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Abstract: Dopamine (DA), its derivatives, and dopaminergic drugs are compounds widely used in the
management of diseases related to the nervous system. However, DA receptors have been identified
in nonneuronal tissues, which has been related to their therapeutic potential in pathologies such as
sepsis or septic shock, blood pressure, renal failure, diabetes, and obesity, among others. In addition,
DA and dopaminergic drugs have shown anti-inflammatory and antioxidant properties in different
kinds of cells. Aim: To compile the mechanism of action of DA and the main dopaminergic drugs
and show the findings that support the therapeutic potential of these molecules for the treatment
of neurological and non-neurological diseases considering their antioxidant and anti-inflammatory
actions. Method: We performed a review article. An exhaustive search for information was carried
out in specialized databases such as PubMed, PubChem, ProQuest, EBSCO, Scopus, Science Direct,
Web of Science, Bookshelf, DrugBank, Livertox, and Clinical Trials. Results: We showed that DA
and dopaminergic drugs have emerged for the management of neuronal and nonneuronal diseases
with important therapeutic potential as anti-inflammatories and antioxidants. Conclusions: DA and
DA derivatives can be an attractive treatment strategy and a promising approach to slowing the
progression of disorders through repositioning.

Keywords: dopamine; anti-inflammatory; antioxidant; antiangiogenic; antinociceptive; nonneurologi-
cal disease

1. Introduction

Dopamine (DA) is a monoamine synthesized mainly in neurons of the midbrain cores,
ventral tegmental area, and substantia nigra pars compacta. The synthesis of the neuro-
transmitter takes place in the dopaminergic nerves [1]. Hydroxylation of the amino acid
L-tyrosine is the point of regulation of the synthesis of catecholamines, including DA, in the
central nervous system (CNS), and consequently, the tyrosine hydroxylase (TH) enzyme
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is the limiting enzyme of the synthesis of DA, norepinephrine, and adrenaline. Through
their receptors, DA has been shown to have physiological functions in the CNS, such as
wakefulness, attention, memory formation and consolidation, novelty-induced memory en-
coding, and reward/addiction [2–5]. DA is a neuromodulator that has the ability to diffuse
away from the site of its release, activating receptors that are far from the terminal; this
ability is called transmission volume [2]. In this sense, DA receptors have been identified
in nonneuronal tissues, which has been related to their therapeutic potential in pathologies
such as sepsis or septic shock, blood pressure, renal failure, diabetes, and obesity, among
others [6–8]. In addition, it has been reported that DA and dopaminergic drugs such as
bromocriptine, cabergoline, pramipexole, and ropinirole have shown anti-inflammatory
and antioxidant functions in different kinds of cells, reducing reactive oxygen species
(ROS) accumulation, preserving glutathione (GSH) and other antioxidant enzymes, and
decreasing lipid peroxidation [9–14]. Additionally, some herbal compounds have shown
dopaminergic properties; for example, Hepad S1, a Korean medicinal herbal combina-
tion, is an important source of dopamine with neuroprotective properties that improve
Parkinson’s symptoms; it could modulate adverse cellular events such as inflammation
and oxidation in neuronal cells [15]. Curcumine has shown neuroprotective properties
and is an important component of dopamine [16], and Hordenine, a natural compound of
germinated barley, is an agonist of the dopamine D2 receptor [17]. These and other herbs
have been mainly studied in neuronal diseases, with less research in nonneuronal diseases.
Then, the scope of this review is to compile the mechanism of action of DA and the main
dopaminergic drugs and show the findings that support the therapeutic potential of these
molecules for the treatment of neurological and non-neurological diseases considering their
antioxidant and anti-inflammatory properties and their efficacy in clinical assays.

2. Methodology

Advanced searches were performed in PubMed, ProQuest, EBSCO, Scopus, Science
Direct, Google Scholar, Web of Science, PubChem, NCBI Bookshelf, DrugBank, livertox, and
Clinical Trials. We considered the original manuscripts, reviews, minireviews, systematic
reviews, meta-analyses, clinical assays, books, and specialized databases. The search was
performed by applying the following keywords alone or in combination: “dopamine”,
“dopaminergic drug”, “metabolism”, “chemical compounds”, chemical structure”, “D1,
D2 receptors”, “precursors”, “experimental agonists and antagonists”, “receptor block-
ers”, “antioxidant”, “anti-inflammatory”, “neuronal pathologies” “nonneuronal patholo-
gies”, “physiological functions”, “drug repositioning”, “neuromodulator”, “free radicals”,
“reactive oxygen species”, “oxidative stresses”, “antioxidant enzymes”, “efficacy”, and
“secondary effects”. A total of 200 references were included.

3. Dopamine Synthesis, Release, Catabolism, and Postsynaptic Action

In this section, we describe DA and its pharmacological properties at the molecu-
lar level. The synthesis of DA (Figure 1) begins with the hydroxylation of L-tyrosine
by the TH enzyme to generate L-3,4-dihydroxyphenylalanine (L-DOPA); then, aromatic
L-amino acid decarboxylase (AADC or DOPA decarboxylase) allows the production of
cytosolic dopamine [18–20]. The DA synthesized in the presynaptic terminal is loaded
in synaptic vesicles by vesicular monoamine transporter 2 (VMAT-2); subsequently, DA
is released to the synaptic cleft. Next, the Na+-dependent dopamine transporter (DAT),
localized in neurons and glial cells, reuptakes the neurotransmitter [18]. DA is recycled
into synaptic vesicles or degraded by specialized enzymes [21], where its catabolism takes
place. In presynaptic terminal and glial cells, the monoamine oxidase (MAO) enzyme,
localized in mitochondria, breaks down DA through oxidative deamination, producing
3,4-dihydroxyphenylacetaldehyde (DOPAL); in turn, aldehyde dehydrogenase (ALDH)
converts DOPAL to carboxylic acid 3,4-dihydroxyphenylacetic acid (DOPAC) by oxida-
tion, or alcohol dehydrogenase (ADH) reduces DOPAL to 3,4-dihydroxyphenylethanol
(DOPET) [20,22]. The catechol O-methyl-transferase (COMT) enzyme, localized in the
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synaptic cleft, catalyzes the methylation of dopamine to 3-methoxytyramine (3-MT), which
is a MAO substrate that forms 3-methoxy-4-hydroxyphenylacetaldehyde (HMPAL). Fi-
nally, the ALDH enzyme catalyzes HMPAL to generate homovanillic acid (HVA), which
is the main end-product of DA degradation [20,22,23]. At the post-synapse, DA binds to
D1-like and D2-like receptors, which are G-protein-coupled channels [24]. The D1-like
receptor activates the Gαs/olf subunit protein that stimulates the adenylyl cyclase (AC)
protein; then, it generates the cyclic adenosine monophosphate (cAMP) second messenger,
which activates protein kinase A (PKA), resulting in target action and increasing protein
phosphorylation. On the other hand, the D2-like receptor, by activating the Gαi/o subunit,
inhibits the effector protein AC, inhibiting the cAMP second messenger and, thereby, PKA,
generating a decrease in protein phosphorylation [18,24–26].
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Figure 1. Synthesis, release, catabolism, and postsynaptic action of dopamine. Synthesis: The TH
enzyme converts L-tyrosine to L-DOPA; then, the AADC enzyme allows the production of dopamine,
which is loaded into synaptic vesicles by VMAT-2. Release and recycling: once released in the synaptic
cleft, the DAT transporter reuptakes dopamine, which is recycled into synaptic vesicles. Catabolism:
Dopamine is degraded by specialized enzymes; the MAO enzyme breaks down dopamine to DOPAC
and DOPET. In the synaptic cleft, the COMT enzyme catalyzes dopamine to HVA, which is the
main end-product of dopamine degradation. At the post-synapse, dopamine binds with D1-like
and D2-like receptors. The D1-like receptor activates the Gαs/olf subunit, which stimulates adenylyl
cyclase protein, increasing protein phosphorylation. D2-like receptor, by activating the Gαi/o sub-
unit, inhibits the protein adenylyl cyclase, generating a decrease in protein phosphorylation. TH:
tyrosine hydroxylase, L-DOPA: L-3,4-dihydroxyphenylalanine, AADC: L-amino acid decarboxy-
lase, VMAT-2: vesicular monoamine transporter 2, DAT: dopamine transporter, MAO: monoamine
oxidase, DOPAL: 3,4-dihydroxyphenylacetaldehyde, ALDH: aldehyde dehydrogenase, DOPAC:
3,4-dihydroxyphenylacetic acid, ADH: alcohol dehydrogenase, DOPET: 3,4-dihydroxyphenylethanol,
COMT: catechol O-methyl-transferase, HMPAL: 3-methoxy-4-hydroxyphenylacetaldehyde, HVA:
homovanillic acid.
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4. Chemical Compounds and Drugs Related to the Dopaminergic System

