogenic medium was
assessed by RT-qPCR (A–E). Staining of cells with Alizarin Red S highlighting calcium deposition.
The red dye was extracted and its concentration assessed spectrophotometrically (F). The photographs
show representative cultures of unstained ASCs (G) and ASCs stained with Aizarin Red S (H) after
osteogenic differentiation. Individual values (circles and squares) and medians (black line) are shown
in the figure. p values are expressed as follows: 0.05 > p > 0.01 as *; 0.01 > p > 0.001 as **; p < 0.001 as
***; p < 0.0001 as ****.
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The culture of ASCs in adipogenic medium resulted in increased transcription of genes
that are markers of adipogenesis (transcription factors FAB4, PPARG and CEBPR) and in
the accumulation of fat droplets in the cytoplasm of the cells (Figure 4). No differences
were observed between ASCs from RA and OR patients.
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Figure 4. Differentiation of ASCs towards adipocytes. The expression of selected adipogenesis
markers at the mRNA level in cells cultured in DMEM/F12 medium and in adipogenic medium was
assessed by RT–qPCR (A–C). Fat droplets in the cytoplasm were stained using Oil Red O. The red
dye was extracted and its concentration was assessed spectrophotometrically (D). The photographs
show representative ASC cultures before (E) and after staining with Oil Red O (F). Individual values
(circles and squares) and medians (black line) are shown in the figure. p values are expressed as
follows: p < 0.001 as ***; p < 0.0001 as ****.

3.3. Effect of ASCs on Activated T Cell Proliferation

Under αCD3CD28 stimulation, CD4 lymphocytes proliferated intensively. No sta-
tistically significant reduction in the percentage of proliferating cells or the proliferation
index was observed in the co-cultures of ASCs with activated purified CD4 lymphocytes.
(Figure 5).
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Figure 5. Proliferation of T cells co-cultured with ASCs of OA patients or RA patients. CD3+CD4+
cells were isolated from PBMCs obtained from healthy donors and stimulated with αCD3CD28.
CD3+CD4+ were cultured alone (control) or co-cultured for 5 days with either untreated or TI-
stimulated ASCs. The proliferation was assessed as percentage of proliferating cells (A) or prolifera-
tion index (B).

A different effect was observed when PBMCs were co-cultured with ASCs. PHA-
stimulated PBMC T lymphocytes proliferated vigorously. In the co-culture with ASCs,
a statistically significant decrease in the percentage of proliferating PBMCs, as well as
a decrease in the PI, was observed (Figure 6). Prestimulation of ASCs with TI did not
exacerbate the inhibitory effect of ASCs. No significant changes were observed between
the effect exerted by cells obtained from RA and OA patients.
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Figure 6. Proliferation of PMBCs co-cultured with ASCs of OA patients or RA patients. PBMCs
obtained from healthy donors were stimulated with PHA. PBMCs were cultured alone (control) or
co-cultured for 5 days with either untreated or TI-stimulated ASCs. The proliferation was assessed
as percentage of proliferating cells (A) or proliferation index (B). p values are expressed as follows:
0.01 > p > 0.001 as **; p < 0.001 as ***; p < 0.0001 as ****.
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3.4. Soluble Factors Involved in Antiproliferative Capacities of ASCs

