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Abstract: The progress that has been made in computer science positioned in silico studies as an
important and well-recognized methodology in the drug discovery and development process. It
has numerous advantages in terms of costs and also plays a huge impact on the way the research is
conducted since it can limit the use of animal models leading to more sustainable research. Currently,
human trials are already being partly replaced by in silico trials. EMA and FDA are both endorsing
these studies and have been providing webinars and guidance to support them. For instance, PBPK
modeling studies are being used to gather data on drug interactions with other drugs and are also
being used to support clinical and regulatory requirements for the pediatric population, pregnant
women, and personalized medicine. This trend evokes the need to understand the role of in silico
studies in vaccines, considering the importance that these products achieved during the pandemic
and their promising hope in oncology. Vaccines are safer than other current oncology treatments.
There is a huge variety of strategies for developing a cancer vaccine, and some of the points that
should be considered when designing the vaccine technology are the following: delivery platforms
(peptides, lipid-based carriers, polymers, dendritic cells, viral vectors, etc.), adjuvants (to boost and
promote inflammation at the delivery site, facilitating immune cell recruitment and activation), choice
of the targeted antigen, the timing of vaccination, the manipulation of the tumor environment, and
the combination with other treatments that might cause additive or even synergistic anti-tumor
effects. These and many other points should be put together to outline the best vaccine design. The
aim of this article is to perform a review and comprehensive analysis of the role of in silico studies to
support the development of and design of vaccines in the field of oncology and infectious diseases.
The authors intend to perform a literature review of all the studies that have been conducted so far in
preparing in silico models and methods to support the development of vaccines. From this point, it
was possible to conclude that there are few in silico studies on vaccines. Despite this, an overview of
how the existing work could support the design of vaccines is described.

Keywords: vaccines; in silico; population pharmacokinetics; PopPK; PBPK; computational

1. Introduction

Vaccination plays a huge role in the prevention of many infections and has contributed
to the eradication of certain diseases, saving millions of people’s lives [1]. More recently,
it was possible to assist in the development of COVID-19 vaccines, which, within 1 year,
were successfully developed and rapidly approved by health authorities in order to fight
the pandemic.

For many diseases, vaccines have been successful. However, there are still many
pathogens for which there are no effective vaccines available, such as human immunodefi-
ciency virus (HIV), tuberculosis (TB), respiratory syncytial virus (RSV), cytomegalovirus
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(CMV), herpes simplex virus (HSV), and Epstein–Barr virus (EBV) [2]. It is known that
COVID-19 vaccines have endorsed innovative platforms in terms of technology, such as
mRNA [3]. However, even with this technology, there are still pathogens for which success-
ful vaccines have not yet been developed. The same applies to cancer vaccines. These have
been investigated over the years, and only a few have been approved by FDA [4,5].

Overall and despite all the progress, there are certain challenges that are always raised
during vaccine development: the relationship between the pathogen, the disease, and the
population characteristics, and emerging infections, epidemics, or pandemics [6,7].

Strategies related to vaccine design need to be put in place to overcome these chal-
lenges. Innovative antigens, adjuvants, and delivery systems need to be outlined in order
to achieve a successful vaccine for the diseases mentioned above.

It is undeniable that computational science is nowadays a crucial tool within many
fields. Its impact on drug discovery and development enhances many possibilities and
has numerous advantages in terms of costs and the way the research is conducted. For
instance, it can limit the use of animal models leading to more sustainable research [8,9]. In
the future, there is also hope that in silico trials can replace human trials [10]. In fact, this is
already a trend for certain populations. EMA and FDA have been endorsing these kinds of
studies and providing webinars and guidance to support these trials. Physiologically Based
Pharmacokinetic (PBPK) modeling studies, for instance, are being used to gather data on
drug interactions with another drugs, pediatric population, pregnancy, and personalized
medicine [11]. Overall, in silico studies allow a wide variety of simulations that can be
helpful in drug design. From testing drug targets to predicting the drugs pharmacokinetics,
pharmacodynamics, and so on. Regarding vaccines, it is also important to test immunologic
properties and correlates of protection [12].

This review will highlight what has been performed so far in the field of vaccines for
oncology and infectious diseases, using the in silico methodology and what studies have
the potential to support the development of the vaccine. Through the exhaustive literature
research, an overview of all in silico models created so far to support vaccine design will
be described.

2. Materials and Methods

The methodology used in this article can be divided into two phases. Phase 1 involved
an exhaustive review of the literature in two major articles databases, PubMed and Web of
Science. The research strategy for this review of the literature is outlined in Table 1 below.
All the studies found were manually screened to verify their scope. The criteria established
below in Table 2 were used to exclude articles during their assessment.

Table 1. Constructs, Strings, and identified articles from WoS and PubMed.