There are more than 200 chemical compounds and drugs related to the dopaminergic
system [27–29], and mentioning each of them is beyond the scope of this work; however,
they can be grouped, according to their activity, as precursors [30–33], agonists and antago-
nists of receptors [34], DA reuptake inhibitors [35,36] DA releasing agents [36,37], activity
enhancers [38–40], and enzyme inhibitors [41], among others. Three DA precursors are
used in the clinic, L-phenylalanine, L-tyrosine, and L-DOPA; tyrosine is a nonessential
amino acid that is synthesized from the essential aromatic amino acid phenylalanine, and
both amino acids constitute the two initial steps in the biosynthesis of DA [31]. Levodopa
(L-DOPA) is a dopamine precursor and is the most effective and commonly used drug for
the treatment of Parkinson’s disease. Levodopa is prescribed in most cases with Carbidopa,
which is an inhibitor of L-amino acid decarboxylase, the enzyme that metabolizes levodopa
peripherally [42].

DA agonists exert their effects by acting directly on dopamine receptors and mimick-
ing endogenous neurotransmitters. There are two subclasses, ergoline, and nonergoline
agonists, with a variable affinity for different DA receptors [43,44]. DA antagonists block
the effects of dopamine or its agonists by binding to DA receptors. A variety of DA antago-
nists are used for the treatment of psychotic disorders; however, their therapeutic effects
are mostly due to long-term adjustments rather than acute blockade of DA receptors [29].
Some DA antagonists have been used to treat Tourette’s syndrome or hiccups [45,46], and
they have also been used as antiemetics to treat various causes of nausea and vomiting [47].
Table 1 details the mechanisms of action and indications of DA precursors and the most
representative dopaminergic agonist and antagonist drugs.

On the other hand, DA reuptake inhibitors may be classified as DAT inhibitors and
VMAT inhibitors. The former block the action of DAT, and DA reuptake inhibition oc-
curs when extracellular DA, which does not bind to the postsynaptic neuron, is blocked
from re-entering the presynaptic neuron, resulting in increased extracellular concentra-
tions of DA and an increase in dopaminergic neurotransmission [80]. DAT inhibitors are
indicated for the treatment of attention deficit hyperactivity disorder, major depressive
disorder, and seasonal affective disorder and as an aid to smoking cessation; examples
are methylphenidate [27,29]. On the other hand, VMAT inhibitors prevent the reuptake
and storage of monoamine neurotransmitters in synaptic vesicles, making them vulnerable
to metabolism by cytosolic enzymes. Inhibition of VMAT-2 results in decreased reuptake
of monoamines and depletion of their reserves in nerve terminals. They are used to treat
chorea due to neurodegenerative diseases or dyskinesias due to neuroleptic medications;
examples are tetrabenazine, deutetrabenazine, and valbenazine [27,42,81–83].

DA-releasing agents are a type of drug that induces, through various mechanisms, the
release of DA from the presynaptic neuron into the synaptic cleft, leading to an increase in
extracellular concentrations of the neurotransmitter. Examples are amphetamine, lisdexam-
fetamine (L-lysine-d-amphetamine; vyvanse), methamphetamine, methylenedioxymetham-
phetamine (MDMA), and 4-methylaminorex [27,84–87]. Moreover, (-)1-(benzofuran-2-
yl)-2-propylaminopentane, (-)BPAP, (-)-1-phenyl-2-propylaminopentane, and (-)PPAP are
enhancers of dopamine activity. BPAP and PPAP act as potent stimulants of neurotrans-
mitter release in dopaminergic neurons, leaving MAO activity largely unchanged. BPAP
and PPAP controllably increase the quantity of neurotransmitters that are released when
a neuron is stimulated by a neighboring neuron, and they are currently in the research
phase [39,88,89].

DA enzyme inhibitors can be classified into DA synthesis inhibitors and DA degrada-
tion inhibitors. There are three kinds of dopamine synthesis inhibitors: (1) TH inhibitors
(for example, 3-iodo-tyrosine and metyrosine), which are able to inhibit TH activity, the
rate-limiting enzyme in DA biosynthesis [90]; (2) phenylalanine hydroxylase inhibitors (for
example, 3,4-dihydroxystyrene), which inhibit the enzyme that converts phenylalanine
to tyrosine [91]; and (3) DOPA decarboxylase inhibitors, which block the biosynthesis of
L-DOPA to DA. Examples of these inhibitors are benserazide and carbidopa, commonly
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used in combination with levodopa. Since they can hardly cross the blood–brain barrier,
they prevent the formation of dopamine in extracerebral tissues, minimizing the occurrence
of extracerebral side effects [92,93].

Table 1. Mechanism of action and indications of dopamine precursors and dopaminergic agonist and
antagonist drugs.

