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Abstract: Tanacetum vulgare is an herbaceous plant widely used in folk medicine. It is rich in phenolic
acids and flavonoids, which have pharmacological and medicinal properties, such as anthelmintic,
antispasmodic, tonic, antidiabetic, diuretic, and antihypertensive. This study aimed to confirm the
presence of biologically active substances in Tanacetum vulgare and to determine the pharmacological
spectrum of biological activity of Tanacetum vulgare extract components. When preparing Tanacetum
vulgare extracts, the highest yield was observed when using the maceration method with a mixture
of solvents methanol + trifluoroacetic acid (22.65 ± 0.68%). The biologically active substances in
Tanacetum vulgare extract samples were determined using high-performance liquid chromatogra-
phy. Biologically active substances such as luteolin-7-glucoside (550.80 mg/kg), chlorogenic acid
(5945.40 mg/kg), and rosmarinic acid (661.31 mg/kg) were identified. Their structures were de-
termined. The experiments have confirmed the antioxidant and antibacterial activities. Secondary
metabolites of Tanacetum vulgare extracts have been found to have previously unknown biological
activity types; experimental confirmation of their existence will advance phytochemical research and
lead to the development of new drugs.

Keywords: Tanacetum vulgare; biological activity; extracts; biologically active substances;
high-performance liquid chromatography

1. Introduction

The name Tanacetum vulgare L., also known as Common Tansy, is derived from the
Greek word “athanasia”, which means “immortality”, most likely as a result of the fact
that the flowers of this plant do not wilt when dried [1]. This perennial herbaceous plant
is widely distributed in North America, Europe, Asia, China, Japan, North Korea, and
Russia. Tanacetum vulgare L. has been found growing wild in many states of the United
States, Europe, and Asia along roadsides, in wastelands, and as a hedge [2,3]. The chemical
composition of the plant and its essential oils is affected by its growing environment and
climate. It is well described in the literature for many plants [2]. The plants with sectile
leaves grow in Corsica (France), Sardinia, and Sicily (Italy), and some consider them to be a
separate species (ssp. siculum) [4,5].

T. vulgare is a 50–100 cm tall perennial herbaceous plant. The stem is straight, branched
from the middle, furrowed, glabrous, or slightly pubescent. The leaves are alternate, dark
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green on top, grayish on the bottom, and pubescent. The lower leaves are short-petiolate,
the rest are sessile. All the leaves are pinnately lobed, divided into lanceolate lobes with saw-
toothed edges. Anthodia are numerous, 5–8 mm in diameter, and arranged in corymbose
inflorescences at the top of the stem. All the flowers are yellow and funnel shaped. The
marginal flowers are pistillate, uniseriate; the middle flowers are teleianthous. The fruits
are oblong gray achenes 1.5–3 mm long, with five ribs. The plant blooms from mid-June
to September and the fruits ripen in August–September [6]. A strong scent comes from
the main oil-containing glands in the leaves and flowers [7]. T. vulgare is diploid (2n = 18)
according to cytogenetic studies [8].

The average amount of essential oil found in aerial parts of T. vulgare plants collected
at the full flowering stage is from 0.1 to 0.5% [9,10], though up to 1.9% has occasionally been
observed [11]. T. vulgare essential oil is a warm, slightly spicy, dry, and grassy-smelling
liquid with a from yellowish to orange hue. The taste is very pungent and bitter. This
plant cannot be used in flavorings or any food products. The essential oil of T. vulgare
mainly contains high amounts of thujone, a poison that can cause convulsions, vomiting,
and uterine bleeding [9]. In addition to the essential oil, T. vulgare contains amarines and
sesquiterpene lactones [12].

The qualitative and quantitative composition of plant essential oils depends on en-
vironmental factors. The content of essential oils is an indirect indicator of plant adapta-
tion [13]. For example, the essential oil of T. vulgare growing in Lithuania contains only
four main compounds (1,8-cineole, trans-thujone, camphor, and myrtenol) [14], while
the essential oil of the T. vulgare plant growing on the territory of Scandinavia and the
Baltic states [7,15] has a more diverse composition, which includes 15 chemical compounds
(α-thujone, β-thujone, camphor, chrysanthenylacetate/chrysanthenol, chrysanthenon, ke-
tone/alcohol, and 1,8-cineole) [11,15]. It was demonstrated that such compounds as
β-thujone, camphor, and chrysanthenium acetate are the main components of T. vulgare
essential oil. These substances were found in the essential oil of T. vulgare from 11 different
localities in different parts of the world [16,17]. It was noted that the leaves and inflores-
cences of the T. vulgare plant synthesize the same amount of essential oil, but of different
composition. The amount of 1,8-cineole in the oil of the whole leaf is higher than in the oils
of inflorescences [14].

