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Abstract: Nanoparticles can be used as drug carriers in various applications (e.g., in pulmonary
drug delivery and mucosal vaccination). For further investigations, such as drug release studies,
as well as for cell and tissue targeting, particles with defined properties are needed. The purpose
of the study was to show a multi-step systematic method utilising quality by design to ensure the
quality of ovalbumin loaded polylactic-co-glycolic acid nanoparticles (OVA-PLGA-NP), which can be
delivered to the lung, and to gain knowledge of the preparation method (double-emulsion solvent
evaporation method) in an early development process. Within a definitive screening design, several
process parameters (OVA, PLGA and stabiliser concentrations, stirring time and stirring speed of
inner emulsion and stirring time and stirring speed of double emulsion) were varied to analyse their
impact on resulting properties (z-average, PDI, loading efficiency and loading capacity). The results
showed that the preparation of the inner emulsion mainly influenced the drug loading, while the
parameters of the second emulsifying step controlled the size. Then a central composite response
surface design was used to achieve a predictable OVA-PLGA-NP with an average particle size of
700 nm and high drug-loading. This also enabled the demonstration of curvature and interaction of
the stabiliser and the PLGA concentration.

Keywords: quality by design; design of experiment; screening design; central composite response
surface design; quality attributes; double-emulsion solvent evaporation method; protein drug delivery

1. Introduction

Since many pathogens enter the body via the lung, its mucosa is equipped with
numerous immunocompetent cells [1]. They form the pulmonary mucosal immune system,
which protects the human body mainly against respiratory pathogens, such as SARS-CoV-2.
The activation of the immune system can also been used for therapeutic vaccination, which
is very efficient for mucosal immune response [2]. It has been discovered that particulate
antigens are more immunogenic than purified proteins [3]. Furthermore, mucosal vaccines
are most effective when they mimic pathogens in certain key characteristics, such as particle
size and surface characteristics [2]. For antigen protection and enhanced uptake, the antigen
can be encapsulated in small microparticles or nanoparticles (NP) [3]. Physical protection
and particulate delivery of the antigen is mandatory. Polymers are the most stable materials
for microcarriers and nanocarriers [4]. Generally, the uptake of polymeric nanoparticles
(PNP) is not only controlled by the route of application but also by the particle size and
shape as well as charge and functional groups on the surface [5]. Depending on use and
target cell, controlled modification of particle properties is necessary to deliver the drug
to the target location. To produce these tailored particles, it is essential to understand the
preparation process and its influence on the final product. This enables the guidance and
control of the production.

Despite many advances in laboratory-scale PNP preparation, there are still many chal-
lenges in the manufacturing process, such as control and replication of key characteristics
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of the desired nanoparticles [6], that make it difficult to produce high-quality PNP. Prepa-
ration processes for PNP are oftentimes multi-step bulk processes with many influencing
variables rendering the preparation itself comparatively complex. In order to ensure the
ultimate quality of the product early in the development of the method and to understand
as early as possible which parameters influence the process, the use of quality by design
(QbD) is essential, and requested by ICH.

Quality by design is defined as systematic approach within pharmaceutical devel-
opment [7]. It includes the evaluation and understanding of the formulation and manu-
facturing process. The goal is to develop a controlled process that ensures the quality of
the product [7–10]. The ICH guideline Q8(R2) describes different approaches and tools to
implement QbD in practice such as “multivariate experiments”, “statistical process control
methods” also known as design of experiment and a “risk-based control strategy” [7].

In the present study, polylactic-co-glycolic acid nanoparticles (PLGA-NP) loaded with
ovalbumin (OVA) serve as examples to show the application of QbD in process develop-
ment. Polylactic-co-glycolic acid (PLGA) is one of the most used polymers in the research
of nanoparticulate drug delivery systems [11]. It is a water insoluble, biodegradable and
biocompatible polymer which has been proven to be a safe, non-active ingredient by U.S.
FDA [12,13]. PLGA nanoparticles can be used for drug delivery of hydrophilic as well as
hydrophobic actives. While for hydrophobic actives a one-step precipitation method or a
single emulsion method can be used, for hydrophilic actives a double-emulsion preparation
method is more suitable [12].

