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Abstract: Glaucoma is a degenerative, chronic ocular disease that causes irreversible vision loss. The
major symptom of glaucoma is high intraocular pressure, which happens when the flow of aqueous
humor between the front and back of the eye is blocked. Glaucoma therapy is challenging because of
the low bioavailability of drugs from conventional ocular drug delivery systems such as eye drops,
ointments, and gels. The low bioavailability of antiglaucoma agents could be due to the precorneal
and corneal barriers as well as the low biopharmaceutical attributes of the drugs. These limitations
can be overcome by employing nanoparticulate drug delivery systems. Over the last decade, there
has been a lot of interest in chitosan-based nanoparticulate systems to overcome the limitations
(such as poor residence time, low corneal permeability, etc.) associated with conventional ocular
pharmaceutical products. Therefore, the main aim of the present manuscript is to review the recent
research work involving the chitosan-based nanoparticulate system to treat glaucoma. It discusses
the significance of the chitosan-based nanoparticulate system, which provides mucoadhesion to
improve the residence time of drugs and their ocular bioavailability. Furthermore, different types of
chitosan-based nanoparticulate systems are also discussed, namely nanoparticles of chitosan core
only, nanoparticles coated with chitosan, and hybrid nanoparticles of chitosan. The manuscript also
provides a critical analysis of contemporary research related to the impact of this chitosan-based
nanomedicine on the corneal permeability, ocular bioavailability, and therapeutic performance of
loaded antiglaucoma agents.

Keywords: glaucoma; chitosan; nanoparticles; mucoadhesion; ocular bioavailability; therapeutic
efficacy

1. Introduction

Glaucoma is a degenerative disease that requires lifetime drug treatment and can
be acute or chronic [1]. A blockage in the flow of aqueous humor between the front and
back of the eye causes intraocular pressure to rise quickly, retinal degeneration, and optic
neuropathy, all of which are signs of acute glaucoma [2,3]. If left untreated, acute glaucoma
can cause permanent vision loss within hours or days. Acute glaucoma is more severe and
causes serious visual loss in three times as many people as chronic glaucoma does, even
though the former is more common (23.4 vs. 52.7 million occurrences in 2020) [4]. The
schematic illustration in Figure 1 represents the pathophysiology of glaucoma. It illustrates
the normal mechanism of ocular fluid production and drainage channels for its normal
flow compared to the obstruction of flow drainage leading to an increase in intraocular
pressure (IOP), ultimately affecting the vision due to optic nerve damage. The ocular fluid
is produced in the posterior chamber of the eyes at the ciliary body behind the iris and flows
through the anterior chamber of the eye to ultimately come out through the uveoscleral
pathway. The rise in IOP and oxidative stress in the glaucoma-conditioned eye finally led
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to damage to retinal ganglion cells and optical nerves [4,5]. Neurovascular dysfunction and
neuroinflammation of the eye have also been implicated in the pathogenesis of glaucoma.
It is very well reported that oxidative stress and choroidal vascular dysfunction are mainly
involved in the pathogenesis of age-related macular degeneration [2,3]. In addition, the
poor bioavailability of presently marketed medications necessitates frequent doses and
low patient compliance, putting the vision of patients at further risk. Ninety percent of
commercial ocular drugs are available as eye drops, which is a simple and effective way to
administer a drug. However, corneal permeability limits the absorption, bioavailability,
and therapeutic activity of ocular drugs [6]. Ocular barriers, such as the precorneal, corneal,
and conjunctival layers, limit drug diffusion in ocular tissues. The precorneal barriers
include blinking reflexes, lacrimal turnover, nasolacrimal drainage, efflux transporters,
and drug metabolism by lysozymes present in tears. Furthermore, ocular absorption of
drugs is poor due to drug binding to or repulsion from the conjunctiva and tight junctional
complexes in the corneal epithelium [7]. In recent years, several novel ocular drug delivery
systems were investigated utilizing nanotechnology-mediated drug delivery strategies to
overcome the pre-corneal and corneal barriers to enhance the ocular absorption and hence
therapeutic efficacy of drugs [8,9].Pharmaceutics 2023, 15, x FOR PEER REVIEW 3 of 21 

 

 

 
Figure 1. Schematic illustration presenting the pathophysiology of the eye in glaucoma compared 
to normal eyes. (i) Normal drainage channel in healthy eye. (ii) Blocked drainage channel in glau-
coma. (iii) Normal IOP in a vitreous cavity and normal optical nerve in a healthy eye. (iv) Rise in 
IOP in a vitreous cavity and changes in the optical nerve in glaucoma. (v) Ocular fluid is produced 
in a posterior chamber at the ciliary body behind the iris and flows through the anterior chamber of 
the eye to ultimately come out through the uveoscleral pathway (highlighted by the black arrow). 
(vi) Rise in IOP and oxidative stress in the glaucoma-conditioned eye finally led to damage to retinal 
ganglion cells and optical nerves. Reproduced from Patel et al. [10], Elsevier, 2022. 