Construct Strings No. of Articles
Identified

Web of Science

vaccin*
(All fields) AND “Physiological based pharmacokinetic”

(All fields) 1

vaccin*
(All fields) AND “pbpk”

(All fields) 18

vaccin*
(All fields) AND “Population Pharmacokinetics”

(All fields) 50

vaccin*
(All fields) AND “poppk”

(All fields) 2

vaccin*
(All fields) AND “in silico trial*”

(All fields) 18

Total articles 89
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Table 1. Cont.

Construct Strings No. of Articles
Identified

PubMed

vaccin*
(All fields) AND “Physiological based pharmacokinetic”

(All fields) 1

vaccin*
(All fields) AND “pbpk”

(All fields) 14

vaccin*
(All fields) AND “Population Pharmacokinetics”

(All fields) 15

vaccin*
(All fields) AND “poppk”

(All fields) 2

vaccin*
(All fields) AND “in silico trial*”

(All fields) 13

Total articles 45

Note: PBPK—Physiological based pharmacokinetic and PopPK—Population Pharmacokinetics.

Table 2. Reasons to exclude identified articles.

Reason 1 Models for vaccines not in scope

Reason 2 In silico approaches related to vaccines not in scope

Reason 3 Review articles instead of vaccine model preparation

Phase 2 of the methodology was to compile all the in silico approaches prepared so far
to aid vaccine development. Anything related to computer sciences that were endorsed in
its scope for the support of vaccine development was considered (Table 3).
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Table 3. Results from Phase 2 (Compilation of all in silico models to support vaccine development).

Product in Scope Type of Model Aim of Model Comments Software Authors; Year

Formaldehyde-containing
vaccines PBPK

To assess the safety of residual
formaldehyde in infant
vaccines.

This model was used to predict
formaldehyde disposition after an
intramuscular injection.

CMATRIX
Robert J. Mitkus Maureen
A.Hess Sorell L. Schwartz;

2013 [13]

Squalene-containing adjuvant
vaccines PBPK

To provide an estimation,
quantitatively, of the squalene
distribution in tissue following
intramuscular injection.

This model was used to predict
distribution after following
intramuscular injection in humans.

Vensim PLE Plus
(Ventana Systems, Inc.,
Harvard, MA, USA)

Million A. Tegenge
Robert J. Mitkus; 2013 [14]

Nicotine vaccines PBPK To simulate and evaluate the
efficacy of a nicotine vaccine.

The aim of the model is to predict
the role of anti-nicotine antibodies
on the nicotine disposition brain of
humans and rats.

SimBiology Kyle Saylor
Chenming Zhang; 2016 [15]

α-tocopherol in
emulsified-influenza vaccine

adjuvant
PBPK

This model has two main goals.
First, it is a PBPK model that
will assess the in vivo fate of
novel vaccine adjuvants;
Secondly, it will predict the
distribution of α-tocopherol in
humans after a single dose of
squalene-containing
adjuvant vaccine

The aim of this model is to predict
in vivo fate of α-tocopherol in
adjuvanted influenza vaccine in
humans after an
intramuscular injection.

Vensim Professional®

(Ventana Systems, Inc.,
Harvard, MA, USA)

Million A.Tegenge
Robert J. Mitkus; 2015 [16]

Cationic liposomal subunit
antigen vaccine PBPK

To predict human exposure to a
cationic liposomal subunit
antigen vaccine system.

The aim of the model is to predict
the in-vivo fate of
dimethyldioctadecylammonium
bromide (DDA) and the
immunostimulatory agent
trehalose 6,6-dibehenate (TDB) (8:1
molar ratio) combined with the
Ag85B-ESAT-6 (H1) in humans.
Additionally, it aims to
demonstrate what is the
consequence of the formulation
degradation and fraction escaping
the depot site and what are the
depot’s effects on the site
of administration.

MATLAB (The
MathWorks Inc., Natick,
MA, USA, 2015)

Raj K. S. Badhan
Swapnil Khadke

Yvonne Perrie; 2017 [17]
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Table 3. Cont.

Product in Scope Type of Model Aim of Model Comments Software Authors; Year

Cancer vaccine PBPK

To represent the distribution of
certain molecules eluted
through a 3D-printed
implantable system named
‘NICHE’

The NICHE platform aims to study
immunomodulation for cell
therapeutics and cancer vaccines. It
is a two-compartment model
composed of a vascularized tissue
reservoir and a surrounding
refillable drug reservoir. The PBPK
model was able to recapitulate the
biodistribution of the molecules in
scope, and together with NICH,
they represent a flexible, adaptable
platform to investigate local
immunomodulation for biomedical
applications.

Simbiology (MATLAB
2021b, Mathworks)

Simone Capuani et al.;
2022 [18]

Immune vaccines
PBPK through ordinary

differential equations
(ODEs)

To simulate and predict the
distribution of different
therapeutic agents and
interactions with the immune
system and its redistribution
across lymphoid compartments.
Furthermore, it allows the
study of the infiltration into
tumor tissues.