The production of substances potentially related to the inhibition of T lymphocyte pro-
liferation by ASCs was subsequently analysed in the culture supernatants. Concentrations
of IL-10, TGFβ, kynurenines and prostaglandin E2 (PGE2) were assessed. Significantly
increased IL-10 production was observed in the co-culture of ASCs with activated T cells.
ASCs cultured separately did not produce IL-10. There was no increase in the production
of TGFβ in the co-culture. ASCs produced certain amounts of TGFβ but no increase was
shown after TI stimulation. No differences were observed between ASCs from RA and
OA patients. After TI stimulation, ASCs produced significant amounts of kynurenine with
no differences in the secretion of this substance between cells isolated from RA and OA
patients. Higher concentrations of kynurenines were detected in the supernatants from
ASCs co-cultured with T cells. Pre-stimulation of ASCs with TI resulted in increased levels
of kynurenine production. In all culture options used, there were no differences between
cells from OA and RA patients. ASCs spontaneously secreted certain amounts of PGE2 but
no increase was shown after TI stimulation. In the co-cultures with T cells, a significant
increase in secreted PGE2 was observed (Figure 7).
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Figure 7. Concentrations of IL-10 (A), TGFβ (B), kynurenine (C) and PGE2 (D) in the co-cultures of
OA- (teal signs) or RA-ASCs (red signs) with αCD3CD28-activated T cells. Data are shown as single
values with box representing 25th and 75th percentiles and medians as lines. p values are expressed
as follows: 0.01 > p > 0.001 as **; p < 0.001 as ***; p < 0.0001 as ****.
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No significantly increased IL-10 or TGFβ production was observed in the co-culture
of ASCs with activated PBMCs. Increased concentrations of kynurenines were detected
in the supernatants from ASCs co-cultured with PBMCs. In the co-cultures with PBMCs,
a significant increase in secreted PGE2 was observed. Furthermore, a significantly lower
production of PGE2 was also observed in the co-cultures with RA-ASCs than in co-cultures
with OA-ASCs (Figure 8).

Pharmaceutics 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

values with box representing 25th and 75th percentiles and medians as lines. p values are expressed 

as follows: 0.01 > p > 0.001 as **; p < 0.001 as ***; p < 0.0001 as ****. 

No significantly increased IL-10 or TGFβ production was observed in the co-culture 

of ASCs with activated PBMCs. Increased concentrations of kynurenines were detected in 

the supernatants from ASCs co-cultured with PBMCs. In the co-cultures with PBMCs, a 

significant increase in secreted PGE2 was observed. Furthermore, a significantly lower 

production of PGE2 was also observed in the co-cultures with RA-ASCs than in co-cultures 

with OA-ASCs (Figure 8). 

 

Figure 8. Concentrations of IL-10 (A), TGFβ (B), kynurenine (C) and PGE2 (D) in the co-cultures of 

OA- (teal signs) or RA-ASCs (red signs) with PHA-activated PBMCs. Data are shown as single val-

ues with box representing 25th and 75th percentiles and, medians as lines. p values are expressed as 

follows: 0.05 > p > 0.01 as *; 0.01 > p > 0.001 as **; p < 0.001 as ***; p < 0.0001 as **** for comparisons of 

cell co-cultures versus separate control cultures. p < 0.001 as ###; p < 0.0001 as #### for the groups of 

OA patients versus RA patients comparison. 

  

Figure 8. Concentrations of IL-10 (A), TGFβ (B), kynurenine (C) and PGE2 (D) in the co-cultures
of OA- (teal signs) or RA-ASCs (red signs) with PHA-activated PBMCs. Data are shown as single
values with box representing 25th and 75th percentiles and, medians as lines. p values are expressed
as follows: 0.05 > p > 0.01 as *; 0.01 > p > 0.001 as **; p < 0.001 as ***; p < 0.0001 as **** for comparisons
of cell co-cultures versus separate control cultures. p < 0.001 as ###; p < 0.0001 as #### for the groups
of OA patients versus RA patients comparison.

3.5. Blocking Experiments

To confirm the involvement of soluble factors in inhibiting the proliferation of activated
T lymphocytes, blocking experiments were performed. As inhibition of proliferation was
only observed in ASC cultures with PBMCs, blocking experiments were performed only for
this type of co-culture. PGE2 inhibitor, indomethacin and IL-10-neutralising agent restored
proliferation of PBMCs co-cultured with OA-ASCs. In co-cultures with OA-ASCs pre-
stimulated with TI, inhibition of kynurenines with 1-MT resulted in increased proliferation
of PBMCs (Figure 9).
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Figure 9. Effects of selective inhibition of kynurenines (with 1-MT), PGE2 (with indomethacin), IL-10
neutralisation or TGFβ neutralisation on proliferation of PBMCs co-cultured with OA-ASCs. The
proliferation is presented as percentage of proliferating cells (A,B) or proliferation index (C,D). p
values are expressed as follows: 0.05 > p > 0.01 as *; p < 0.001 as ***; p < 0.0001 as ****.