Nanotechnology-mediated drug delivery approaches involved the delivery of 
loaded therapeutics employing nano drug carriers of polymeric, lipidic, inorganic, and 
biological origin [11,12]. Nano drug carriers prepared from the polymer entail a nanopar-
ticulate system of natural/synthetic origin and are biodegradable/nonbiodegradable in na-
ture such as chitosan, poly lactic-co-glycolic acid (PLGA), polycaprolactone (PCL), etc 

Figure 1. Schematic illustration presenting the pathophysiology of the eye in glaucoma compared to
normal eyes. (i) Normal drainage channel in healthy eye. (ii) Blocked drainage channel in glaucoma.
(iii) Normal IOP in a vitreous cavity and normal optical nerve in a healthy eye. (iv) Rise in IOP
in a vitreous cavity and changes in the optical nerve in glaucoma. (v) Ocular fluid is produced in
a posterior chamber at the ciliary body behind the iris and flows through the anterior chamber of
the eye to ultimately come out through the uveoscleral pathway (highlighted by the black arrow).
(vi) Rise in IOP and oxidative stress in the glaucoma-conditioned eye finally led to damage to retinal
ganglion cells and optical nerves. Reproduced from Patel et al. [10], Elsevier, 2022.
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Nanotechnology-mediated drug delivery approaches involved the delivery of loaded
therapeutics employing nano drug carriers of polymeric, lipidic, inorganic, and biological
origin [11,12]. Nano drug carriers prepared from the polymer entail a nanoparticulate
system of natural/synthetic origin and are biodegradable/nonbiodegradable in nature
such as chitosan, poly lactic-co-glycolic acid (PLGA), polycaprolactone (PCL), etc. [13,14].
Nano drug carriers prepared from lipids are nanoparticulate/nanovesicular systems of
natural/synthetic lipids of a biodegradable/nonbiodegradable nature such as phospho-
lipid (lecithins), stearic acid, glycerol monostearate, compritol®, etc. [15,16]. Furthermore,
nano drug carriers prepared from inorganic materials are a nanoparticulate system of
metallic/nonmetallic origin such as gold, silver, mesoporous silica, carbon, etc. [17,18].
Similarly, erythrocytes (red blood cells) are also utilized as drug carriers for the administra-
tion of loaded therapeutics in a biological system to achieve efficacy in different disease
conditions [19,20]. Among the various drug carrier systems utilized to improve disease
conditions in glaucoma, chitosan is a nanomaterial widely explored for ocular drug admin-
istration, particularly in the management of glaucoma [21,22]. The specific characteristics
of chitosan (such as mucoadhesion to the cornea, biodegradability in nature, antimicrobial
properties, etc.) [23] make it a promising nanomaterial to design a nanomedicine for ocular
drug delivery in the management of glaucoma (Schematic illustration in Figure 2). The
comparative advantages of nanotechnology-mediated ocular drug delivery with respect to
conventional ocular drug delivery are summarized in Table 1.
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loaded drug in glaucoma. (↑) indicates improvement/increase.
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Table 1. Comparative advantages of nanotechnology-mediated ocular drug delivery in respect to
conventional ocular drug delivery.

Conventional Ocular Drug Delivery Nanotechnology-Mediated Ocular Drug Delivery

Limited aqueous solubility Improved aqueous solubility
Limited ocular/corneal permeability Improved ocular/corneal permeability
Immediate effects Sustained/prolong effects
Nonspecific Specific
Low bioavailability and intersubject variability Improved bioavailability and minimized intersubject variability
Limited drug efficacy Improved drug efficacy
Possibility of untoward effects Minimized possibility of untoward effects

The present manuscript provides a detailed discussion of the recent advancement of
chitosan-based nanomedicine for its utilization to improve the efficacy of loaded therapeu-
tics in better glaucoma management. The manuscript also discusses the significance of
chitosan-based nanomedicine for its ocular delivery in glaucoma along with main emphasis
on recent research carried out in the last 2 years in this area.

2. Significance of Chitosan-Based Nanomedicine to Overcome Drug Delivery
Challenges in Glaucoma

Chitosan is a biodegradable natural polymer that has been investigated extensively
due to its strong mucoadhesive qualities [24]. The drug’s mucoadhesion and retention time
on the ocular surface are enhanced by the ionic interactions enabled by its positively charged
nature with the anionic ocular mucosa [25]. As a result, a chitosan-based nanoparticulate
system can lessen the number of ocular injections required and boost long-term patient
compliance [26]. Chitosan improves permeability by relaxing the tight connections between
cells [27]. Furthermore, it is produced from crustacean exoskeletons and fungal cell walls via
deacetylation, so its production cost is low and its ecological impact is minimal. Chitosan,
in particular, demonstrates remarkable swelling behaviors in a variety of physiological
environments, making it a potentially useful platform for research into stimuli-responsive
biological delivery systems.