The aim of the model is to study
the biodistribution of therapeutic
agents and cells in blood and
lymphatics, representing a PBPK
novel model with tumor
compartment properties enabling
the study of key biological factors
in the field.

Mathematical modeling Javier Ruiz-Ramírez et al.;
2020 [19]

RUTI® vaccine against
tuberculosis

Agent-based model (ABM)
To predict the artificial
immunity induced by RUTI®

vaccines using UISS.

The aim of the model is to predict
the immune system’s complex
dynamics by simulating
mechanisms related to the infection
and predicting how therapeutic
strategies could face the infection.

Universal Immune
System Simulator
(UISS)

Marzio Pennisi et al.;
2019 [20]
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Table 3. Cont.

Product in Scope Type of Model Aim of Model Comments Software Authors; Year

Agent-based model (ABM)

To assess and simulate the
response of the combination of
a standard anti-TB therapy
strategy with a potential
therapeutic vaccine, such as
RUTI.

The model simulates the disease
activities and their interaction
within the immune system.
Additionally, it allows the
prediction of the efficacy of the
combination of isoniazid and RUTI
vaccine in a certain digital
population cohort.

Universal Immune
System Simulator
(UISS)

Giulia Russo et al.; 2020 [21]

Specific tuberculosis vaccines:
RUTI and ID93/GLA-SE Agent-Based Model (ABM)

This is an EU—funded
STriTuVaD project
computational platform. It
allows the prediction of
immunity provided by RUTI
and ID93/GLA-SE.

A multi-scale (cellular and
molecular level),
multi-compartment, polyclonal
agent-based simulator that predicts
the ability to predict the immunity
induced by RUTI and
ID93/GLA-SE (both tuberculosis
vaccines).

Universal Immune
System Simulator
(UISS)

Giulia Russo et al.; 2019 [22]

COVID-19 candidate vaccines Agent-based model (ABM)

This model aids the testing and
designing of therapeutics
against SARS-CoV-2. Its
intention is to allow a boost in
vaccine development to predict
any failures and minimize side
effects.

A model to predict the efficacy of
therapy against COVID-19.

Universal Immune
System Simulator
(UISS)

Giulia Russo et al.; 2020 [23]

Yellow fever vaccine Ordinary differential
equations (ODE)

These mathematical models
allow the study of primary and
secondary responses to the
yellow fever virus.

A model integrated by ordinary
differential equations, which aim is
to study responses to the yellow
fever virus in five populations:
yellow fever virus, three types of B
cells (naive, active, and memory),
and antibodies.

Mathematical models Larissa de L. e Silva et al.;
2020 [24]
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Table 3. Cont.

Product in Scope Type of Model Aim of Model Comments Software Authors; Year

Squalene-containing
emulsion vaccine adjuvants PopPK

Estimating PK parameters are
important to the study of
squalene properties after
intramuscular administration
of influenza vaccines.

The aim of the study is to simulate
PK parameters that are properties
after intramuscular injection.
Results aim to contribute to the
knowledge of an informed
benefit-risk assessment of a vaccine
containing squalene as an
adjuvant.

NONMEM® 7.3,
Hanover, MD

Million A.Tegenge et al.;
2016 [25]

HIV vaccine PopPK

To demonstrate the
pharmacokinetics properties
and predict HIV-1
neutralization.

This model aims to assess and
predict VRC01 serum
concentration and serum
neutralization titer to panels of
HIV-1 isolates in order to validate a
potential biomarker to support an
HIV vaccine development.

NONMEM software
system (version 7·4,
ICON Development
Solutions).

Yunda Huang et al.; 2021 [26]

HIV vaccine PopPK

This model supports the
estimation of
individual-specific VRC01
concentrations as correlates of
protection (CoP). It assesses the
association between the value
of VRC01 concentration and
the instantaneous rate of HIV
infection.

To simulate population
characteristics and study visits
data, R version 3.5.1 R Core Team
(2016) was used. With the
NONMEM software system
(Version 7.4, ICON Development
Solutions), it was possible to model
concentration data.

R version 3.5.1 R Core
Team (2016)
NONMEM software
system (Version 7.4,
ICON Development
Solutions)

Lily Zhang et al.; 2021 [27]

Cancer vaccines In silico model
population (MP)

This model will support the
prediction of clinical outcomes
for cancer vaccines.

With the in silico modeling, it was
possible to predict the frequency of
vaccine-specific HLA-binding
epitopes in order to calculate the
immune response rate (IRR) for the
model population.

Immune Epitope
Database (IEDB)

Orsolya Lőrincz et al.;
2021 [28]
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Table 3. Cont.

Product in Scope Type of Model Aim of Model Comments Software Authors; Year

Designing therapeutics for
vaccines

Agent-based model (ABM)

To provide a description of the
cellular behavior of the
immune system and dynamics.

These three model pieces are
linked to cross-information in all
scales. It is a mathematical and also
multi-scale model (including both
cellular- and molecular-level
events).