Drug Mechanism of Action Indications

Precursors

Levodopa (L-DOPA)

Levodopa mimics the role of endogenous dopamine; crosses
the blood–brain barrier through various pathways, and is
decarboxylated to form dopamine stimulating the
dopamine receptors

Parkinson’s disease [29,30]

L-phenylalanine Precursor of tyrosine, dopamine, norepinephrine
(noradrenaline) and epinephrine (adrenaline)

Antidepressant effects
Vitiligo [31,32]

L-tyrosine Precursor of dopamine,
norepinephrine and epinephrine Antidepressant [31,33]

Receptor agonists

Apomorphine A nonergoline dopamine agonist with binding affinity to
dopamine D2, D3, and D5 receptors Parkinson’s disease [29,42,48]

Bromocriptine Ergoline derivative with strong agonist activity on the D2
dopamine receptors

Parkinsonian Syndrome
Amenorrhea
Galactorrhea
Acromegaly
Premenstrual syndrome
Female infertility [29,42]

Cabergoline Ergoline derivative; dopamine agonist (with a high affinity
for D2 receptors) and prolactin inhibitor.

Hyperprolactinemic disorders.
Parkinsonian Syndrome [29,49,50]

DA
Agonist to the D1, D2, D3, D4, D5 dopamine receptors.
Interacts on the synaptic terminals, causing neuronal
excitation or inhibition at the target neuron

Hemodynamic imbalances
Blood pressure
Hypotension
Poor perfusion of vital organs
Low cardiac output [29,51]

Fenoldopam
Benzazepine derivative; selective dopamine D1 receptor
agonist. Decreases peripheral vascular resistance in renal
capillary beds

Hypertension [29,52]

Lisuride
Ergoline derivative, agonist to dopamine D2 receptors. It
can be an antagonist to dopamine D1 receptors.
Additionally, activates some serotonin receptors

Parkinson’s disease [27,29]

Piribedil Nonergoline, piperazine derivative, dopamine agonist that
acts on D2 and D3 receptors Parkinson’s disease [53]

Pramipexole Nonergoline, a dopamine agonist showing specificity and
strong activity at dopamine D2 receptors

Parkinson’s disease
Restless legs syndrome [54,55]

Quinagolide

Nonergoline derivative; it selectively binds to D2 receptors
on the surface of lactotroph cells, resulting in reduced
adenylyl cyclase activity and inhibition of prolactin
secretion from the anterior pituitary

Hyperprolactinemia [27,29]

Ropinirole Nonergoline derivative, selectively binds to dopamine D2
receptors, with highest affinity at D3 receptors

Parkinson’s disease
Restless legs syndrome [56,57]

Rotigotine Nonergoline derivative; a nonselective agonist of dopamine
receptors with higher affinity at D3 receptors

Parkinson’s disease
Restless legs syndrome [29,42]

Experimental agonists
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Table 1. Cont.

Drug Mechanism of Action Indications

Dihydrexidine
(LS-186,899)

Selective full agonist at the dopamine D1 receptors. It has
some affinity for the D2 receptor Scientific research [58,59]

Pukateine Aporphine derivative; agonist at the D2 dopamine receptor
and antagonist at the α1 adrenergic receptor Scientific research [60,61]

Quinpirole Selective D2 and D3 receptor agonist Scientific research [62,63]

SKF 38393 A selective D1-like receptor agonist Scientific research [64]

Antagonists and receptor blockers

Typical antipsychotics

Chlorpromazine

Phenothiazine derivative. It binds strongly to the D2
receptor, blocking its action; this blockade, in the
nigrostriatal pathway, is responsible for its extrapyramidal
side effects

Schizophrenia, Bipolar disorder
Acute psychosis, Nausea and vomiting
Relief of apprehension before surgery
Persistent singultus (chronic
hiccups) [29,46,65]

Fluphenazine Phenothiazine derivative. Blocks postsynaptic mesolimbic
dopaminergic D2 receptors in the brain

Management of psychosis in
schizophrenia [29,66]

Haloperidol

It is a first-generation antipsychotic and one of the most
frequently used worldwide. It is not selective for the D2
receptor, but, has a strong antagonism to this dopamine
receptor in mesolimbic and mesocortical pathways in the
brain

Schizophrenia
Tourette syndrome
Behavioral disorders in children
Hyperactivity [29,45]

Loxapine Dibenzoazepine tricyclic derivative. Antagonist with high
affinity for the D2 receptor, also a serotonin 5-HT2 blocker

Schizophrenia
Other psychotic disorders [27,67]

Molindone
Indole derivative. Antagonizes dopamine D2 receptor sites
in the reticular limbic systems in the brain, decreasing
dopamine activity

Schizophrenia [27,29]

Perphenazine

Phenothiazine derivative. It binds to the dopamine D1 and
dopamine D2 receptors inhibiting their activity. Its
antiemetic effect is mainly due to blockade of D2 receptors
in the chemoreceptor trigger zone and the vomiting center

Schizophrenia
Other psychotic disorders
Nausea and vomiting [27,29]

Pimozide Diphenylbutylpiperidine derivative. It binds and inhibits
the dopamine D2 receptor

Tourette syndrome
Schizophrenia [27,42]

Thioridazine Phenothiazine derivative. It blocks postsynaptic mesolimbic
dopaminergic D1 and D2 receptors

Schizophrenia
Other psychotic disorders
Generalized anxiety disorder
Depressive disorders [27,68]

Thiothixene Thioxanthene derivative. Is a highly potent antagonist of
the D1, D2, D3 and D4 dopamine receptors. Schizophrenia [27,29]

Atypical antipsychotics

Amisulpride Benzamide derivative. It is a selective dopamine D2 and D3
receptor antagonist

Schizophrenia
Nausea and vomiting [27,29]

Clozapine

Dibenzodiazepine derivative. It binds to the D4 dopamine
receptors with a higher affinity than D2 receptor.
Additionally, it has antagonistic effects at 5-HT2A receptors
and is a partial agonist at 5-HT1A receptors

Resistant schizophrenia [27,69]

Olanzapine

Thienobenzodiazepine derivative. It exerts its action
primarily on dopamine D1, D2, D3 and D4 and serotonin
5-HT2A, 5-HT2C, 5-HT3 and 5-HT6 receptors, blocking
their action

Schizophrenia,
Bipolar disorder [27,70]
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Table 1. Cont.

Drug Mechanism of Action Indications

Quetiapine
Thiazepine derivative. Antagonizes to D2 dopamine
receptors and to 5-HT2A receptors (it has strong affinity for
the latter)

Schizophrenia
Bipolar disorder
Major depressive disorder [27,71]

Risperidone Benzisoxazole derivative. It blocks D2, but more 5-HT2A
receptors in the brain.