Such a double-emulsion solvent evaporation method for the preparation of OVA-
loaded PLGA-NP was selected for QbD analysis and optimisation within the studies
presented in this paper. For a guided optimisation, it is important to find those process
parameters whose influence on the final product is large enough to change its properties
in a targeted manner. For the systematic investigation of the process, the procedure was
divided into the following steps:

1. Definition of quality attributes and selection of outcome parameters;
2. Identification and evaluation of process variables that might have an impact on

PLGA-NP properties;
3. Identification of significant process parameters by screening of the most promising

variables;
4. First approach of optimisation using the results of the screening;
5. Further optimisation and controlled adjustments of the products quality by varying

the most influencing process parameters within a response surface design;
6. Prediction and verification of the optimal process parameters.

The first and second step are parts of the planning phase, the third and fourth step are
parts of the screening phase, the fifth step is the optimisation phase, and the last step is the
verification phase.

2. Materials and Methods
2.1. Nanoparticle Preparation

PLGA-Nanoparticles were prepared by a double emulsion solvent evaporation
method [14] using an ultra turrax® (T25, IKA Labortechnik, Staufen, Germany) for emul-
sification steps. For the inner emulsion, Ovalbumin (albumin from chicken egg white,
lyophilised powder ≥98%, Sigma-Aldrich, St. Louis, MO, USA) was dissolved in phosphate-
buffered saline pH 7.4 (European Pharmacopoeia. 10.0/4.1.3; 4005000), obtaining the inter-
nal aqueous phase (W1). PLGA (Resomer® RG 503 H, Evonik, Darmstadt, Germany) was
dissolved in ethyl acetate (HPLC grade, Carl Roth, Karlsruhe, Germany) for the organic
phase (O). W1 and O were combined and emulsified in a 15-mL-centrifuge tube before
they were added to the external aqueous phase (W2), consisting of polyvinyl alcohol (PVA)
(Mowiol 4-88, Sigma-Aldrich, St. Louis, MO, USA) in ultrapure water (Direct-Q®, Merck,
Darmstadt, Germany), in a 50-mL-centrifuge tube. Then, the inner emulsion and W2 were
emulsified resulting in a W/O/W double emulsion. The double emulsion was added to the
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stabiliser solution and stirred at 400 rpm on a magnetic stirrer (IKA® Ro 15, IKA Labortech-
nik, Staufen, Germany). Ethyl acetate was evaporated under continued stirring at 400 rpm
overnight. The product was a nanoparticle suspension. Table 1 lists all compositions and
quantities, all of which were held constant.

Table 1. Constant composition of double emulsion; concentrations varied.

Phase Composition Quantity

Internal aqueous phase (W1) Ovalbumin in phosphate buffer, pH 7.4 1600 µL
Organic phase (O) PLGA in ethyl acetate 4 mL

External aqueous phase (W2) PVA in water 12 g
Stabiliser solution PVA (1% (w/w)) in water 40 g

2.2. Purification

To eliminate non-encapsulated OVA and excess stabiliser, the OVA-PLGA-NP were
purified as follows: To avoid non-reversible agglomeration, three centrifugal steps were
used to separate the NP from the supernatant. The nanosuspension was centrifuged for
10 min at 3500 rpm (1438 rcf) (Centrifuge 5430 R, Eppendorf AG, Hamburg, Germany). The
decanted supernatant was centrifuged for 10 min at 5500 rpm (3551 rcf). Then the decanted
supernatant of the second step was centrifuged for 30 min at 7830 rpm (7197 rcf), resulting
in a clear supernatant. The three pellets containing the NP were pooled, resuspended in
2 mL water, and filled up to 50 mL. The three centrifugation steps were repeated and the
resuspended pellets were again pooled and filled up to 15 mL with water. All centrifugation
steps were performed at 4 ◦C.

2.3. Measurement of Size, Size Distribution and Zeta-Potential

Z-average, polydispersity index (PDI) and zeta potential were determined by dynamic
light scattering (DLS) with the Zetasizer ZS Nano (Malvern Instruments, Malvern, UK)
at 25 ◦C and an equilibration time of 120 s. The samples were not diluted. All results are
the mean of three measurements. The viscosity of every nanosuspension was measured
before and included in the calculation (SV-10 Vibro-viscometer, Malvern Instruments,
Malvern, UK).