ABM is constructed
using the C++
programming language,
Boost libraries
(distributed under the
Boost Software License:
http://www.boost.org),
and the Qt framework
for visualization
(distributed under GPL:
http://www.qt.digia.com).
T; Simulations
performed on Nyx/Flux
computing cluster
available at the Center
for Advanced
Computing at the
University of Michigan

Jennifer J. Linderman,
Nicholas A. Cilfone, Elsje

Pienaar, Chang Gong, Denise
E. Kirschner; 2015 [29]

Ordinary differential
equations (ODEs)

To record events related to
receptor–ligand binding,
trafficking, and intracellular
signaling.

Relevant partial differential
equations

To describe the diffusion of
certain ligands, cytokines, and
other components.

Recombinant multi-epitope
vaccine against influenza A

virus

Computational vaccine
design

Retrieving influenza protein
sequences and multiple
alignments

The NCBI database and Jalview
software were used to expose the
amino acid sequences and to
perform the multiple alignments,
respectively.

NCBI database and
Jalview software

Avisa Malek et al.; 2021 [30]B-cell epitopes prediction

This is an important step in
synthetic peptide vaccine
development. These epitopes
should be capable of evoking
antibodies in order to neutralize
the pathogen.

SVMTriP
IEDB Analysis

CTL epitopes prediction NetCTL 1.2 server was used to
identify MHC class I epitopes. NetCTL 1.2 server

CD4 T-cell epitopes prediction NetMHCIIpan 4.0 was used to
identify MHC class 2 epitopes. NetMHCIIpan–4.0

http://www.boost.org
http://www.qt.digia.com
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Table 3. Cont.

Product in Scope Type of Model Aim of Model Comments Software Authors; Year

Antigenicity and allergenicity
prediction of CTL, CD4 T-cell,
and B-cell epitopes

In order to verify the antigenicity
of the peptides, the VaxiJen v2.0
was used. In parallel, to evaluate
their allergenicity, the software
AllerTOP v2.0 was used. The
toxicity of peptides was assessed
with ToxinPred.

VaxiJen v2.0
AllerTOP v2.0
TxinPred

Human population coverage
analysis

To verify and assess human
population coverage, IEDB was
used.

IEDB

Recombinant multi-epitope
vaccine

Analyses were made of three
vaccine adjuvants in order to select
the candidate for the final vaccine
formulation.

BCEPS web server

Evaluation of physicochemical
properties and solubility

To reveal the physicochemical
properties of the vaccine,
ProtParam was used. The
solubility was assessed with the
Protein-sol server.

ProtParam
Protein-sol server

Secondary structure prediction
of the recombinant vaccine

The secondary structure of the final
formulation and its properties was
predicted with the RaptorX
Property web server.

PSIPRED 4.0 web server
RaptorX Property web
server

Codon adaption and in silico
cloning of the recombinant
vaccine

Reverse translation and codon
optimization for candidates were
conducted with JAVA Codon
Adaptation Tool (JCat).

JAVA Codon
Adaptation Tool (JCat)

Agent-based model (ABM) In silico trial simulation of the
immune system

Immune response and
immunogenicity were assessed
with UISS.

Universal Immune
System Simulator
(UISS)
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3. Results
Results from Phase 1 (Literature Review and Screening)

While conducting Phase 1 of the methodology, the below-adapted PRISMA flow-
chart approach illustrates how the screening was screened. The process can be checked in
Figure 1.

Pharmaceutics 2023, 14, x FOR PEER REVIEW 13 of 17 
 

3. Results 
Results from Phase 1 (Literature Review and Screening) 

While conducting Phase 1 of the methodology, the below-adapted PRISMA flow-
chart approach illustrates how the screening was screened. The process can be checked in 
Figure 1. 

 
Figure 1. PRISMA flow-chart approach illustrates how the screening was performed. 

4. Discussion 
It is important to highlight that results reflect what is available in the public domain 

and that it is possible that some studies are being performed and sponsored by pharma-
ceutical companies and not yet being available. This is the main limitation of this review. 
Additionally, the term “in silico” is general. In this study, the authors considered “in sil-
ico” as any study involving computer science models to support drug and vaccine devel-
opment and design. 

Figure 1. PRISMA flow-chart approach illustrates how the screening was performed.

4. Discussion

It is important to highlight that results reflect what is available in the public domain
and that it is possible that some studies are being performed and sponsored by pharma-
ceutical companies and not yet being available. This is the main limitation of this review.
Additionally, the term “in silico” is general. In this study, the authors considered “in silico”
as any study involving computer science models to support drug and vaccine development
and design.

According to the results from our study, there are seven studies using PBPK models
to support vaccine development; three studies using PopPK; six studies using ABMs
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models; four ODEs models; 1 MP; and one study using different Computational Vaccine
Design techniques. Some of these models combined two or more in silico approaches. For
instance, for the Recombinant multi-epitope vaccine against influenza A virus model, a
complex Computational Vaccine Design approach to predicting epitopes and selecting
adjuvants, to evaluate physicochemical properties and solubility, to predict secondary
structure properties, and finally, to immunogenicity and related immune. For these, many
software and modeling techniques were combined.