In recent times, mucoadhesive nanoparticulate systems particularly, chitosan-based
nanomedicines, have been widely explored for their specific characteristics (illustrated in
Figure 3) in terms of their ocular application to overcome the challenges of ophthalmic drug
delivery. It is interesting to note that chitosan immune-modulating capabilities minimize
specific inflammatory responses through intracellular signaling pathways (cGAS-STING,
and NLRP3) [24]. This signify the possible role of chitosan in the treatment of age-related
diseases and its effect on inflammatory cytokines.

The chitosan-based nanomedicine is helpful in protecting loaded therapeutics from
unintended drug release, degradation/instability, and making it easier to cross through
different ocular barriers (illustrated in Figure 4) in drug absorption [6].

Chitosan-based nanomedicine has a wide utility in biomedical applications including
therapeutic, diagnostic, and theranostic purposes in different disease conditions [28]. The
literature survey using the keywords “chitosan” and “ocular drug delivery” in the SCOPUS
database indicated exponential growth in publications during the last 20 years (1993–2022)
as shown in Figure 5.

Furthermore, the analysis of the results showed that out of nearly 4500 publications in
the last 20 years, more than 1100 publications had been added to the SCOPUS database in
just these two years. Therefore, in the present review, the research papers in these two years
that explored chitosan for the ocular delivery of drugs, particularly in the management of
glaucoma, were discussed in detail. The different types of chitosan-based nanomedicine
employed for ocular drug delivery are discussed in the subsequent section.
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3. Different Types of Chitosan-Based Nanomedicine for Ocular Application

Different types of chitosan-based nanomedicines (such as chitosan NPs, chitosan-
coated NPs, and chitosan-based hybrid NPs) have been widely explored in recent years for
their ocular applications in glaucoma (Illustrated in Figure 6).
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The different characteristics of the chitosan polymer such as molecular weight and
deacetylation degree impacted the mucoadhesion to ocular tissues [29]. It is reported in the
literature that increasing the chitosan deacetylation degree from 60.7% to 98.5% leads to
slower degradation, low drug entrapment, and prolonged drug release profile [30]. Further-
more, chitosan oligosaccharide coated NPs help to delay the clearance of ocular formulation
and significantly enhance the AUC of a loaded drug due to improved transcorneal penetra-



Pharmaceutics 2023, 15, 681 7 of 18

tion compared to noncoated NPs [31]. The detail related to different types of chitosan-based
nanomedicines are discussed in the subsequent section.

3.1. Chitosan Nanoparticles

The chitosan nanoparticles are fabricated by ionic or covalent crosslinking, emulsi-
fication, precipitation, or combinations thereof [32]. It is a convenient carrier for drugs
and is bioactive. Recently, Mohamed et al. fabricated meloxicam-loaded chitosan nanopar-
ticles using the “polyelectrolyte complexation” method [33]. Chitosan (0.25–0.5% w/v)
was first dissolved in an aqueous acetic acid solution (0.5–1% v/v), and the pH was ad-
justed to 4.7 using a molar solution of sodium hydroxide. Meloxicam particles were then
dissolved in either a tripolyphosphate aqueous solution (0.25% w/v) or PEG 400 (100%
v/v). Meloxicam-loaded chitosan nanoparticles can be produced spontaneously by adding
meloxicam solution drop by drop to a magnetically agitated chitosan solution (10 mL) for
30 min, followed by probe sonication for 10 min.

In another investigation, Ricci et al. prepared chitosan nanoparticles containing
indomethacin by the “ionotropic gelation” method [34]. The amine group of chitosan,
which has a positive charge, reacts with the sulfonic group of sulfobutyl ether cyclodextrin
complexed with indomethacin. The chitosan nanoparticles were stabilized by polysorbate
80 (0.5% w/v) as a nonionic stabilizer. Furthermore, the prepared nanoparticles were coated
with a thiolated derivative of low molecular weight hyaluronic acid. It was also reported
in an earlier investigation [35]. The significance of this investigation is that only a small
amount of the drug was lost during nano-encapsulation.

3.2. Chitosan Coated Nanoformulation System

A chitosan coated nanoformulation system was designed by the coating of chitosan
over different nanoparticulate-based drug delivery systems such as liposomes, inorganic,
polymeric, and lipidic nanoparticles to impart additional physicochemical characteristics
(such as improving the residence time, corneal penetration, and ultimately ocular bioavail-
ability of loaded therapeutics) for ocular drug delivery [36,37]. Recently, Badran et al.
prepared metoprolol-loaded liposomes coated with chitosan for ocular application [38].
The metoprolol-loaded liposomes were added dropwise to the chitosan solution at different
concentrations (0.25–1% w/v) in an equivalent volume under probe ultrasonication for
3 min, and the resulting suspension was kept on a magnetic stirrer for 2 h at an ambient tem-
perature to achieve successful coating. The study indicated that increasing the amount of
chitosan enhanced the vesicle size of liposomes. Moreover, the zeta potential of metoprolol-
loaded liposomes was found to change from negative to positive after coating with chitosan.
In addition, it was found that the positive charge increased upon increasing the amount of
chitosan from 0.25% w/v to 1% w/v. The change in size morphology of metoprolol-loaded
deformable liposome and metoprolol-loaded chitosan-coated deformable liposome was
examined through transmission electron microscopy (TEM) and shown in Figure 7.