Schizophrenia,
Bipolar mania
Autism-associated irritability [29,72]

Sulpiride Benzamide derivative. Selective antagonist at dopamine D2,
D3 receptors Schizophrenia [27,29]

Ziprasidone Benzothiazolylpiperazine derivative. Binds to 5-HT2A and
dopamine D2 receptors with high affinity

Schizophrenia
Bipolar mania
Acute agitation in schizophrenic
patients [29,73]

Antiemetics

Domperidone Benzimidazole derivative. It has strong affinity for the D2
and D3 dopamine receptors, blocking their activity

Peristaltic stimulant, Dyspepsia,
Indigestion, Epigastric pain
Nausea and vomiting [27,29,74]

Metoclopramide Benzamide derivative. Inhibit dopamine D2 and serotonin
5-HT3 receptors

Nausea and vomiting
Gastroesophageal reflux disease [29,75]

Prochlorperazine Phenothiazine derivative. It mainly blocks the D2 dopamine
receptors in the mesolimbic system

Schizophrenia, Schizoaffective
Other conditions with psychosis
symptoms
Nausea and vomiting [29,76]

Experimental antagonists

Eticlopride Antagonizes D2 dopamine receptor Scientific research [77]

Raclopride Potent and selective antagonist on D2/D3 dopamine
receptors

Trials studying Parkinson’s
disease [29,78]

SCH23390 Highly potent and selective of D1 dopamine receptor Scientific research of drug addiction [79]

Finally, the main DA degradation inhibitors can be classified into MAO and COMT
inhibitors. The most prescribed MAO inhibitors are selegiline, isocarboxazid, phenelzine,
and tranylcypromine. They have in common the ability to block oxidative deamination
of DA and subsequently provoke its elevation in brain levels, enhancing dopaminergic
activity [29,94]. Selegiline is close structurally to (-) methamphetamine and is a selective
and irreversible inhibitor of monoamine oxidase type B (MAO-B). Selegiline is the first
catecholaminergic activity-enhancing substance in clinical use that does not continually
release catecholamines and is, therefore, free of amphetamine dependence [38,40]. Likewise,
the most common COMT inhibitors are entacapone, opicapone, and tolcapone. They inhibit
the COMT enzyme and are frequently used in the treatment of Parkinson’s disease as an
adjunct to levodopa/carbidopa medication [95–97]. Many Parkinson’s disease patients
treated with levodopa plus carbidopa experience motor complications over time; when
COMT inhibitors are administered, plasma levodopa levels are increased and maintained,
resulting in more consistent dopaminergic stimulation, leading to further reduction of the
manifestations of parkinsonian syndrome [98].

In summary, dopaminergic compounds and drugs act through a variety of mechanisms
of action within the process of synthesis, release, catabolism, and postsynaptic action of
dopamine, as shown in Figure 2. It should be noted that these main mechanisms are
often accompanied by secondary mechanisms (such as antioxidant or anti-inflammatory
mechanisms, see below, which are not yet fully understood) that give a wide variety of
effects and indications as potential adjuvants in most chronic and degenerative diseases.
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agents and dopamine activity enhancers increase the release of the activity of dopamine into the 
synaptic cleft. Dopamine synthesis inhibitors prevent the formation of dopamine as an endpoint. 
Dopamine degradation inhibitors enhance dopaminergic activity by blocking dopamine catabolism. 
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thereby blocking the actions of dopamine. L-Phe: L-phenylalanine, L-Tyr: L-tyrosine, TH: tyrosine 

Figure 2. Mechanism of action of chemical compounds and drugs related to the dopaminergic
system. These drugs can inhibit or activate diverse proteins involved in dopamine metabolism,
including precursors, enzyme inhibitors, dopamine-releasing agents, dopamine reuptake inhibitors,
dopamine activity enhancers, and agonists or antagonists of D1-like and D2-like receptors. At
presynapses: The precursors enable the biosynthesis of dopamine. VMAT inhibitors prevent the
storage of monoamines in synaptic vesicles, resulting in the depletion of these neurotransmitters.
DAT inhibitors keep dopamine in the synaptic cleft longer by inhibiting its reuptake. Dopamine-
releasing agents and dopamine activity enhancers increase the release of the activity of dopamine
into the synaptic cleft. Dopamine synthesis inhibitors prevent the formation of dopamine as an
endpoint. Dopamine degradation inhibitors enhance dopaminergic activity by blocking dopamine
catabolism. At postsynapses: The dopamine agonist (orange box) mimics endogenous dopamine
function, thus activating or inhibiting adenylyl cyclase depending on whether it binds to D1-like or
D2-like receptors, respectively. Dopamine antagonists (pink box) bind to but do not activate dopamine
receptors, thereby blocking the actions of dopamine. L-Phe: L-phenylalanine, L-Tyr: L-tyrosine, TH:
tyrosine hydroxylase, L-DOPA: L-3,4-dihydroxyphenylalanine, AADC: L-amino acid decarboxylase,
VMAT2: vesicular monoamine transporter 2, DAT: dopamine transporter, MAO: monoamine oxidase,
DOPAC: 3,4-dihydroxyphenylacetic acid, DOPET: 3,4-dihydroxyphenylethanol, COMT: catechol
O-methyl-transferase, HVA: homovanillic acid, D1: dopamine 1 receptor, D2: dopamine 2 receptor.

5. Antioxidant and Anti-Inflammatory Properties of Dopamine and Related Drugs

In 1997, it was reported for the first time that DA has a direct antioxidant effect due
to the number of hydroxy groups on the phenolic ring of the molecule. In this sense, Yen
and Hsieh [99] showed that DA has a protective effect against the oxidation of linoleic acid,
has reducing power, and shows scavenger capacity against 1,1-diphenyl-2-picryl-hydrazyl
(DPPH) radicals, superoxide radicals (O2

•−) and hydroxyl radicals (HO•) (94.94, 53 and
65.7%, respectively), showing the strongest capacity. The authors conclude that the 1,2 posi-
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tion hydroxy group on the phenolic ring and the side chain is an electron-donating amine
group [99]. Later, it was shown that DA and D4 receptors induced nuclear factor-erythroid
2 related factor 2 (Nrf2) activity during ischemia in vivo in astrocyte and meningeal cell cul-
tures, showing its capacity to modulate the antioxidant effect; Nrf2 is a transcription factor
that controls inducible expression of multiple antioxidant/detoxification genes [100,101]
and induces the expression of heme oxygenase-1 (HO-1) by human endothelial cells
in vitro [102]. The anti-inflammatory effect of DA has also been demonstrated in alco-
holic hemorrhagic pancreatitis in cats [103]. In fact, DA has been proposed as an immune
transmitter, given that dopaminergic signaling is involved in neurological diseases and is
associated with the inflammatory response [104]. DA inhibits cytokine production via D1
receptors, decreases oxidative stress [105], and can cause nuclear factor kappa B (NF-kB),
a transcription factor that mediates the control of ROS and inhibition in acute kidney
injury [106]. Catecholamines, including DA, can inhibit tumor necrosis factor-alpha (TNF-
α) and may enhance interleukin-6 (IL-6) and interleukin-10 (IL-10) production through
D2, D3, or D1/D5 receptors [107–109]. In fact, DA has been proposed to be a putative
anti-inflammatory cytokine by itself attenuating the chemoattractant effect of interleukin-8
(IL-8), integrins CD11b and CD18, and the adhesion molecules E-selectin and intercellular
adhesion molecule 1 (ICAM-1) [110]. DA and its D1 receptor also inhibit the activation of
the protein complex named NLR family pyrin domain containing 3 (NLRP3) inflammasome
in bone marrow-derived macrophages [111,112]. On the other hand, it has been shown
that catechol moieties protect cells against oxidative damage and downregulate the pro-
inflammatory cytokine interleukine-1beta (IL-1β) in human bone marrow mesenchymal
stem cells [113]. Catecholamines identified in two medicinal plants (Santolina chamaecyparis-
sus and Launaea mucronate) have also shown antioxidant and anti-inflammatory effects in
carrageenan-induced paw edema in a rat model [114]. DA also inhibited the peroxidation
of brain phospholipids and reaction with radicals such as trichloromethyl peroxyl radi-
cals (CCl3O2•), O2