It is possible to verify that there are more models for infectious disease vaccines than
for cancer vaccines by looking at the overall results. Additionally, PBPK modeling was the
most used in silico approach to aid vaccine development, followed by ABM models, ODEs,
and PopPK.

The reason behind PBPK models being the most common in terms of in silico approach
might be due to the fact that this kind of modeling and simulation can be used to predict
the drugs’ pharmacokinetics in humans using preclinical or clinical data. In parallel,
population characteristics can be explored as well (i.e., age, ethnicity, or disease status).
Furthermore, these models also play an important role in supporting the dose and dose
regiment selection and also support predicting drug interactions. EMA and FDA are
already currently accepting these kinds of studies to support regulatory decisions and have
provided guidance to conduct PBPK modeling and simulations [11,31,32].

To date, multiple PBPK software has been created and used by various to support
pharmaceutical drug development. Some of these platforms were discontinued, such as
IDEATM (LION Bioscience, Inc.). However, others have remained in mainstream use and
are currently being used by pharmaceutical companies and health authorities, such as EMA
and FDA. Examples of the most commonly used software are GastroPlus (Simulation Plus,
Inc.), Simcyp Simulator (Certara UK), and free tools such as PK-Sim [33].

ABM models were created to predict the immunogenicity of biological compounds
and vaccines. This is because the immune system and its multiple agents and components
are linked to complex interactions, and the ABM methodology allows these complex
behaviors to emerge during simulation. This makes ABM perfect for performing biological
simulations (i.e., for studying the complex and dynamic interactions within the biological
environment) [34]. The Universal Immune System Simulator (UISS) platform is a type
of ABM model and has been successfully applied to a large number of disease-modeling
scenarios, including COVID-19, and can simulate, for instance, infection dynamics and
its interactions with the host immune system, making it possible as well to predict the
immunogenicity response of compounds [20,23].

ODEs represent models that are considered homogeneous, well-mixed systems and
suited for traditional pharmacometrics analyses with sufficient data (population PK and
PD models and PBPK models) or for simplistic theoretical PKPD models. They can also be
used for quantitative clinical pharmacology models in order to study complex biological
systems. Its limitation is related to extensive model assumptions, including parameter
distributions. ABMs can provide more detailed insights into complex biological systems
and are often complemented with ODEs in hybrid multi-scale models [35].

Population PK analyses are used to aid drug development and inform recommen-
dations on therapeutic individualization (e.g., through tailored dosing). FDA states that
adequate population PK data collection and analyses submitted in marketing applications,
in some cases, have alleviated the need for postmarketing requirements and/or commit-
ments [36]. PopPK models allow the study of variability in drug concentrations between
individuals (healthy volunteers or patients). With this model, it is possible to assess the
variability within the population and to account for the variability in terms of patient
characteristics such as age, renal function, or disease state [37].

It is important to highlight that all methodologies have their strengths and weaknesses.
It all depends on the purpose and context [35].

The most important information to retain with this review is that there are multiple
in silico approaches that may complement each other and support pharmaceutical drug
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development. However, when we searched for in silico methodologies in vaccines, we
only found 18 studies where models were prepared to support vaccine development. This
means that research must continue in this field.

Within the most common in silico approaches that were found for vaccine devel-
opment, which is PBPK modeling, it can be verified that the most usual software, the
GastroPlus and Simcyp Simulator, were not used.

An interesting approach to future research would be to try to implement one of those
existing PBPK models into one of the most common software and use their capacity to
study different parameters to verify their applicability to vaccines. Performing simulations
to test new adjuvants, improving formulation, targeting new antigens, and finding the
best dose for different populations (considering age, ethnicity, or disease status on human
pharmacokinetics) could be completed [14,31,38,39]. Sequentially, immunogenicity could
be explored using UISS as an ABM through the simulation of the dynamics within the
immune system. Currently, there are studies in the literature where UISS is applied to a
broad range of diseases and not only to infections. An example of that is the application of
UISS to multiple sclerosis pathogenesis, supporting the prediction of the disease and the
treatment efficacy [40]. This reflects the flexibility of in silico software and highlights their
capabilities to support the development of treatments for complex diseases with complex
dynamics, such as cancer.

However, the results from this review show that there are not many models developed
for vaccines in general and especially for cancer vaccines. This might be related to the
complexity and challenges of vaccine development and the diseases themselves.

Firstly, vaccine development itself is complex. It is known that most vaccine candidates
fall in preclinical and early clinical development, and less than 1 in 15 candidates that
enter Phase II will be approved. This is due to the lack of understanding of correlates of
protection, not using appropriate animal models to predict responses in humans, complex
dynamics and responses of the human immune system to antigens, and the synergies and
impacts across the various components that can be combined in a vaccine [41].