The positive charge could be attributed to the presence of an amine group on chitosan
molecules [39]. In another investigation, pilocarpine-loaded ceria nanocapsules were
modified with chitosan of different amination levels [40]. Amination levels are critical and
may affect the pH-responsive release because free amine groups on the chitosan backbone
considerably affect the swelling behavior of chitosan [41].

Ceria nanocapsules werechosen as the carriers for drug delivery because they have
a huge cavity inside that can load a significant amount of drugs. It also has strong bioac-
tive properties that help to reduce inflammation, which is a major risk factor for acute
glaucoma [42,43]. The rate at which pilocarpine is released from ceria nanocapsules is
controlled by the acetylation and deacetylation of the functional chitosan coatings with
acetic anhydride and sodium hydroxide, respectively. The surface of the ceria nanocapsule
was modified with chitosan using a conjugation method. Briefly, the ends of “phosphonate
polyethylene glycol with a carboxylic acid group” can be added to the surface of nanoceria
materials so that they can bond with chitosan. Phosphonate groups have a high affinity
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for cerium surfaces, whereas COOH groups can chemically conjugate with amino groups
on the chitosan backbone. The study showed that higher levels of amination can lead to
more positive charges on the surface, likely because there are more amino groups [44].
Similarly, chitosan-coated tetrandrine containing bovine serum albumin nanoparticles were
formulated and optimized for the concentration of BSA, chitosan, glutaraldehyde, and
pH to achieve the desired physiochemical properties for the effective treatment of ocular
glaucoma [45]. At pH levels above the isoelectric point (pH > 5) of bovine serum albumin,
the net charge of a developed nanoparticle is very negative. This causes molecules and
smaller nanoparticles to stick together minimally. The study found that as glutaraldehyde
decreased from 8% to 4%, particle size and the polydispersity index decreased significantly,
while the zeta potential increased. The coating of chitosan on the nanoparticle is meant
to enhance ocular residence and transcorneal penetration of the drug with poor aqueous
solubility. The developed system caused the drug to be released over a longer period.
Compared to tetrandrine suspension, drug release was much slower in the case of albumin
nanoparticles. The drug release was further suppressed by the chitosan coating on albumin
nanoparticles. However, the drug release differential between the chitosan-coated albumin
nanoparticles and the uncoated albumin nanoparticles disappeared in the later phase,
possibly because of water uptake and swelling of the chitosan coat over time [46,47].
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3.3. Chitosan-Based Hybrid Nanoparticles

Chitosan-based hybrid nanoparticles may be prepared by a single step emulsion-sonication
process employing a combination of polymers such as polycaprolactone, hyaluronic acid,
polylactic-co-glycolic acid, etc., for ocular drug delivery [48,49]. Recently, Silva et al. prepared
epoetin-β loaded chitosan-based hybrid nanoparticles in combination with a hyaluronic acid
polymer to improve their mucoadhesion and residence time in the ocular tissues to improve
their ocular absorption [50]. Epoetin-β, which is a recombinant form of human epoetin, was
chosen as the active ingredient because it might protect and repair nerve cells, which could
help to treat glaucoma. Ionotropic gelation was used to make hybrid nanoparticles using
different hyaluronic acids. Out of six hyaluronic acids with different molecular weights
(50–3000 kDa), one is in crystal form, and another is eye-grade hyaluronic acid. Further
research is being conducted on nanoparticles with particle sizes of less than 300 nm, zeta
potentials around +30 mV, and a low polydispersity index. It was observed that the high
molecular weight hyaluronic acid had the highest entrapment efficiency (39.9 ± 0.6%) and
drug loading (18.1 ± 0.3%), respectively. In another investigation, using a quality-by-design
(QbD) approach and the ionotropic gelation process, Saha et al. created resveratrol-loaded
mucoadhesive lecithin/chitosan hybrid nanoparticles. These nanoparticles were mucoad-
hesive [51]. Lecithin-chitosan hybrid nanoparticles were made by combining negatively
charged lecithin with positively charged chitosan and allowing them to interact with each
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other to design a hybrid nanoparticulate system. The study utilized poloxamer 407 to dis-
solve chitosan, while resveratrol was dispersed in an ethanolic solution of lecithin. Subse-
quently, the alcoholic solution of resveratrol was rapidly injected into the aqueous chitosan-
poloxamer 407 solutions under continuous stirring at 1500 rpm to develop chitosan-based
hybrid nanoparticles. Chitosan-based hybrid nanoparticles are prepared for various thera-
peutics including melatonin [52], quercetin [53], insulin [54], diflucortolone valerate [55], and
paclitaxel [56].