In all co-cultures with RA-ASCs, blocking of PGE2 and kynurenines production re-
stored PBMCs’ proliferation. Neutralisation of IL-10 resulted in weak increase of PBMC
proliferation, whereas TGFβ blocking had no effect on PBMC proliferation (Figure 10).
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Figure 10. Effects of selective inhibition of kynurenines (with 1-MT), PGE2 (with indomethacin),
IL-10 neutralisation or TGFβ neutralisation on proliferation of PBMCs co-cultured with RA-ASCs.
The proliferation is presented as percentage of proliferating cells (A,B) or proliferation index (C,D).
p values are expressed as follows: 0.05 > p > 0.01 as *; 0.01 > p > 0.001 as **; p < 0.001 as ***; p < 0.0001
as ****.

4. Discussion

In the present study, ASCs derived from the infrapatellar fat pad isolated from the
knee joint of RA and OA patients were compared. Aspects considered in this comparison
were the phenotype of the cells, their chondrogenic, osteoblastic and adipogenic potential
and their antiproliferative properties against T lymphocytes and PBMCs.

Literature data provide extensive information on the regenerative and immunosup-
pressive properties of mesenchymal stem cells derived from adipose tissue as well as from
other tissues [31–35]. Our study is an original and important contribution to the field, as it
concerns cells derived from RA and OA patients and thus provides knowledge on how cells
function in an inflammatory environment. Moreover, the cells studied were isolated from
the infrapatellar fat pad, a fatty body located in close proximity to the synovial membrane.
The IFP and the synovium are considered to be in constant contact with each other [36].
Furthermore, the synovium and the IFP are believed to be a single anatomo-functional



Pharmaceutics 2023, 15, 1003 15 of 19

unit [37]. In the course of the inflammatory process, either in RA or OA, both of these
structures are the site of active inflammation.

RA is a systemic autoimmune disease in which many cell types contribute to the
development and maintenance of local and generalised high-grade inflammation and
autoimmunity. It can be speculated that in the rheumatoid joint, in addition to fibroblastic
synoviocytes, autoreactive T and B lymphocytes and other over-activated immune cells,
such as mesenchymal stem cells, also have altered functions.

OA, which was treated as a control group in this study, is not an autoimmune disease,
although it too is associated with the development of low-grade inflammation. The study
shows that MSCs from the infrapatellar fat pad of RA and OA patients are functionally
altered, but not significantly different, despite the different pathogenesis of the two diseases.
It appears that the micro-inflammatory environment in which these cells are found may be
the cause of their functional abnormalities.

Adipose tissue is a readily available and abundant source of mesenchymal stem cells.
Compared to the originally characterised mesenchymal stem cells from bone marrow
(BM-MSCS), ASCs are characterised by higher expression of stem cell-specific markers
and greater resistance to apoptosis [38–40]. In addition to their ability to differentiate into
various tissues, they are equipped with immunomodulatory properties—they are able to
inhibit the activation of T and B lymphocytes and NK cells [41]. The immunomodulatory
effect of ASC has also been shown to be stronger than that of BM-MSC [42].

Most commonly, ASCc are isolated from subcutaneous adipose tissue. However, it has
been shown that the IFP can be an attractive source of ASCs due to the unique properties of
these cells. IFP-ASCs are distinguished by the fact that their degree of proliferation as well
as their ability to differentiate are independent of the age of the donor [43]. Furthermore,
IFP-ASCs showed increased chondrogenic potential, which is very important in the context
treatment of rheumatic diseases [44].