Furthermore, in terms of vaccine efficacy, it is important to consider not only immediate
protection but also long-term protection. Therefore, it is important to understand how to
stimulate long-term memory, and this point is still not resolved. As an example, hepatitis B
antigen vaccines produce lifelong protection, whereas for other vaccines, the protection is
very short in terms of time. For this reason, it would be very important across the scientific
community to develop in silico modeling to understand immune responses in humans [42].

Additionally, there are now more complex platforms for outlining the vaccine devel-
opment strategies to overcome some issues of the standard vaccines, which are composed
of inactivated pathogens. Advancements were made, and there are now new platforms
related to DNA/RNA technologies, recombinant proteins, and the use of nanoparticles, for
instance [43]. The reason for the development of such novel platforms is to aim for a more
targeted immune response, to improve efficacy, and to provide long-term protection. There
is also the hope that the new technologies will overcome the challenges of unmet needs
for certain diseases, such as cancer and other complex diseases. However, as mentioned
above, the limitation related to the lack of available data on these technologies may impact
their development. This is why in silico studies might be a challenge in the field, but once
they become more familiar with the area, they might support developers in important
steps across the development of a vaccine, deciding which platform to use, adjuvants,
formulations, and which dose and for which populations [43]. The vaccine design and
formulation are extremely important in its overall efficacy. The adjuvants, for instance,
support in improving the efficacy and the long-term immune response. However, it may
also impact in the way the response is conducted [44,45].

Despite all the challenges, it is important to highlight the boost in vaccine development
in terms of timelines. It took around 25 years to develop a vaccine for varicella, 5 years for
Ebola, and 1 year for COVID-19 [46–49].
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Therefore, in silico approaches, which can be used during all stages of development
and discovery, can play an important role and contribute to the “boost” in vaccine devel-
opment. PBPK studies, for instance, could help to predict the absorption, distribution,
metabolism, and excretion (ADME) parameters of the candidates to improve efficacy. With
this, it is also possible to save costs since this will reduce animal models and can also
replace some trials [50,51].

To sum up, the complexity of vaccine development might be the reason why there are
not many in silico models developed so far. The variability of the pathogen and tumors,
the immunological responses, antigen selection, and memory of the responses are still the
biggest challenges in the field. Due to genetic factors, age, disease status, and other factors,
different responses may be expected [52].

Furthermore, when it comes to cancer vaccines, everything is even more complex. It
is important to acknowledge that the pathological and immunological setting is different
between cancer and infectious diseases. Acute inflammation is representative of infected
tissues by pathogens, and this will trigger a potential development of protection in terms
of immunity because the inflammation is obvious. Chronic inflammation environment is
present with tumors, and these will repress anti-tumor immune responses, while tumor
growth will be promoted in order to avoid the immune system. This means that lesions
linked to tumors promote a not-so-obvious and, therefore, low-inflammatory environment.
As a consequence, it is when the tissue is already very fragile due to tumor growth that
the inflammation will become obvious [53]. Despite the complex environment in tumors,
it is well known that the clinical translation of vaccines has been an issue. Most cancer
vaccine clinical trials failed due to the selection of target antigens and the vaccines’ designs
themselves, inducing very low-immunogenicity properties to have proper efficacy. The
fact that there are only two therapeutic cancer vaccines approved by FDA and EMA,
sipuleucel-T and talimogene laherparepvec [T-VEC], reflects all the complexity within the
development of these platforms to treat cancer [54].

However, because so many studies have failed in the past, there is now more knowl-
edge about these strategies, which are related to past failures. This means that lessons
learned, together with new technological advancements, might be able to trigger a new era
in cancer vaccine development, and in silico approaches will surely be part of it, as they
already are for other complex diseases [28].

Considering the above, it means that further advancements are needed in the field
of in silico studies for vaccines. Different types of models could be useful to overcome
these issues: models to simulate host/pathogen/tumor interactions and models to simulate
immune response [55–57].

Since regulatory authorities have clearly endorsed in silico models, such as PBPK,
and even provided guides and frameworks to developers on how to integrate and achieve
valuable data from them in drug development and discovery, considering that vaccines
play an important role in the prevention and possibly in the treatment of certain diseases
today, it is expected to see more models in the future [58–60].

In silico modeling, then, has the ability to save millions in terms of costs and could
promote the selection of the best platforms, adjuvants (i.e., liposomes, nanoparticles),
antigens (i.e., peptides) and dosages and dosage regimens in order to support the vaccines’
development and design [60–64].