Different types of chitosan-based nanomedicines (such as chitosan nanoparticles, mu-
coadhesive chitosan-coated nano drug delivery systems, chitosan-based hybrid nano drug
delivery systems, etc.) were explored for ocular applications to improve the biopharma-
ceutical attributes (such as aqueous solubility, corneal permeability, drug stability, and
ocular pharmacokinetic, etc.) and pharmacodynamics performance of loaded therapeutics
in glaucoma. The contemporary research carried out in this area in recent times is discussed
in a subsequent section.

4. Chitosan-Based Nanomedicine for Ocular Application in Glaucoma:
Contemporary Research
4.1. Improvement in Biopharmaceutical Attributes of Loaded Drugs

Chitosan-based nano formulation systems were investigated for various drugs to
improve corneal penetration and residence time on the cornea, thus leading to enhanced oc-
ular bioavailability of antiglaucoma drugs and improving their therapeutic efficacy [57–59].
One of the recently published investigations reported that the negatively charged mucus
layer on the surface of the eye interacts with cationic chitosan-coated ceria nanocapsules
through electrostatic forces [60]. This makes the ceria nanocapsules more resistant to tears
and blinks, which means they remain adhered on the cornea surface for a longer period.
Chitosan-coated ceria nanocapsules with strong amination diminish negative charges of
mucin. The tight connections can be opened with the help of chitosan coatings, as proposed
by Nguyen et al. [40], and this ability can be improved by raising the amination level of
chitosan. Immunofluorescence labeling of ZO-1 in SIRC cells was used to examine the
amination level’s effect on opening the epithelial tight junctions in chitosan-coated ceria
nanocapsules. ZO-1 is a crucial cytoplasmic protein involved in membrane activities; it
can connect to transmembrane barrier proteins and stabilize tight junctions. At the edges
of the SIRC cells, there was a distinct arrangement of ZO-1 in both the control and ce-
ria nanocapsule groups, which showed that Ce-NCs could not open the tight junctions
(Figure 8).

As shown in Figure 6, the ZO-1 patterns changed in response to the amination levels
of the chitosan coatings for the groups that were treated with low (L), medium (M), and
high (H) levels of amination. Chitosan-coated ceria nanocapsules lost pattern integrity and
cellular boundaries as amination increased. The result shows that coatings made of chitosan
can help ceria nanocapsules to open tight junctions. Furthermore, the ability to open the
tight junctions can be increased by adding more amination levels. This study also indicated
that the pilocarpine concentrations in the anterior chamber of the eye for the group treated
with chitosan-coated ceria nanocapsules with varying amination levels (6.14 ± 2.14 (L),
12.56 ± 1.21 (M), and 25.72 ± 1.68 (H) µg/mL, respectively) were observed to be signifi-
cantly higher compared to conventional eye drop formulations (0.93 ± 0.64 µg/mL) and
the group treated with pilocarpine-loaded ceria nanocapsules (0.58 ± 0.71 µg/mL). The
results suggest that the absorption of pilocarpine in the aqueous humor can be enhanced
44-fold by utilizing the chitosan covering with the highest amination level [40].

Tetrandrine shows promise as a prospective glaucoma therapy [61]. However, its
restricted ocular bioavailability is a result of its poor aqueous solubility. After 6 h, merely
2.21 ± 0.7% of the tetrandrine suspension had penetrated the cornea. The apparent perme-
ability coefficient for tetrandrine-loaded albumin nanoparticles increased by a factor of 2.3,
and the amount of tetrandrine that was able to pass through the membrane increased to
4.72 ± 0.29%. Furthermore, chitosan coating of albumin nanoparticles showed a signifi-
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cant increase (11-fold and 5-fold) in the percentage of tetrandrine permeated compared to
tetrandrine suspension and tetrandrine-loaded albumin nanoparticles, respectively. The
developed system helps to improve (4-fold and 1.7-fold) the apparent permeability coeffi-
cient compared to tetrandrine suspension and tetrandrine-loaded albumin nanoparticles,
respectively. The study also indicated a two-times increase in ocular bioavailability of
tetrandrine from developed chitosan-coated albumin nanoparticles compared to tetran-
drine suspension and tetrandrine-loaded albumin nanoparticles [45]. In another study,
trimethyl chitosan-coated lipid nanoparticles significantly prolonged the residence of tetran-
drine in tears and enhanced ocular absorption as compared to tetrandrine solution [62]. In
addition, when compared to a pure drug solution, the area under the curve (AUC), elimi-
nation half-life, and mean residence time (MRT) of the developed system were increased
by 2, 3, and 1.67-fold, respectively.
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In another investigation, Badran et al. indicated the enhanced penetration of meto-
prolol from the chitosan-coated flexible liposomes [38]. The enhanced permeability of
metoprolol from liposomes could be due to the nanoscale dimension and flexible mem-
brane of liposomes due to the presence of Tween 80 [63]. Furthermore, the cationic nature of
chitosan on the liposome surface provided electrostatic interactions and hydrogen bonding
with mucin on the ocular surface [64,65]. Hence, it demonstrated better permeation across
the cornea compared to uncoated liposomes. In addition, chitosan coating over the surface
of various nanodrug carriers was shown to promote corneal permeability by relaxing intra-
cellular or tight connections between corneal epithelial cells [64]. Contemporary research
related to chitosan-based nanomedicine utilized to increase the biopharmaceutical qualities
of loaded drugs for glaucoma is summarized in Table 2.