In the first part of this paper, results are presented on the phenotype of ASCs of the
infrapatellar fat pad. So far, no specific marker or group of markers for adipose tissue
mesenchymal stem cells has been described in addition to the surface proteins CD105,
CD90 and CD73, which the International Society for Cell Therapy recommends should
be present on the surface of MSCs [45]. Cytometric analysis has shown that ASCs from
RA patients, as well as those from OA patients, have a mesenchymal stem cell phenotype.
They do not have leukocyte markers (CD14, CD19, CD45) on their surface, but do express
CD105, CD90 and CD73. According to literature data [15,16] the analysed cells have a non-
immunogenic phenotype, as they have a low expression of HLA-DR molecules belonging to
MHC class II. There are also conflicting data that show an increase in HLA-DR expression
on OA-ASCs isolated from the infrapatellar fat pad. The authors link this phenotype
to a pro-inflammatory joint environment [46]. The CD34 protein, which may be both a
marker of haematopoietic cells and vascular endothelial cells, was present in more than
10% of the ASCs analysed in this study. ASCs from RA patients had significantly higher
expression of this protein compared to cells isolated from OA patients. This may signal
that, in accordance with the observations of other authors [47], we are dealing here with
two subpopulations of mesenchymal cells, which differ in terms of CD34 expression, but
have similar biological properties. Other authors link unusual expression of CD34 on ASCs
with priming by a pathological, proinflammatory environment [46].

It is known that mesenchymal adipose tissue cells have regenerative properties and
can differentiate into chondrocytes, osteoblasts and adipocytes in vitro and in vivo. It
has been shown that ASCs from the infrapatellar fat pad of RA and OA patients retain
the capacity for chondrogenesis and osteogenesis and their differentiation capabilities are
comparable [27,48]. Although an increase in the mRNA level of the markers encoding
osteogenesis was more marked in cells from OA patients, Alizarin Red S staining showed
no apparent differences in mineralisation between cells from RA and OA patients. It
therefore appears that also the osteogenic potential of ASCS cells does not differ between
the two diseases. Literature data comparing the chondrogenic, adipogenic and osteogenic
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potential of bone marrow-derived MSSCs from RA and OA patients are similar to those
obtained in the present study [49,50]. There is a study indicating impaired chondrogenesis
in OA-derived infrapatellar fat pad-derived mesenchymal stem cells [51]. In contrast, other
authors have also shown that ASCs isolated from intra-articular adipose tissue of OA
patients differentiate into chondrocytes, reduce cartilage degradation and modulate the
inflammatory response [52]. These positive results from in vitro experiments with ASCs
from patients with OA are already supported by clinical trials [53].

In experiments assessing the proliferation of activated T lymphocytes, no significant
inhibition of activated T cell proliferation was observed in T cell–ASCs co-culture. This
result is in contrast to previously published observations from studies showing a clear
antiproliferative effect of ASCs from adipose tissue of rheumatic patients [28–30]. It seems
that ASCs from the infrapatellar fat pad are not able to exert a direct inhibitory effect on
proliferating T cells. A different effect was observed in PBMC co-cultures with ASCs. In
this case, a significant inhibition of T lymphocyte proliferation was observed for both cells
obtained from RA and OA patients. ASCs secrete a broad spectrum of cytokines, growth
factors and other compounds [54], which have been attributed to immunosuppressive
effects against various types of immune cells. Our previous experiments suggest that the
antiproliferative effect of ASCs is related to soluble factors and not to the contact between
ASC cells and T cells/PBMCs [28–30]. Interestingly, an increase in kynurenine and PGE2
factors was observed in both types of co-cultures. Further blocking experiments confirmed
that inhibition of proliferation is linked to the kynurenine and PGE2 pathways. It is likely
that in ASC co-culture with PBMCs, additional cells, probably monocytes, contribute to the
antiproliferative effect. A similar pathway was shown for Treg generation in ASCs/PBMC
co-culture [55].

Observations by other authors also suggest that pro-inflammatory factors present
in the joint fluid of RA or OA patients enhance the immunosuppressive properties of
MSCs [56]; however, this has not been confirmed in our experiments. The literature
emphasises the fact that stimulation with pro-inflammatory cytokines such as IFNγ, TNF,
IL-1β or IL-6 either enables or enhances the immunosuppressive function of MSCs from
healthy donors [54,57]. It seems that ASCs derived from intra-articular adipose tissue from
RA and OA patients, due to their localisation in a persistently inflammatory environment,
respond differently to these cytokines than cells from healthy individuals. A published
study showing that ASCs isolated from the synovial membrane of RA patients lose their
ability to inhibit the proliferation of activated T lymphocytes under the influence of TNF or
IL-17A seems to confirm this hypothesis [58]. Impaired inhibition of lymphocyte activation
by joint-localised ASCs implies poorer protection against excessive immune responses as
well as against potential autoimmune processes.