•−, peroxynitrite (ONOO−) and hydrochlorous acid (HOCl) generated
in vitro [115–117]. Moreover, the antioxidant effect of DA derivatives of several plant species,
such as soybean, avocado, apple, cucumber, and banana, has also been reported, showing an in-
crease in antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; glutathione
reductase, GR) and reactive oxygen species (hydrogen peroxide, H2O2, nitric oxide, NO•, and
O2
•−) scavenging capacity [118–123]. In another work, it was shown that other derivatives

of DA-related compounds or DA agonists showed antioxidant activity. It has been shown
that phenolic sulfonamides showed scavenger capacity in vitro against DPPH, 2,2′-azino-
bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), and O2

•− [124]. N-Nicotinoyl dopamine
also showed antioxidant properties with DPPH scavenging activity and protected against
ROS accumulation induced by UVB irradiation in HaCat cells [125]. Bromocriptine, a
DA agonist, scavenged O2

•−, 5,5-dimethyl-1-pyrroline-N-oxide hydroxide, and DPPH
radicals generated through in vitro systems [9]. This compound also activates NAD(P)H
quinone oxidoreductase 1 (NQO1) via Nrf2-phosphatidylinositol-3-kinase/protein kinase
B (PI3K/AKT) signaling in H2O2-treated PC12 cells, protecting against oxidative dam-
age [126]. In in vivo experimental work, it was shown that a non-ergot DA agonist named
ropinirole showed a neuroprotective effect, increased GSH, CAT, and SOD antioxidant activ-
ities in the striatum, protected striatal dopaminergic neurons against 6-hydroxydopamine
(6-OHDA) in mice [14] and was an activator of the GHS system in the mouse striatum [127].
Pramipexole, a DA agonist, protects the DAergic cell line MES 23.5 against 6-OHDA and
H2O2, increasing cellular levels of GSH, glutathione peroxidase (GPx), and CAT activi-
ties [11,12] and scavenging HO• induced by 6-OHDA in rats [13]. In an in vivo model
using [3H] pramipexole, it has been shown that the drug enters and accumulates in cells
and mitochondria. Pramipexole also prolongs survival time in SOD-1-G93A mice, a model
of familial amyotrophic lateral sclerosis [128]. Cabergoline, an ergot derivative DA agonist,
has the ability to activate GSH, CAT, and SOD against the neurotoxicity of 6-OHDA in mice,
reducing lipid peroxidation [10] and showing antioxidant activity against oxidation in
phosphatidylcholine liposomes [129]. D-390, a novel D2/D3 receptor agonist, also showed
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potent iron chelation [130], and a new tris (DA) derivative also showed Fe(III), Mg(II),
Zn(II), and Fe(II) chelation and antioxidant activity in neuron-like rat pheochromocytoma
cells [131]. Other DA derivatives, such as N-arachidonoyl-DA and apomorphine, and
DA-related compounds, such as pukateine [(R)-11-hydroxy-1,2-methylenedioxyaporphine],
have also shown antioxidant properties [60,132–134]. It has been shown that caffeic acid
anilides and caffeic acid dopamine amide showed DPPH scavenging capacity and microso-
mal lipid peroxidation-inhibiting activity [135]. Recently, the water-soluble caffeic acid-DA
hydrochloride complex has been proposed as a bactericidal, antibiofilm, and antitumoral
agent in the physiological pH range (5.5–7.5) due to its antioxidant properties [136].

Recent clinical research findings indicate that melatonin may modulate dopaminergic
pathways involved in movement disorders in humans. It has been proposed that the
interaction of melatonin with the dopaminergic system may play a significant role in the
nonphotic and photic entrainment of the biological clock as well as in the fine-tuning of
motor coordination in the striatum principally because these interactions, by its antioxidant
nature can be beneficial in humans [137–139]. Additionally, its anti-inflammatory properties
have been proposed for the treatment of inflammatory bowel disease, rheumatoid arthritis,
systemic lupus erythematosus, and multiple sclerosis [140,141]. In relation to pathologies
not related to the central nervous system, the use of DA-melanin nanoparticles has been
proposed as a novel scavenger of ROS and reactive nitrogen species (RNS). These nanopar-
ticles showed low cytotoxicity and a strong ability to scavenge ROS and RNS: O2

•−, HO•
radicals, and ONOO− were proposed as potent anti-inflammatory and chondroprotective
agents due to their average diameter of 112.5 nm. Nanoparticles can be intra-articularly
injected into an affected joint and retained at the injection site, as was shown in an os-
teoarthritis rodent model and in chondrocyte cultures. These nanoparticles also diminished
IL-1β and reduced proteoglycan loss, probably stimulating autophagy for chondrocyte
protection. IL-1β caused an increase in the gene expression of autophagy markers: protein
1A/1B-light chain 3 (LC3-11), autophagy-related 7 (ATG7), and beclin-1 [142]. The use of
N-acyl dopamine derivates has also been proposed as a potential alternative for imple-
mentation in transplantation medicine due to its immunomodulatory, cytoprotective, and
anti-inflammatory properties [143]. The antioxidant and anti-inflammatory properties of
DA and some related drugs are summarized in Figure 3.

Finally, it is important to mention that in cancer, DA agonists inhibit T-cell proliferation
and cytotoxicity, probably through activation of the D1 receptor, which promotes an increase
in intracellular cAMP, contributing to immune regulation [144]. Additionally, these agonists
have an important role due to their beneficial antiangiogenic effects. Hoeppner et al.,
2015 [145] showed that D2 receptor agonists inhibit NADPH oxidase activity, reducing the
production of ROS involved in angiogenesis [145]. Leng et al., 2017 [146] found in GH3 cells
that D5 receptor agonists could inhibit the activity and expression of SOD-1 and increase
ROS, promoting autophagy and cell death by inhibiting the AKT-mammalian target of
rapamycin (mTOR) pathway [146].
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some agonist drugs with its receptor activates the PI3K/AKT or ERK signaling pathway, resulting 
in Nrf2 translocation to the nucleus, inducing the expression of HO-1 and antioxidant genes (pink 
pathway). (2) The activation of AC/PKA inhibits NF-κB, generating a decrease in proinflammatory 
cytokine expression and the protein complex NLRP3 inflammasome, thus diminishing the apoptotic 
process (green pathway). (3) Dopamine attenuates the chemoattractant effect of integrins and adhe-
sion molecules. (4) Cabergoline and dopamine inhibited the peroxidation of brain phospholipids 
and reacted with free radicals. (5) Some drugs showed scavenger capacity and protection against 
ROS accumulation (cyan box). 
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non-CNS pathologies, possibly due to their antioxidant or anti-inflammatory/immuno-
modulatory properties. In this sense, DA, serotonin, prostaglandin E2, substance P, and 
lipoperoxidation levels are decreased, whereas SOD levels are increased after pain treat-
ment with warm acupuncture and meloxicam in patients with knee osteoarthritis, show-
ing the involvement of these biochemical markers as anti-inflammatory mediators [147]. 
DA treatment (15 μg/kg/min) is also effective in increasing blood pressure in neonates 
with hypothermia treatment for hypoxic-ischemic encephalopathy [148], and the use of 
the DA synthetic analog dopexamine in doses of 0.5 and 2.0 μg/kg/min significantly pro-
tected the upper gastrointestinal mucosa in the of patients with abdominal surgery, re-
ducing the incidence of acute inflammation and decreasing myeloperoxidase activity and 
inducible nitric oxide synthase in biopsies [149]. The effects of DA (2.5 to 10 μg/kg/min) 