2.4. Protein Quantification

To analyse the ovalbumin content in the nanoparticles, the Micro BCA Protein Assay
Kit and the BCA Protein Assay Kit (both Thermo Fisher Scientific, Waltham, MA, USA)
were utilised. The same ovalbumin batch was used for calibration and samples. PLGA-NP
were dissolved in 0.2 M NaOH at 37 ◦C for 2 h. Then, the samples were neutralised with
0.2 M HCl. The (Micro) BCA Assay was performed as described in the assay instruction.
For the BCA Assay 25 µL of each standard and sample were pipetted to a 96-well microplate
well. A quantum of 200 µL working reagent (50:1, Reagent A:B) was added, and the two
solutions were mixed by shaking. The covered plate was incubated at 37 ◦C for 30 min.
For the Micro BCA Assay 150 µL of each standard and sample were pipetted to a 96-well
microplate well. A quantum of 150 µL working reagent (25:24:1, Reagent MA:MB:MC) was
added, and the two solutions were mixed by shaking. The covered plate was incubated at
37 ◦C for 2 h. For both assays the absorbance was measured at 562 nm against a reference
blank. The encapsulated amount of OVA was determined via a calibration curve. This is
in turn was needed to calculate the loading efficiency (LE) (1) and the loading capacity
(LC) (2).

Loading efficiency

Loading efficiency (%) =
m(encapsulated OVA)

m(total OVA)
× 100 % (1)
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Loading capacity

loading capacity (%) =
m(encapsulated OVA)

m(encapsulated OVA) + m(total PLGA)
× 100 % (2)

2.5. Scanning Electron Microscopy (SEM)

For SEM, air-dried samples were sputtered with gold, utilising a Bal-Tech SCP 005
Sputter Coater (Bal-Tec AG, Balzers, Lichtenstein) for 40 s. SEM pictures were taken with a
Phenom Pro XL (Thermo Fisher Scientific Inc., Waltham, MA, USA) at a working voltage of
10 kV.

2.6. Design of Experiements

To generate the design of experiments (DoE) setup, Minitab statistic software version
18 (Minitab Inc., State College, PA, USA) was used. The experiments for all DoE were
conducted in randomised order with one replicate. Parameters, which were not changed,
should be as constant as possible. In this study, a screening design and a follow up response
surface design were used to optimise the nanoparticles and to understand the relation
between parameter settings and outcomes.

Screening designs are intended for the early stage of an investigation when many
factors are still included in the study [15]. Those designs help to identify the main effects as
well as the factors that have the largest overall effects and factors which have no significant
effect within the experimental design space.

A definitive screening design (DSD), which we used in this study, has three factor
levels [15]. Those screening designs have several benefits: Most important second-order
effects do not bias the estimation of main effects. In addition two-factor interactions or
quadratic effects can be estimated if the true effects are much larger than the error standard
deviation [16].

In this study, the process variables we identified in the previous step were examined
in a DSD. The main effects should be detected and not statistically significant process
parameters should be eliminated in further experiments. The most promising variables
should be used as parameters for the response surface design.

The response surface methodology (RSM) can create a more dimensional map (re-
sponse surface) correlating the parameters and the outcome and include interactions of
parameters as well as curvature [17]. Even with a comparatively small number of runs, RSM
can provide a good predictability for future outcomes within the experimental region [18]
and determine the optimum settings of parameters that result in the optimal response [19].

A central composite design (CCD) is a complete fractional design expanded by several
centre points and axial points, which are positioned at the axis of each parameter at the
distance of alpha from the centre point [19]. Since every parameter is probed at five levels,
a CCD results in a good resolution for the response surface. In this study, the design was
utilised for further optimisation of NP to improve size adjustment, to maximise LE and to
narrow particle size distribution.

3. Results and Discussion

When starting a QbD experimental setup, a target product profile needs to be specified.
Depending on the application of the NP drug carrier systems, specific requirements are
defined, which are important for selection of variables and later optimisation of process
parameters.