Table 2. Chitosan-based nanomedicine utilized to improve the biopharmaceutical attributes of loaded
therapeutics.

Type of Nanomedicine Therapeutics Composition Biopharmaceutical Attributes Ref.

Chitosan-coated NPs Metoprolol
Chitosan,

phosphatidylcholine,
cholesterol

- Developed system exhibited extended drug release
and significant mucin mucoadhesion resulting in
an increase in residence time after ocular
administration.

- It has shown a 4.4-fold increase in ocular
permeability compared to pure metoprolol.

[38]
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Table 2. Cont.

Type of Nanomedicine Therapeutics Composition Biopharmaceutical Attributes Ref.

Chitosan-coated NPs Pilocarpine Chitosan, silica, ethylene
glycol, cerium nitrate

- High amination level of chitosan is helpful to
enhance the corneal permeability of the developed
system by 43-fold compared to medium and low
amination levels.

- Developed system exhibited a sustained drug
release profile.

[40]

Chitosan-coated NPs Tetrandrine Chitosan, bovine serum
albumin, glutaraldehyde

- Developed system exhibited sustained drug release
(19.65% in 2 h) compared to the tetrandrine
suspension (35.6% in 2 h).

- Corneal permeation profile of the developed
system was 23.79% compared to 2.21% for the
tetrandrine suspension after 6 h.

- Developed system has shown a two-times increase
in ocular bioavailability in rabbits compared to the
tetrandrine suspension.

[45]

Chitosan-coated NPs Tetrandrine
Chitosan, glyceryl

monooleate, poloxamer
407, kolliphor® HS 15

- Trimethyl chitosan-based hybrid systems exhibited
sustained drug release and improvement in
pharmacokinetic parameters (AUC0→∞, T1/2,
MRT0→∞) compared to the tetrandrine solution.

[62]

Chitosan-based hybrid
NPs Latanoprost Chitosan, hyaluronic acid,

sodium tripolyphosphate

- The developed system may enhance the retention
time on the corneal and conjunctiva of loaded
therapeutics.

[66]

Chitosan-based hybrid
NPs

Epoetin beta
(EPOβ)

Chitosan and hyaluronic
acid

- Developed system efficiently delivered EPOβ to the
retina after administration through the
subconjunctival route in immunofluorescence
investigation in rats.

[67]

Chitosan-based hybrid
NPs Dorzolamide

Chitosan,
polycaprolactone,
polyvinyl alcohol

- Developed system exhibited a significant
improvement in mucoadhesion to the cornea and
an enhancement in permeation across goat cornea
compared to dorzolamide solution as a control.

[68]

Chitosan-based hybrid
NPs Brinzolamide Chitosan, pectin, Tween 80

- Developed system exhibited extended drug release
for 8 h and a significant increase in corneal
permeability compared to the marketed product.

[69]

4.2. Improvement in the Therapeutic Efficacy of Loaded Drugs

Acute glaucoma is often caused by inflammation, and nanoceria is very good at reduc-
ing inflammation [70]. Recently, the impact of chitosan coating on the anti-inflammatory
characteristics of ceria nanocapsules was investigated [40]. Previous research has shown
that this nanoparticulate system helps to remove the free radicals and reduce the generation
of inflammatory cytokines such as TNF-α, IL-6, and MCP-1 [71–73]. This makes them po-
tent anti-inflammatory agents. LPS control intracellular signaling pathways and were used
to cause inflammation [74]. The mitogen-activated protein kinase (MAPK) signaling process
can control inflammation by boosting the levels of specific mediators such as Interleukin-6
and Prostaglandin E2, which are common in glaucoma [75,76]. The study showed similar
levels of these biomarkers in ceria nanocapsules and chitosan-coated ceria nanocapsules.
The investigation also reported that the functionalization of the nanoceria did not affect its
ability to fight inflammation. The pharmacological effectiveness of chitosan-coated ceria
nanocapsules containing pilocarpine was evaluated in an acute glaucoma model in rabbits.
Pilocarpine was used because it makes the ciliary muscles tighten and the pupils constrict,
which ultimately lowers the intraocular pressure (IOP) [77]. Notably, the investigation
demonstrated that chitosan-coated ceria nanocapsules composed of high amination lev-
els exhibit significant improvements in reducing intraocular pressure in comparison to
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the marketed pharmaceutical formulation (eye drops of pilocarpine) and uncoated ceria
nanocapsules. The drug release profile was maintained for an extended period of time
in all chitosan-based formulations. However, only the chitosan-coated ceria nanocapsule
with a high amination level was able to reduce and maintain healthy IOP. This is due to the
exceptional ability of high-amination chitosan-coated ceria nanocapsules to penetrate the
corneal epithelium and lead to improved ocular absorption.