Figure 3. Simplified and integrated mechanisms of dopamine and its agonist, as antioxidant and anti-
inflammatory molecules, in various physiological processes. (1) The binding of dopamine and some
agonist drugs with its receptor activates the PI3K/AKT or ERK signaling pathway, resulting in Nrf2
translocation to the nucleus, inducing the expression of HO-1 and antioxidant genes (pink pathway).
(2) The activation of AC/PKA inhibits NF-κB, generating a decrease in proinflammatory cytokine
expression and the protein complex NLRP3 inflammasome, thus diminishing the apoptotic process
(green pathway). (3) Dopamine attenuates the chemoattractant effect of integrins and adhesion
molecules. (4) Cabergoline and dopamine inhibited the peroxidation of brain phospholipids and
reacted with free radicals. (5) Some drugs showed scavenger capacity and protection against ROS
accumulation (cyan box).

6. Clinical Trials in Nonneuronal Pathologies

DA, agonists, or derivatives are being tested as possible drugs or adjuvants in other non-
CNS pathologies, possibly due to their antioxidant or anti-inflammatory/immunomodulatory
properties. In this sense, DA, serotonin, prostaglandin E2, substance P, and lipoperoxi-
dation levels are decreased, whereas SOD levels are increased after pain treatment with
warm acupuncture and meloxicam in patients with knee osteoarthritis, showing the involve-
ment of these biochemical markers as anti-inflammatory mediators [147]. DA treatment
(15 µg/kg/min) is also effective in increasing blood pressure in neonates with hypothermia
treatment for hypoxic-ischemic encephalopathy [148], and the use of the DA synthetic analog
dopexamine in doses of 0.5 and 2.0 µg/kg/min significantly protected the upper gastroin-
testinal mucosa in the of patients with abdominal surgery, reducing the incidence of acute
inflammation and decreasing myeloperoxidase activity and inducible nitric oxide synthase in
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biopsies [149]. The effects of DA (2.5 to 10 µg/kg/min) have also been observed in patients
with sepsis, where its administration was associated with a fall in lactate and no effect
on arterial pH [150]. DA (10 to 25 µg/kg/min) is effective in the treatment of patients
with hyperdynamic septic shock, where it successfully improved the systemic vascular
resistance index, cardiac index, oxygen delivery and uptake [151]. It has been shown
that DA (infused at 2 and 4 µg/kg/min) increases renal oxygenation with no increase in
tubular sodium reabsorption or renal oxygen consumption in glomerular filtration rate in
postcardiac surgery patients [152]. Bromocriptine has also been proposed as an adjuvant
in immunosuppression after renal transplantation, but its effectiveness has not yet been
widely shown [153,154]. Additionally, bromocriptine (2.5 mg twice daily) prevented ulcer
relapse for six months in patients with duodenal ulcers [155]. The use of pramipexole
(from 0.25 to 0.75 mg) has shown efficacy in the treatment of restless legs syndrome in
patients [156,157]. The use of cabergoline (0.5 mg for eight days) and bromocriptine (2.5 mg
for 16 days) are efficient in the prevention of moderate and early-onset ovarian hyperstim-
ulation syndrome in patients [158]. The role of DA in crucial social role decision-making
was shown using pramipexole in women, allowing them to become less generous in gen-
eral, modulate smoking behavior or produce subjective effects of cocaine, improve sleep
behavior disorder and tinnitus, and help against pain, fatigue, function, and global status
in patients with fibromyalgia [159–165]. Finally, Table 2 summarizes diverse clinical trials
in progress.

Table 2. Clinical trials where the effects of DA and DA agonists or derivatives are being studied in
non-CNS diseases as possible drugs or adjuvants.

Intervention Condition or Disease Study Design and Location Outcome Measures

Sepsis or septic shock

DA (5–20 µg/kg/min to
predetermined max of 20) Septic shock

Interventional, randomized,
parallel, assignment
N = 252
Location: United States

Efficacy, safety, arrhythmia
(28 days) [166]

DA (Start at 5 µg/kg/min,
increase every 16–30 min by
5 µg/kg/min to a maximum
dose of 15 µg/kg/min or
adequate response)

Late-onset neonatal sepsis
Extreme prematurity neonatal
hypotension

Observational, prospective
N = 550
Location: Canada

Mortality, severe neurological
injury (assessed up to a
maximum of 36 weeks after
date of birth)
Treatment failure rate (Time
frame: 90 min)
Bronchopulmonary dysplasia,
retinopathy, and prematurity
(Time: frame: 36 weeks
postmenstrual age)
Length of hospital stay [167]

DA (8 µg/kg/min, increasing
the dose after 15 min to
12 µg/kg/min to a maximum
of 15 µg/kg/min)

Shock Hypovolemic
Septic Shock

Interventional, randomized,
parallel, assignment
N = 135
Location: Bangladesh

Case fatality rate (Time frame:
28 days)
Treatment failure rates, need
of mechanical ventilation,
heart failure, length of ICU
stay and heart function (Time
frame: 7 days) [168]

Renal failure

Fenoldopam (D1 agonist) Acute renal failure
Interventional, randomized,
single group assignment
Location: United States

Incidence of death or dialysis
at 21 days
Peak serum creatinine and
duration of ICU stay [169]
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Table 2. Cont.