Author Contributions: Conceptualization, L.S. and N.V.; methodology L.S.; formal analysis, Ü.L.
and N.V.; investigation, L.S.; writing—original draft preparation, L.S.; writing—review and editing,
Ü.L. and N.V.; supervision, N.V.; project administration, N.V.; funding acquisition, N.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was financed by the Fundo Europeu de Desenvolvimento Regional (FEDER) funds
through the COMPETE 2020 Operational Programme for Competitiveness and Internationalisation
(POCI), Portugal 2020, and by Portuguese funds through the Fundação para a Ciência e a Tecnologia
(FCT) in the framework of projects IF/00092/2014/CP1255/CT0004 and CHAIR in Onco-Innovation
from the Faculty of Medicine of the University of Porto (FMUP).



Pharmaceutics 2023, 15, 654 14 of 16

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Greenwood, B. The contribution of vaccination to global health: Past, present and future. Philos Trans. R. Soc. Lond B Biol. Sci.

2014, 369, 20130433. [CrossRef] [PubMed]
2. Gebre, M.S.; Brito, L.A.; Tostanoski, L.H.; Edwards, D.K.; Carfi, A.; Barouch, D.H. Novel approaches for vaccine development.

Cell 2021, 184, 1589–1603. [CrossRef] [PubMed]
3. Schoenmaker, L.; Witzigmann, D.; Kulkarni, J.A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D.J.A. mRNA-lipid nanoparticle

COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021, 601, 120586. [CrossRef] [PubMed]
4. Paston, S.J.; Brentville, V.A.; Symonds, P.; Durrant, L.G. Cancer Vaccines, Adjuvants, and Delivery Systems. Front. Immunol. 2021,

12, 627932. [CrossRef] [PubMed]
5. Bilusic, P.J.D.M. Cancer Vaccines. Hematol. Oncol. Clin. N. Am. 2019, 33, 199–214.
6. Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct.

Target. Ther. 2020, 5, 237. [CrossRef]
7. Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021, 21, 73–82. [CrossRef]
8. Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In silico Methods for Drug Design and Discovery.

Front. Chem. 2020, 8, 612. [CrossRef]
9. EMA. EMA Implements New Measures to Minimise Animal Testing during Medicines Development. 2021. Available online: https:

//www.ema.europa.eu/en/news/ema-implements-new-measures-minimise-animal-testing-during-medicines-development
(accessed on 6 January 2022).

10. Pappalardo, F.; Russo, G.; Tshinanu, F.M.; Viceconti, M. In silico clinical trials: Concepts and early adoptions. Brief Bioinform. 2019,
20, 1699–1708. [CrossRef]

11. EMA. Guideline on the Reporting of Physiologically Based Pharmacokinetic (PBPK) Modelling and Simulation. 2018.
Available online: https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-
simulation-scientific-guideline (accessed on 13 January 2022).

12. Van Tilbeurgh, M.; Lemdani, K.; Beignon, A.S.; Chapon, C.; Tchitchek, N.; Cheraitia, L.; Marcos-Lopez, E.; Pascal, Q.; Le Grand, R.;
Maisonnasse, P.; et al. Predictive Markers of Immunogenicity and Efficacy for Human Vaccines. Vaccines 2021, 9, 579. [CrossRef]

13. Mitkus, R.J.; Hess, M.A.; Schwartz, S.L. Pharmacokinetic modeling as an approach to assessing the safety of residual formaldehyde
in infant vaccines. Vaccine 2013, 31, 2738–2743. [CrossRef] [PubMed]

14. Tegenge, M.A.; Mitkus, R.J. A physiologically-based pharmacokinetic (PBPK) model of squalene-containing adjuvant in human
vaccines. J. Pharmacokinet. Pharmacodyn. 2013, 40, 545–556. [CrossRef]

15. Saylor, K.; Zhang, C. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on
nicotine disposition in the brains of rats and humans. Toxicol. Appl. Pharmacol. 2016, 307, 150–164. [CrossRef] [PubMed]

16. Tegenge, M.A.; Mitkus, R.J. A first-generation physiologically based pharmacokinetic (PBPK) model of alpha-tocopherol in
human influenza vaccine adjuvant. Regul. Toxicol. Pharmacol. 2015, 71, 353–364. [CrossRef] [PubMed]

17. Badhan, R.K.S.; Khadke, S.; Perrie, Y. Application of Pharmacokinetics Modelling to Predict Human Exposure of a Cationic
Liposomal Subunit Antigen Vaccine System. Pharmaceutics 2017, 9, 57. [CrossRef]

18. Capuani, S.; Hernandez, N.; Paez-Mayorga, J.; Dogra, P.; Wang, Z.; Cristini, V.; Chua, C.Y.X.; Nichols, J.E.; Grattoni, A. Localization
of drug biodistribution in a 3D-bioengineered subcutaneous neovascularized microenvironment. Mater. Today Bio 2022, 16, 100390.
[CrossRef]

19. Ruiz-Ramírez, J.; Ziemys, A.; Dogra, P.; Ferrari, M. A modeling platform for the lymphatic system. J. Theor. Biol. 2020, 493, 110193.
[CrossRef]