3.1. Definition of Quality Attributes and Selection of Outcome Parameters

To achieve a pharmaceutical effect, it is important that the nanoparticulate carrier
brings sufficient API to or into the target cell and releases it there. As previously discussed,
the particle size is the decisive quality attribute when it comes to distribution in the body,
reaching of target cells, and cellular uptake. As outcome parameters for the DoE, the
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z-average (average particle size) was chosen for its importance to reach the target cell, the
PDI as indicator for size distribution, the LC for later potency of the product and the LE for
process cost efficiency. It was defined for the purposes of this study that desired NP should
have a z-average of 700 nm to only allow uptake in phagocytosing cells and a PDI below
0.3, because this indicates a monodisperse size distribution [20]. The LE and LC were to be
as high as possible.

3.2. Identification and Evaluation of Process Parameters

To choose parameters for DoE a comprehensive identification of all variables of the
preparation process should be performed [7]. To minimise the lack of variables a risk
assessment tool can be used. After creating an overview of variables as completely as
possible, a thoughtful evaluation of the variables should take place. The potential influ-
ence of a variable on the outcomes should dominate the evaluation. Additionally, the
practicability, effort and detectability should be taken into consideration to exclude purely
theoretical results.

To identify all variables, which might influence the product quality, a fishbone cause
and effect diagram was used (Figure 1). As major causes the raw materials, the composition
of the formulation, the device settings and the equipment were identified. For each main
cause, several sub-causes were determined (Figure 1).
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Figure 1. Fishbone (Cause-and-effect) diagram of process parameters, which potentially have an
influence on the defined outcomes.

In the case of a multi-step preparation with many variables, it is hardly possible to
examine all variables as parameters in an experimental design with a reasonable amount
of effort. The next step was to evaluate all variables and eliminate those whose follow-up
would be less promising, as scientific rationale expects them to be of negligible influence.
The variables that have not been investigated during the experimental design remain with
the status “criticality unknown”.
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Due to laboratory equipment, the homogenisation tool and vessels were not changed.
For this study, we decided to fix the type and quality of raw materials as parameters for
two reasons. The different raw materials were already investigated in former studies and
the types of raw materials were already well chosen [14]. Resomer® RG 503 H has a glass
transition temperature of 44–48 ◦C and therefore is stable at body temperature. The ratio
of lactic acid and glycolic acid favours a good drug release without loss of stability. For
the double-emulsion-solvent-evaporation method, it is essential that the organic solvent is
safe, volatile and not miscible with water, which limits the choice of the organic solvent.
The second reason is that changing the quality of raw materials may have a relatively
small influence on the defined outcome parameters. The only raw material that might
have an influence on the size is the type of stabiliser, but the stabiliser concentration may
have the bigger influence. Thus, concentration was assessed for a fixed type of stabiliser,
namely PVA. PVA is a safe stabiliser and is solid at room temperature, what makes further
processing easier.

Former experiments of single- and double-emulsion solvent evaporation methods for
different nanoparticles showed that process variables as homogenisation time and intensity
(here, rotation speed) may have an influence on size and drug loading [21,22]. Therefore,
the stirring speed and stirring time for inner emulsion as well as double emulsion were
selected as parameters.

Even though the evaporation rate would be a promising parameter [13], it was not
included in the DoE, to keep the equipment setup simple and the experimental design
fast. One way to evaporate the organic solvent is by using a rotary evaporator, where the
pressure and rotation speed can be varied. In this case every sample must have been treated
separately, which leads to a high effort. The other way is to stir the samples at normal
environmental conditions for a longer time. Due to the much lower effort and more simple
equipment, this technique was chosen.

It was also shown earlier that the composition of the double emulsion has a major
influence; Mainardes et al. investigated the concentration of stabiliser, the polymer content
and the volume ratio of the phases, concluding that those composition parameters effect
the formation of PLGA nanoparticles. Additionally, the API concentration may have an
influence on drug loading and loading efficiency [22]. Since it is not possible to change the
concentration, the mass and the volume independently, we had to decide which should
be changed and which should be held constant. Since the volume is limited by the vessel
and the minimal depth of immersion, it was set as constant. Thus, the concentration is
equivalent to the mass (3).

c =
m
V

(3)

Because of these reasons, the following variables were chosen as parameters for
further investigations: OVA concentration, PLGA concentration, stabiliser concentration,
stirring time and speed of preparation of the inner emulsion and stirring time and speed of
preparation of the double emulsion.