Intervention Condition or Disease Study Design and Location Outcome Measures

DA (dose of 4 µg/kg/min to
the renal graft donor after
induction of anesthesia till
ligation of the renal artery)

Renal failure
Transplant renal failure

Interventional, randomized,
parallel assignment
N = 60
Location: Egypt

Post-operative creatinine
clearance (Time frame: 7 days)
[170]

Ropinirole (0.50 mg capsule,
once daily for 4 weeks) End stage renal disease

Interventional, randomized,
crossover Assignment
N = 52
Location: Canada

Quality of life scale
patient global impressions
(Time frame: 18 weeks) [171]

Fenoldopam. 60 µg/mL;
0.1 mL/h to provide
0.1 µg/kg/min). If, after 6 h
there is not a clinically
concerning decrease in blood
pressure, as determined by
attending physician, the rate
of infusion will be increased to
0.2 mL/kg/h (0.2 µg/kg/min
for infants receiving
fenoldopam). This rate will be
continued throughout the
remainder of the study

Acute kidney injury
Patent ductus arteriosus

Interventional, randomized,
parallel assignment
N = 1
Location: United States

Changes in urine output
(mL/kg/h) and serum levels
of fenoldopam during
infusion of the drug and
following discontinuation of
the drug will be measured by
liquid chromatography and
mass spectrometry (Time
frame: 60 h)
Change in levels of serum
albumin, β-2 macroglobulin,
epidermal growth factor,
osteopontin, uromodulin
cystatin C and in serum
creatinine (mg/dL) (Time
frame: 48 h) [172]

Fenoldopam (continuous
intravenous infusion of
0.3 µg/kg/min fenoldopam
for 24 h)

Acute renal failure

Interventional, randomized,
parallel assignment
N = 80
Location: Poland

Cystatin C and Neutrophil
Gelatinase-Associated
Lipocalin
(NGAL) in serum (Time frame:
after 24 and 48 h) [173]

Fenoldopam (continuous
infusion at 1 µg/kg/min
during cardiopulmonary
bypass)

Acute renal failure

Interventional, randomized,
parallel assignment
N = 80
Location: Italia

Reduction of urinary and/or
serum levels of biomarker
NGAL in treated group
versus controls
Reduction of urinary and/or
serum levels of cystatin C,
increase of diuresis and
improvement of perfusion
markers in treated group
versus controls
(Time frame: end of
surgery and 12 h
postoperatively) [174]

Fenoldopam. 0.1 µg/kg/min
(from 0.025 to 0.3 µg/kg/min)
for up to 4 days

Acute renal failure

Interventional, randomized,
parallel assignment
N = 667
Location: Italia

Number of patients requiring
Renal Replacement Therapy
(Time frame: participants will
be followed for the duration
of intensive care unit stay, an
expected average
of one week).
Number of dead patients
(Time frame: Participants will
be followed for 1 year) [175]

Gastric diseases
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Table 2. Cont.

Intervention Condition or Disease Study Design and Location Outcome Measures

Domperidone (DA
agonist)(10–30 mg oral dose,
four times daily)

Gastroesophageal reflux
Gastroparesis
Chronic constipation

Expanded Access
Location: United States Unspecified data [176]

Domperidone (10 mg
administered 2–4 times a day
as needed)

Gastroparesis
Esophagitis
Dyspepsia
Chronic idiopathic
Constipation
Nausea
Vomiting

Interventional, randomized,
single group assignment
N = 42
Location: United States

Relief for patients with
gastrointestinal disorders who
have failed standard therapy
(Time frame: if the subjects
continue to take
domperidone) [177]

Disease in ovarian and Cushing’s disease

Cabergoline (0.5 mg/day for
8 days) Polycystic ovarian syndrome

Interventional,
nonrandomized, single group
assignment
N = 40
Location: Turkey

Concentrations of follicular
fluid antimullerian hormone
(Time frame: 1 year) [178]

Quinagolide (DA Agonist)
(200 µg/day)

Ovarian hyperstimulation
syndrome

Interventional, randomized,
parallel assignment
N = 30
Location: Spain

Tolerability of quinagolide
200 µg/day in a dose-titration
regimen in oocyte donors
undergoing controlled
ovarian hyperstimulation and
at risk of developing ovarian
hyperstimulation syndrome
(Time frame: 21 days) [179]

Cabergoline (1 mg/week in
divided doses, increased by 1
mg/week every month, to the
maximum of 5 mg/week. If
response is seen than the dose
at which response is seen is
continued until the end of
the study)

Cushing’s disease

Interventional,
nonrandomized, single group
assignment
Location: India

Response in term of mid night
cortisol < 5.0 µg/dL and/or
Standard two-day
dexamethasone suppression
test < 1.8 µg/dL [180]

Diabetes

Bromocriptine Type 1 diabetes
Cardiovascular disease

Interventional, randomized,
crossover assignment
N = 108
Location: United States

Mean glucose, insulin dosing,
brachial artery distensibility,
hyperemia, peripheral arterial
tonometry (Time frame:
4 weeks) [181]

Bromocriptine
(1.6–3.2 mg/day)

Diabetes autonomic
neuropathy

Interventional, randomized,
parallel assignment
N = 84
Location: United States

Changes in
expiration/inspiration ratio,
in bromocriptine ratio, in
electrochemical skin
conductance and in heart rate
variability (Time frame:
24 weeks) [182]

Cabergoline (0.5 mg per week) Diabetes type 2

Interventional, randomized,
single group assignment
N = 10
Location: Iran

Fasting blood sugar and
glycosylated hemoglobin
(Time frame: 30 days) [183]

Bromocriptine
(2.4–3.2 mg/day) Diabetes type 2

Interventional, randomized,
single group assignment
N = 23
Location: United States

Glucose metabolism during
mixed meal tolerance test
(Time frame: 5 weeks) [184]
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Table 2. Cont.

Intervention Condition or Disease Study Design and Location Outcome Measures

Bromocriptine Insulin sensitivity

Interventional, randomized,
crossover assignment
N = 15
Location: Netherlands

Timing of administration of
bromocriptine.
Difference in insulin
sensitivity between lean and
obese males before and after
the use of bromocriptine
Difference in energy
expenditure in lean and obese
before and after the use of
bromocriptine.
(Time frame: 6 weeks) [185]

Obesity or overweight

Bromocriptine (1.6 mg) Obesity and overweight
Eating behavior

Interventional, randomized,
crossover assignment
N = 55
Location: United States

Ad libitum food intake (Time
frame: within 15 min of
completion of the ad libitum
period), hedonic ratings (Time
frame: within 5 min prior to
ad libitum period), change in
blood oxygen (Time frame:
2 weeks) [186]

Bromocriptine (1.25 mg/day
during the first week and
2.5 mg/day during the
second week)

Obesity

Interventional, randomized,
single group assignment
N = 8
Location: Netherlands

Difference in
18F-fluorodeoxyglucose
uptake, in energy expenditure,
in core body temperature and
in in insulin sensitivity before
and after using bromocriptine
(Time frame: 17 months) [187]

Cabergoline (0.5 mg twice
weekly)

Body weight
Glucose tolerance

Interventional, randomized,
parallel assignment
N = 40
Location: United States

Body weight and glucose
(Time frame: 16 weeks) [188]

Fibromyalgia

Bromocriptine (single dose of
bromocriptine 1.25 mg) Fibromyalgia

Interventional, randomized,
crossover assignment
N = 100
Location: Switzerland

Brain metabolites (Time frame:
Only in sub study 1: 12 to
30 min)
Blood oxygen level dependent
(BOLD) responses (Time
frame: 12 to 45 min)
Sensory and emotional pain
responses (Time frame: 12 to
20 min) [189]

Rotigotine (DA agonist;
4 mg/24 h) Fibromyalgia

Interventional, randomized,
parallel assignment
N = 230
Location: United States

Change from baseline in
average daily pain score to the
last 2 weeks of the 12-week
treatment phase
change from baseline in
average daily pain score to the
last 2 weeks of the 12-week
treatment phase (Based on the
Per Protocol Set) (Time frame:
baseline, last 2 weeks of the
12-week treatment
phase) [190]
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Table 2. Cont.