Li et al. found in their investigation that tetrandrine can protect ganglionic cells in the
retina from the damage caused by ischemia [61]. Research has shown that tetrandrine, at a
concentration of 0.3%, reduces intraocular pressure in hypertensive rats. Tetrandrine at a
topical dosage of 0.3% was shown to be effective in reducing intraocular pressure [78]. IOP
was reduced by tetrandrine suspensions in the period of 0.5–4 h, with a maximum decrease
of 25.1 ± 3.8% at 4 h, although this effect was short-lived, perhaps because the drug was
rapidly removed from the corneal surface [59]. Tetrandrine-loaded albumin nanoparticles
are helpful to reduce the IOP by 26.1 ± 1.08% after 4 h of ocular administration similar to
tetrandrine suspension, while chitosan-coated albumin nanoparticles are more helpful to
reduce the IOP compared to the tetrandrine suspension and uncoated albumin nanoparticle.
Figure 9 presents the reduction in IOP of the eye of a rabbit after a single instillation of
tetrandrine suspension, a tetrandrine-loaded uncoated albumin nanoparticle, and/or a
tetrandrine-loaded chitosan-coated albumin nanoparticle. It showed a successful reduction
in IOP after the instillation of all three types of ocular formulation but the chitosan-coated
nano formulation system was more effective in the reduction of IOP compared to other
ocular formulations.
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(TET: Tetrandrine suspension; TET-BSA-NPs: Tetrandrine loaded bovine serum albumin nanoparti-
cles; CS-TET-BSA-NPs: Chitosan-coated bovine serum albumin nanoparticles containing tetrandrine).
It highlights that the coating of chitosan over the bovine serum albumin nanoparticles is further
helpful to reduce the IOP in rabbit glaucoma model compared to bovine serum albumin nanoparticles
and tetrandrine suspension. Reproduced from Radwan et al. [45], Informa UK Limited, 2022.

As shown in Figure 9, the chitosan-coated nano formulation system is helpful to
reduce the IOP by 49.35 ± 2.13% after 4 h of ocular administration. It was observed that
the developed delivery system remains effective until 8 h after the ocular administration.
It might be because chitosan interactions with mucin facilitate nanoparticle binding to
the corneal membrane, extension of the corneal absorption of the drug, and ultimately
improvement of the ocular efficacy of loaded therapeutics [79].

In another investigation, Badran et al. evaluated the lowering effect of plain metopro-
lol, metoprolol encapsulated liposome, and chitosan-coated liposome containing metopro-
lol on IOP using rabbits as an animal model [38]. The IOP-lowering impact of metoprolol
was not fully evident after 1 h of metoprolol-loaded in situ gel instillation, but it was
observed after 2, 3, 4, and 5 h following ocular application. In contrast, metoprolol-
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encapsulated uncoated and coated liposomes incorporated in in situ gels reduced IOP
within the first hour after ocular application. Its impact lasted longer than that of a plain
metoprolol-loaded in situ gel system. This investigation is in accordance with the pre-
vious investigation who reported that metoprolol ophthalmic gels extended the ocular
residence time for >5 h [80]. After 6 h of ocular application, chitosan-coated metoprolol
containing liposome incorporated in an situ gel system showed a 73.6 ± 4.13% decrease in
IOP while metoprolol containing liposome incorporated in an situ gel system showed a
62.3 ± 6.28% decrease in IOP. Moreover, metoprolol-containing in situ gel systems showed
only a 54.7 ± 3.15% reduction in IOP after 6 h of ocular application. This sustained effect
on lowering IOP is the consequence of the greater corneal permeability of metoprolol upon
administration of a chitosan-coated liposome formulation, which may result in increased
contact duration and drug retention. Similarly, coating of glyco–chitosan on enalaprilat
containing calcium phosphate nanoparticles significantly lowered the IOP for a longer
period compared to the pure enalaprilat. The developed enalaprilat nanoparticulate system
had a much greater influence on IOP. This effect could be due to the higher zeta potential
of glycol–chitosan coated calcium phosphate nanoparticles, which impart a greater affinity
towards negatively charged ocular corneal cells and hence provide better penetration [81].
Recently, Rubennicia et al. investigated the IOP lowering effect of latanoprost containing
the chitosan–hyaluronic acid hybrid system in albino rats and compared its effect to the
latanoprost alone [66]. The study indicated that the developed chitosan-based hybrid
system has a significant improvement in the IOP lowering effect compared to that of plain
latanoprost.