3.3. Identification of Significant Process Parameters by Screening Design
3.3.1. Definitive Screening Design

Since seven parameters were chosen for further investigation, a screening design
was reasonable. The Ultra Turrax®, which we used for homogenisation, had five settings
for the stirring speed; thus, it was treated as a categorical parameter. The Minitab soft-
ware generated the DSD with five numerical variables which have three levels each, and
two categorical variables with only two levels (Table 2), resulting in 18 runs with two
center points.

The experiments according to the definitive screening design were carried out in
randomised order as generated by Minitab software, and the responses were determined
(Supplementary Information). The design was analysed for every outcome using linear
terms and a two-sided confidence level for all intervals of 95%. The p-values for every



Pharmaceutics 2023, 15, 617 7 of 14

outcome model were <0.05, leading to the conclusion that the models explain variation in
the response [23]. The residual plots were inconspicuous, and in the residual versus variable
plots no pattern could be detected. This indicates that no square terms or interactions are
missing. Therefore, the models were used for process analysis without further modification.
The significances of all parameters on the outcome were compiled in Table 3. From those
results, all main effect plots are generated to visualise the effect of the parameters on their
response (Figure 2).

Table 2. Parameter settings of the definitive screening design.

Parameter Low Medium High

c (OVA) [%] 2 3 4
c (PLGA) [%] 3 6 9

Stirring speed W/O 9500 rpm - 20,500 rpm
Stirring time W/O [s] 30 60 90

c (PVA) [%] 2 3.5 5
Stirring speed W/O/W 8000 rpm - 13,500 rpm

Stirring time W/O/W [s] 60 105 150

Table 3. Significance of parameters on responses and model summary.

Parameter
Outcome z-Average PDI LE LC

OVA conc. (%) not sign. not sign. significant
(p = 0.007)

significant
(p = 0.000)

PLGA conc. (%) significant
(p = 0.0257) not sign. significant

(p = 0.000)
significant
(p = 0.000)

w/o stirring speed (rpm) not sign. not sign. significant
(p = 0.000)

significant
(p = 0.002)

w/o stirring time (s) not sign. not sign. not sign. not sign.

PVA conc. (%) significant
(p = 0.00936) not sign. not sign. not sign.

w/o/w stirring speed (rpm) significant
(p = 0.00893)

significant
(p = 0.004) not sign. not sign.

w/o/w stirring time (s) not sign. not sign. significant
(p = 0.034) not sign.

p-Value of model 0.010 0.041 0.000 0.000
R2 (%) 70.56 70.22 93.56 89.48

3.3.2. Effect on Size and Size Distribution

The z-average varied between 374.53 nm (run 15) and 5565.00 nm (run 4). The z-
average was mainly affected by the significant parameters, namely the stirring speed of
the double emulsion, stabiliser concentration and PLGA concentration (Table 3). While
a higher stirring speed and higher stabiliser concentration led to smaller droplets and
therefore to smaller particles (Figure 2a), the PLGA concentration defined the nanoparticle
size after evaporation. A higher PLGA concentration led to larger particles (Figure 2a).
Preparation parameters of the inner emulsion had no significant influence on particle size,
size distribution and the OVA concentration (Table 3). Unexpectedly, stirring time does not
have a significant influence on the z-average (Table 3). Such results need to be evaluated
carefully, as it might be possible that with higher variation of this parameter the effect
might become significant. It is also possible that the particle size reaches a plateau and
even a longer stirring time would lead to no further effect. This experiment showed that
controlling the PDI was difficult. Due to the similarity of the effect plots of z-average
and PDI (Figure 2a,b) it can be assumed that adjustments, which were leading to smaller
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particles, also led to a smaller PDI and vice versa. It might not be possible to create large
particles with a small PDI within this setup.
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3.3.3. Effect on Drug Loading and Loading Efficiency

Within the DoE the LE varied in a range from 7.22% to 23.95% and the drug loading
varied in a range from 1.32% to 6.64%. While the stirring speed of the inner emulsion and
the PLGA concentration affected LE and LC in the same direction (positive slope), the
OVA concentration had a reverse effect for both outcomes (Figure 2c,d). A higher OVA
concentration led to lower LE but higher LC, meaning that with more OVA used, more
OVA was entrapped in NP in absolute terms, but less in relation to the amount used. A
higher stirring speed of the double emulsion led to a higher redistribution of OVA from the
internal aqueous phase to the external aqueous phase resulting in a lower LE and lower LC
(Figure 2c,d).