Intervention Condition or Disease Study Design and Location Outcome Measures

Ropinirole Fibromyalgia

Interventional, randomized,
parallel assignment
N = 164
Locations: Belgium, Denmark,
Finland, France, Germany,
Italy, Netherlands, Sweden,
United Kingdom

Change in pain intensity score
from baseline to last week of
treatment (week 12).
Pain severity and impact on
physical function, sleep
quality, tender point pressure
threshold [191]

Pramipexole (0.75 mg to
4.5 mg tablets once daily in
the evening)

Fibromyalgia

Interventional, randomized,
parallel assignment
N = 61
Location: United States

Change in the weekly mean of
the 24 h average pain score
from a daily diary as
measured by the 11-point
Likert pain scale (Time frame:
week 29) [192]

Blood pressure

Fenoldopam (0.05 µg/kg/min
for 3 h) Hypertension

Interventional, randomized,
crossover assignment
N = 44
Location: United States

Urine sodium excretion (Time
frame: 7 days) [193]

Fenoldopam (0.5 µg/kg/min
for 3 h) Salt-sensitive hypertension

Interventional, randomized,
crossover assignment
N = 45
Location: United States

Urinary sodium excretion
(Time frame: 3 h) [194]

DA (beginning at
5 µg/kg/min and titrated by
5 µg/kg/min to effect up to
maximum of 20 µg/kg/min)

Hypotension

Interventional, randomized,
parallel assignment
N = 70
Location: United States

Number of subjects in each
group who have achieved an
optimal mean blood pressure
value at 24 h of life (Time
frame: 24 h) [195]

Cancer

Cabergoline (total week dose
of 3.5 mg, starting 6 months
after of ranssphenoidal
surgical)

Pituitary adenoma

Interventional, randomized,
single group assignment
N = 140
Location: Brazil

Tumor shrinkage (time frame:
24 months) [196]

Ropirinole
(0.25 mg/day–6.0 mg/day
oral)

Prolactinoma

Interventional, single group
assignment
N = 16
Location: United States

Percentage of subjects that
achieved stable prolactine
normalization (Time frame:
6–12 months) [197]

Cabergoline (twice weekly for
weeks 1 to 4. Courses repeat
every 4 weeks in the absence
of disease progression or
unacceptable toxicity)

Breast cancer

Interventional, single group
assignment
N = 20
Location: United States

Overall Response Rate at
2 Months [198]

Others

Cabergoline (1.0, 2.0 and
3.5 mg/week) Acromegalia

Observational, case only,
prospective
N = 19
Location: Brazil

IGF-I, GH and prolactin levels
(Time frame: 6 months) [199]

Cabergoline Adverse reaction to other
drugs and medicines

Interventional, randomized,
single group assignment
N = 48
Location: Turkey

Effect of prolactin vascular
flow and resistance (Time
frame: the effect of prolactin
in vascular resistance at
2 weeks after treatment) [200]
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7. Discussion and Conclusions

This is an important work in which the applications of DA and its derivatives are
reviewed, offering physicians and healthcare personnel information that may be valuable
to make therapeutic decisions considering the advances in the field of knowledge of the
use of drugs (of natural or synthetic origin) and/or their action targets. In the present
work, we showed that DA and dopaminergic drugs have emerged for the management
of diseases, mainly at the neuronal level; however, they have been proposed for the
treatment of pathologies that are not directly related to the nervous system, possibly due to
their anti-inflammatory and antioxidant properties. Cabergoline, fenoldopam, bromocriptine,
domperidone, pramipexole, rotigotine, and quinagolide, among others, are being tested for sepsis
or septic shock, renal failure, gastric diseases, cancer, brain trauma injury, blood pressure,
and fibromyalgia. DA receptor agonists or antagonists can function through classical
G protein signaling regulating AKT/NF-κB, rat sarcoma virus (Ras)/PI3K/AKT, cAMP-
response element binding protein (CREB)/NF-κB or signal transducers and activators of
transcription (STAT) pathways inhibiting or activating nuclear transcription or downstream
related factors such as NRLP3 inflammasome expression, mTOR, Nrf2 or a tool-like receptor
(TLR). Additionally, they can function through other nonreceptor-dependent pathways as
L-type Ca2+ channels. However, DA and related drugs should be further studied to more
precisely understand the molecular and biochemical mechanisms underlying the large
number of therapeutic effects considered in this review. Moreover, because DA receptors
have multiple physiological roles in neurological and systemic diseases, more preclinical
studies are necessary to elucidate the specific functions of DA receptor subtypes.

On the other hand, considering that many systemic and neurodegenerative diseases
are characterized by the presence of inflammation, related in turn to oxidative stress, DA
and DA derivatives can be an attractive option as a strategy of treatment and a promising
approach to slowing the progression of disorders through the repositioning of DA. In this
sense, our review is important since we mention the possible mechanisms by which DA
and its derivatives act as anti-inflammatory and antioxidant compounds in in-vitro studies,
animal models, and clinical trials where their therapeutic application is being tested.

Furthermore, it is necessary to study natural products containing DA. In this review,
some products, such as fruits, vegetables, and plants with dopaminergic content, have
shown antioxidant or anti-inflammatory properties. In the literature, active metabolites
such as stepholidine (in Chinese herb), pukatein (natural aporphine derivative), salsolinol
(in bananas), hordenine (a constituent of barley and beer), goitrin (in brassicaceous weeds),
bromophenols curcumin or cannabinoids that showed dopaminergic properties due to the
interaction with DA receptors modulating its signaling are also being considered as possible
therapeutic agents. In relation to products of natural origin, first, experimental studies are
necessary to understand the dynamic behavior of DA receptors and their interaction modes
with active metabolites to understand the relevant structural and functional characteristics
of these receptors for interaction with metabolites that function as agonists, antagonists
or blockers. Second, more experimental and clinical studies are needed to establish which
products of natural origin can be used for the treatment of non-neurological diseases related
to DA metabolism.

Due to the above, one of the limitations of this work is the lack of knowledge in a
deeper and more precise way of the signal transduction mechanisms of DA, related drugs,
and natural compounds, considering the physiopathology of the different diseases where
they have been applied. In addition, understanding these mechanisms could generate new
applications for DA and its derivatives in other diseases and even be considered adjuvants
for combined therapies for different types of neuronal and nonneuronal pathologies.
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