The idea of using tissue that is waste from a knee replacement surgery as a therapeutic
agent is very rewarding. ASCs derived from the infrapatellar fat pad (IFP) have shown
promising potential for clinical use in various conditions, including OA and RA, due to
their regenerative and immunomodulatory properties. ASCs derived from the IFP can
differentiate into chondrocytes or osteoblasts and can promote cartilage or bone regen-
eration. They also have anti-inflammatory and immunomodulatory properties, which
can help reduce joint inflammation and slow down the progression of OA and RA. ASCs
derived from the IFP can regulate the immune system by inhibiting the proliferation and
activation of immune cells, such as T cells and B cells. This property makes them a potential
therapeutic option for RA, which is an autoimmune disease characterised, among others,
by pathogenic T cell expansion.

The biggest limitation of our study was that we did not have access to ASCs isolated
from healthy IFP. It is not ethically possible to collect such tissue so we could only compare
cells taken from OA and RA patients.
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5. Conclusions

Our experiments showed that ASCs from RA and OA patients have similar differenti-
ation potential and a similar ability to inhibit activated T cells. However, their phenotype
and inability to inhibit the proliferation of pure activated T cells appears to be altered by
the pro-inflammatory environment from which they originate. Our study revealed that the
IFP ASCs of rheumatic patients have shown promising potential for clinical use in various
conditions due to their regenerative and immunomodulatory properties. However, more
studies are needed to establish their safety and efficacy for these applications.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/pharmaceutics15031003/s1, Figure S1: The gating strategy for ASCs
phenotype analysis; Figure S2: The gating strategy for T cell proliferation analysis.
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30. Kuca-Warnawin, E.; Olesińska, M.; Szczȩsny, P.; Kontny, E. Impact and Possible Mechanism(s) of Adipose Tissue-Derived
Mesenchymal Stem Cells on T-Cell Proliferation in Patients With Rheumatic Disease. Front. Physiol. 2022, 12, 749481. [CrossRef]
[PubMed]

31. Tuan, R.S.; Boland, G.; Tuli, R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 2002, 5, 32.
[CrossRef] [PubMed]

32. Naji, A.; Eitoku, M.; Favier, B.; Deschaseaux, F.; Rouas-Freiss, N.; Suganuma, N. Biological functions of mesenchymal stem cells
and clinical implications. Cell. Mol. Life Sci. 2019, 76, 3323–3348. [CrossRef] [PubMed]

33. Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019, 8, 886.
[CrossRef]

34. Jiang, W.; Xu, J. Immune modulation by mesenchymal stem cells. Cell. Prolif. 2020, 53, e127122020. [CrossRef]
35. Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential.

Trends Pharmacol. Sci. 2020, 41, 653–664. [CrossRef]
36. Ioan-Facsinay, A.; Kloppenburg, M. Osteoarthritis: Inflammation and fibrosis in adipose tissue of osteoarthritic joints.

Nat. Rev. Rheumatol. 2017, 13, 325–326. [CrossRef]
37. Macchi, V.; Stocco, E.; Stecco, C.; Belluzzi, E.; Favero, M.; Porzionato, A.; De Caro, R. The infrapatellar fat pad and the synovial

membrane: An anatomo-functional unit. J. Anat. 2018, 233, 146–154. [CrossRef]
38. Meligy, F.Y.; Shigemura, K.; Behnsawy, H.M.; Fujisawa, M.; Kawabata, M.; Shirakawa, T. The efficiency of in vitro isolation

and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue.
In Vitro Cell. Dev. Biol. Anim. 2012, 48, 203–215. [CrossRef]

39. Varma, M.J.; Breuls, R.G.; Schouten, T.E.; Jurgens, W.J.; Bontkes, H.J.; Schuurhuis, G.J.; van Ham, S.M.; van Milligen, F.J.
Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev. 2007, 16, 91–104.
[CrossRef] [PubMed]
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