3.4. First Approach of Optimisation with Screening Results

Although a screening is not intended for accurate adjustment, it is possible to optimise
the response and to use it as starting point for further experiments. Before creating a follow
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up DoE, the product can be prepared with “optimised” process parameters to confirm the
reliability of the screening DoE.

Using the response optimiser of Minitab 18, the following parameters were suggested
for a target size of 700 nm, minimised PDI and maximised drug loading: c(OVA) = 3.9%;
c(PLGA) = 9%; v(W/O) = 20,500 rpm; t(W/O) = 68 s; c(PVA) = 5%; v(W/O/W) = 13,500 rpm;
and t(W/O/W) = 150 s. The prognosis for the outcomes, which was calculated from the
model equations (not shown), can be seen in Table 4 as well as in the results of the NP, which
have been produced with those settings. The outcome of the preliminary optimisation was
already fitting well (Table 4). This approach increases confidence in the model.

Table 4. Prognosis for optimised parameters of screening and results of the control samples.

Response Fit Result (n = 3) ± SD

z-Average (d.nm) 702 682.21 ± 11.94
PDI 0.1989 0.30 ± 0.03

LE (%) 19.88 24.25 ± 2.55
LC (%) 3.3299 4.07 ± 0.41

3.5. Further Optimisation by Response Surface Design

Since a screening design is not intended for accurate prediction, a higher-resolution
design should be used as the next step to increase insight into influences and create a good
predictability.

3.5.1. Central Composite Response Surface Design

A CCD was chosen for its ability to optimise a response and to create a response
surface with curvature (non-linear correlations). Since the number of trials (N) increases
exponentially with the number of factors (k) and linearly with the number of centre points
(N0) (4), it is recommended to limit the number of tests when the number of factors is
increasing [24] or to choose less variables as parameters, in order not to blow up the number
of experiments.

N = 2k + 2k + N0 (4)

For the PLGA-NP being the model setup, size control was a major goal, so the PLGA
and PVA concentrations were chosen as parameters due to their prominent influence on this
parameter. Since the stirring speed could not be adjusted continuously, it was unsuitable
for precise size adjustment, despite its great influence, and was therefore kept constant.

All samples were prepared with an OVA concentration of 3.94% at 20,500 rpm, 68 s for
inner emulsion and 13,500 rpm and 150 s for outer emulsion, as derived from the previous
DoE. The PLGA and PVA concentrations were varied from 6.17 to 11.83% and from 2.17 to
7.83%, respectively (Table 5), resulting in thirteen total formulation runs with four cube
points, four axial points and five centre points. Alpha was 1.414 leading to a distance from
the centre point of 2.83% for PLGA and PVA concentration.

Table 5. Settings of central composite response surface design.

Parameter Low Axial Low Medium High High Axial

c (PLGA) [%] 6.17 7 9 11 11.83
c (PVA) [%] 2.17 3 5 7 7.83

Table 6 shows all results of the CDD. Regression equations were calculated using
backward elimination and response surface plots were generated (Figure 3) for all outcomes
using the Minitab Software.
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Table 6. Results of central composite response surface design.

Run PLGA Conc.
(%)

PVA Conc.
(%)

z-Average
(d.nm) PDI LE (%) LC (%)

1 5 9 713.97 0.232 20.32 3.49
2 5 11.83 1204.67 0.353 27.17 3.54
3 3 11 1807.00 0.293 23.08 3.25
4 5 9 650.20 0.286 22.48 3.84
5 5 9 707.30 0.295 18.58 3.20
6 7 7 446.63 0.192 19.64 4.30
7 7.83 9 503.43 0.180 22.71 3.88
8 2.17 9 1810.33 0.311 19.53 3.36
9 5 9 606.73 0.255 23.21 3.96

10 7 11 565.50 0.257 25.20 3.54
11 5 6.17 506.23 0.242 18.20 4.51
12 3 7 873.43 0.351 18.90 4.14
13 5 9 695.43 0.301 22.61 3.86
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3.5.2. Interactions