20. Pennisi, M.; Russo, G.; Sgroi, G.; Bonaccorso, A.; Parasiliti Palumbo, G.A.; Fichera, E.; Mitra, D.K.; Walker, K.B.; Cardona, P.J.;
Amat, M.; et al. Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system
simulator (UISS). BMC Bioinform. 2019, 20, 504. [CrossRef]

21. Russo, G.; Sgroi, G.; Parasiliti Palumbo, G.A.; Pennisi, M.; Juarez, M.A.; Cardona, P.-J.; Motta, S.; Walker, K.B.; Fichera, E.;
Viceconti, M.; et al. Moving forward through the in silico modeling of tuberculosis: A further step with UISS-TB. BMC Bioinform.
2020, 21, 458. [CrossRef]

22. Russo, G.; Pappalardo, F.; Juarez, M.A.; Pennisi, M.; Cardona, P.J.; Coler, R.; Fichera, E.; Viceconti, M. Evaluation of the efficacy
of RUTI and ID93/GLA-SE vaccines in tuberculosis treatment: In silico trial through UISS-TB simulator. In Proceedings of the
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019;
pp. 2197–2201.

23. Russo, G.; Pennisi, M.; Fichera, E.; Motta, S.; Raciti, G.; Viceconti, M.; Pappalardo, F. In silico trial to test COVID-19 candidate
vaccines: A case study with UISS platform. BMC Bioinform. 2020, 21, 527. [CrossRef]

http://doi.org/10.1098/rstb.2013.0433
http://www.ncbi.nlm.nih.gov/pubmed/24821919
http://doi.org/10.1016/j.cell.2021.02.030
http://www.ncbi.nlm.nih.gov/pubmed/33740454
http://doi.org/10.1016/j.ijpharm.2021.120586
http://www.ncbi.nlm.nih.gov/pubmed/33839230
http://doi.org/10.3389/fimmu.2021.627932
http://www.ncbi.nlm.nih.gov/pubmed/33859638
http://doi.org/10.1038/s41392-020-00352-y
http://doi.org/10.1038/s41577-020-00480-0
http://doi.org/10.3389/fchem.2020.00612
https://www.ema.europa.eu/en/news/ema-implements-new-measures-minimise-animal-testing-during-medicines-development
https://www.ema.europa.eu/en/news/ema-implements-new-measures-minimise-animal-testing-during-medicines-development
http://doi.org/10.1093/bib/bby043
https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation-scientific-guideline
https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation-scientific-guideline
http://doi.org/10.3390/vaccines9060579
http://doi.org/10.1016/j.vaccine.2013.03.071
http://www.ncbi.nlm.nih.gov/pubmed/23583892
http://doi.org/10.1007/s10928-013-9328-y
http://doi.org/10.1016/j.taap.2016.07.017
http://www.ncbi.nlm.nih.gov/pubmed/27473014
http://doi.org/10.1016/j.yrtph.2015.02.005
http://www.ncbi.nlm.nih.gov/pubmed/25683773
http://doi.org/10.3390/pharmaceutics9040057
http://doi.org/10.1016/j.mtbio.2022.100390
http://doi.org/10.1016/j.jtbi.2020.110193
http://doi.org/10.1186/s12859-019-3045-5
http://doi.org/10.1186/s12859-020-03762-5
http://doi.org/10.1186/s12859-020-03872-0


Pharmaceutics 2023, 15, 654 15 of 16

24. Silva, L.d.L.e.; Xavier, M.P.; Santos, R.W.d.; Lobosco, M.; Reis, R.F. Uncertain Quantification of Immunological Memory to Yellow
Fever Virus. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic
of Korea, 16–19 December 2020; pp. 1281–1288.

25. Tegenge, M.A.; Von Tungeln, L.S.; Mitkus, R.J.; Anderson, S.A.; Vanlandingham, M.M.; Forshee, R.A.; Beland, F.A. Pharmacoki-
netics and biodistribution of squalene-containing emulsion adjuvant following intramuscular injection of H5N1 influenza vaccine
in mice. Regul. Toxicol. Pharmacol. 2016, 81, 113–119. [CrossRef] [PubMed]

26. Huang, Y.; Naidoo, L.; Zhang, L.; Carpp, L.N.; Rudnicki, E.; Randhawa, A.; Gonzales, P.; McDermott, A.; Ledgerwood, J.; Lorenzo,
M.M.G.; et al. Pharmacokinetics and predicted neutralisation coverage of VRC01 in HIV-uninfected participants of the Antibody
Mediated Prevention (AMP) trials. EBioMedicine 2021, 64, 103203. [CrossRef] [PubMed]

27. Zhang, L.; Gilbert, P.B.; Capparelli, E.; Huang, Y. Simulation-Based Pharmacokinetics Sampling Design for Evaluating Correlates
of Prevention Efficacy of Passive HIV Monoclonal Antibody Prophylaxis. Stat. Biopharm. Res. 2022, 14, 611–625. [CrossRef]
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