The neuroprotective effects of epoetin-β in glaucoma are encouraging. Silva et al.
prepared a chitosan–hyaluronic acid hybrid system containing epoetin-β to improve their
ocular bioavailability through increased mucoadhesion and prolonged residence in the
ocular tissues [50]. The study evaluated the possibility of delivering epoetin-β to the
ocular tissues through subconjunctival administration. The study found that the designed
system could transport epoetin- β to the retina effectively. It was concluded that chitosan-
based nanomedicine is thought to be safe for the in vivo system and could be a promising
approach to treat retinopathy, such as glaucoma-related optic nerve degeneration. Radwan
et al. proved in their investigation that chitosan coating over the nanoformulation system
(such as bovine serum albumin nanoparticles) is helpful in further reducing the ocular
irritation potential of the nanoformulation system (Illustrated in Figure 10) [45].
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Figure 10. Illustration showed results of the hen’s egg test-chorioallantoic membrane (HET-CAM)
investigation after different treatments (TET: Tetrandrine suspension; TET-BSA-NPs: Tetrandrine
loaded bovine serum albumin nanoparticles; CS-TET-BSA-NPs: Chitosan-coated bovine serum
albumin nanoparticles containing tetrandrine). It highlights that the coating of chitosan over the
bovine serum albumin nanoparticles is further helpful to reduce the ocular irritation index value
compared to bovine serum albumin nanoparticles and tetrandrine suspension. Reproduced from
Radwan et al. [45], Informa UK Limited, 2022.

The summary of current research on chitosan-based nanomedicines used to augment the
therapeutic efficacy of loaded drugs for the management of glaucoma is presented in Table 3.
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Table 3. Chitosan-based nanomedicine utilized to improve the pharmacodynamics performance of
loaded therapeutics.

Type of Nanomedicine Therapeutics In Vivo Model Pharmacodynamics Performance Ref.

Chitosan-coated NPs Metoprolol Albino rabbits

Developed system exhibited a 73.6% decrease in IOP
compared to a 54.7% decrease in IOP by the pure drug in
a thermosensitive in situ gel after 6 h of ocular
administration.

[38]

Chitosan-coated NPs Pilocarpine Acute glaucoma rabbit
model

Developed system highly effective in decreasing the
extremely high IOP (92 mmHg) to a normal level
(20 mmHg) until 4 h of instillation.

[40]

Chitosan-coated NPs Tetrandrine Rabbits
Developed system exhibited a 49.35% decrease in IOP
compared to a 25.1% decrease in IOP by a pure drug after
4 h of ocular administration.

[45]

Chitosan-based hybrid
NPs Latanoprost Normotensive albino

rabbits

A developed system is more effective in reducing the IOP
than by a drug alone.IOP reduction during the treatment
period was 27.3% by the developed chitosan-based
system compared to 19.3% and 20.3% for the plain
latanoprost and marketed product (Xalatan), respectively.

[66]

Chitosan-based hybrid
NPs Brinzolamide Albino rabbits

Developed system exhibited significant improvement in
% decrease in IOP and prolonged IOP lowering effect
compared to the marketed product.

[69]

Chitosan-based hybrid
NPs Enalaprilat Normotensive rabbits

Chitosan-calcium phosphate hybrid system exhibited a
significant decrease in IOP after single instillation
compared to enalaprilat in solution.

[81]

5. Conclusions

The chitosan-based nanoparticulate system indicated promising results in enhancing
the biopharmaceutical attributes of various ocular therapeutics through the loosening of
tight junctions present on the corneal epithelium. The chitosan nanoparticles or nanoparti-
cles coated with chitosan showed a prolonged release of the drug and also offered mucoad-
hesion, which helped to augment the residence time of loaded therapeutics in different
regions of the ocular tissues. The current review concluded that the chitosan nanoparticles
and chitosan coating over different vesicular carrier systems (such as liposomes, micelles,
and nanoemulsions) and nanoparticles showing advanced biocompatibility with chitosan,
such as mesoporous silica nanoparticles [82], hypercrosslinked polymers [83], and polypep-
tides [84], have a significant impact to improve the residence time, corneal penetration, and
ultimately ocular bioavailability of loaded therapeutics. Moreover, the research showed a
significant improvement in the antiglaucoma activity of loaded therapeutics employing
chitosan-based nanomedicine in preclinical investigations. However, the literature reveals
that the clinical performance of chitosan-based nanomedicines through ocular drug deliv-
ery for glaucoma has yet to be addressed in detail. Furthermore, the safety perspectives
of the chitosan-based nanomedicine in glaucoma should also be addressed systematically
in future studies as it could increase the accumulation of the drug in the ocular tissues
for a prolonged period, which could also increase the chances of therapeutic/adverse
effects. In-depth molecular mechanisms of chitosan-coated NPs as anti-inflammatories
to reduce neuroinflammation should be elucidated in future studies. In addition, ideal
physicochemical characteristics (such as the molecular weight, degree of deacetylation, and
level of amination) of chitosan being a nanomaterial for drug delivery in glaucoma should
also be elucidated in future studies.
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