In addition to the linear terms, the quadratic and two-way interaction terms were also
significant (p < 0.05) for the size. That means that the response surface contained curva-
ture in both directions and indicates an interaction of the factors [25,26]. Both curvature
and divergent slope can be seen in Figure 4. All three lines flatten at a higher stabiliser
concentration. That could indicate e.g., a saturation with stabiliser for different PLGA con-
centrations. The lower the PLGA concentrations, the less stabiliser is needed for saturation
of the interface between inner and outer phase.
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3.5.3. Predictability

Predicted R2 (R2 (pred)) is a value that indicates how well future values can be
predicted from the model. The larger an R2 (pred) is, the better is the predictability of the
model [27]. For the CCD the following R2 (pred) were determined: 94.50% for z-average,
38.61% for PDI, 68.64% for LE and 67.33% for LC. While the size could be predicted very
well and was therefore easily adjustable, the PDI showed a poor predictability. Even this
optimised process was not suitable for changing the PDI in a targeted way. The R2 (pred)
for LE and LC was sufficiently good to provide predictability.

3.5.4. Optimisation

The preparation method was optimised to achieve particles of a size of 700 nm, a
minimal PDI and a maximal LE. This resulted in a PLGA concentration of 11.7% and a PVA
concentration of 6.7% to be used in the preparation. LC could not be optimised because of
the opposing influence of PLGA concentration on LE and LC. The outcome of the optimised
parameter was calculated by the Minitab 18 software (Table 7).

Table 7. Prognosis for optimised parameters of response surface.

Response Fit 95% CI 95% PI

z-Average (d.nm) 687.94 563.1; 812.7 496.0; 879.9
PDI 0.291 0.236; 0.347 0.201; 0.382

LE (%) 25.90 24.03; 27.77 22.24; 29.56
LC 3.57 3.22; 3.93 2.96; 4.19

3.6. Verification of the Optimal Process Parameters

To check whether the optimised parameters also provided the predicted result, the
product was prepared in triplicate. The mean should be within the confidence interval (CI)
and all individual values should be within the prediction interval (PI). The results can be
seen in Figure 5, which confirmed the prognosis. The CCD was suitable for optimisation
and adjustment of parameters and provided results within the 95% intervals.

The final product was characterised further by determination of the zeta-potential and
visualisation by scanning electron microscopy. The zeta potential was −28.5 ± 0.6 mV.

The SEM analysis (Figure 6) showed round particles with a certain size distribution,
which confirmed the results from DLS measurements.
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Figure 6. SEM-pictures of PLGA-NP produced with optimised parameters from the response surface
design at 7000-fold magnification.

This study did not address all the parameters to be considered in the development
of a nanoparticulate PLGA formulation. Rather, an experimental example was chosen
to illustrate the use of statistical experimental designs in parameter optimisation. Some
factors (of composition and equipment) were assumed to be invariant and were thus not
investigated further. For example, in a medicinal product, the choice of stabiliser and
solvent would be considered critical to product quality, health, safety and environmental
concerns, and would need to be clearly justified and controlled.
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4. Conclusions

In this study, the preparation of OVA loaded PLGA-NP with a size of 700 nm for
pulmonary delivery of antigens was utilised as model setup. They were successfully
produced using several principles of Quality by Design. With the screening design, it was
possible to gain general knowledge about which parameter influences which outcome, how
significant this influence is, and in which direction it goes. With this knowledge, it was
possible to regulate the outcomes within the limits of the design. If a target outcome is not
covered by the screening design, it is still possible to estimate which parameter should be
changed further. This makes a screening design a very suitable method for pretesting.

For further optimisation and precisely controllable outcomes, a response surface
design was needed. With the CCD it was possible to detect interactions between the
parameters and curvature. In the response surface plots, the outcomes for all different
parameter combinations can be visualised. In the model setup, producing OVA-PLGA-NP
with a double-emulsion solvent evaporation method, the parameters of the inner emulsion
mainly influenced the drug loading (LE and LC) while parameters of the outer emulsion
had an influence on size and size distribution.

A pharmaceutical product should have well-defined quality attributes. As a measure
of Quality by Design, a well understood and controllable manufacturing process is crucial,
and critical process parameters should be known. The path shown here is a good way to
achieve this goal with little effort.
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