The phytochemical analysis of the T. vulgare plant revealed that it was high in bio-
logically active flavonoids, phenolic compounds, carotenoids, and their derivatives, all of
which have been shown to be effective alternative dyes [18]. T. vulgare is widely used in
traditional medicine. Tea is used as an anthelmintic, carminative, antispasmodic, stimulant
of the abdominal organs, tonic, emmenagogue, antidiabetic, diuretic, and antihypertensive
agent [19]. In addition, T. vulgare is often used in balms, cosmetics, dyes, insecticides,
natural preservatives, and medicines [20]. New drugs are discovered by screening a large
number of recently synthesized compounds, selecting only those for long-term biomedical
analyses that are more effective for their intended purpose and have the fewest negative
side effects [21].

This study aimed to confirm the presence of biologically active substances in T. vulgare
and to determine the pharmacological spectrum of biological activity of T. vulgare extract
components. It is relevant to have the ability to directly assess the physicochemical character-
istics using the biologically active substance (BAS) extracts of T. vulgare structural formula.

2. Materials and Methods
2.1. Reagents

The chemical reagents used in the studies had a purity of at least 95.0% and were
of analytical grade or higher (Sigma-Aldrich Rus, Moscow, Russia). The solutions were
prepared in deionized water purified with a MilliQ system (MilliporeSigma, Burlington,
WY, USA).
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2.2. T. vulgare Samples for Extraction

The T. vulgare plants were collected on the territory of the Kaliningrad region (Russia)
in the period June–August 2021. The T. vulgare plant samples were collected manually. The
plants were dried under natural conditions and collected in paper bags. The plant species
were determined under laboratory conditions at the Institute of Living Systems of the I.
Kant Baltic Federal University (protocol No. 10-11/2021). The mature T. vulgare plants
(flowers) were used to study the chemical composition and to produce a plant extract.

2.3. Preparation of T. vulgare Extracts

When analyzing the content of biologically active substances (BAS) in T. vulgare, the
Soxhlet method was used to extract them using methanol, methanol in an acidic medium,
and methanol in an alkaline medium over a wide pH range. The extraction module was 1:40
for 15 cycles over a period of up to 8 h. The formic and trifluoroacetic (TFA) acids were used
to acidify the medium. The NaOH and NH4OH solutions were used for alkalization [16].
According to the literature, the elevated temperature used in the Soxhlet method destroys
non-heat-resistant substances [22]. In this regard, maceration was performed at room
temperature for 8 h, with stirring and without changing the extraction module (1:40).

After the extraction and maceration steps, 6 kinds of T. vulgare extract samples were
obtained: (1) methanol Soxhlet extraction; (2) methanolic maceration; (3) methanolic
maceration at pH = 12.5 in an alkaline medium with 0.1 N NaOH; (4) methanolic maceration
at pH = 10.9 in 0.1 N NH4OH solution; (5) methanolic maceration in a solution of 0.1 N
trifluoroacetic acid at pH = 1.2; and (6) methanolic maceration in 0.1 N formic acid solution
at pH = 3.2.

The extraction using the Soxhlet method was performed for 8 h (15 cycles). The
hydromodulus was 1:40, and the extraction by maceration was performed for 8 h at a
temperature of 22 ◦C with constant stirring.

2.4. Determination of BASs in Extracts of T. vulgare

The BASs of T. vulgare extracts for bioanalysis were isolated from crude T. vulgare
flower extracts. The BAS standard samples (luteolin-7-O-glucoside, chlorogenic acid, and
rosmarinic acid) for the comparison and identification of these compounds in extracts were
purchased from AG Analytekspert (Moscow, Russia).

The samples of the T. vulgare extracts were analyzed using a Shimadzu Prominence
LC-20AB chromatograph (Shimadzu, Kyoto, Japan) equipped with a binary pump and
an SPD-M20A detector array (Shimadzu, Kyoto, Japan) using high performance liquid
chromatography (HPLC). A Zorbax 300SB-C18 4.6 × 250 mm 5 µm column (Agilent, Santa
Clara, CA, USA) was also used. The separation temperature in the gradient elution mode
was 40 ◦C. The mobile phase consisted of eluent A (0.1% TFA solution) and eluent B
(acetonitrile). A sample (5 µL) was examined at 254, 280, and 325 nm wavelength and a
flow rate of 1 mL/minute.

The components were identified using the spectra of standard samples: chlorogenic
acid (chlorogenic acid, CAS 327-97-9, ≥95.0%), rosmarinic acid (rosmarinic acid, CAS
20283-92-5, 96.0%), and luteolin-7-glucoside (cynaroside) (luteolin-7-O-glucoside, CAS
5373-11-5, analytical standard). All the standards and reagents were purchased from AG
Analytekspert (Moscow, Russia) with a purity no less than chemical purity. Calibration
curves were used to calculate the concentration of biologically active substances in T. vulgare
extracts (error 3–7%).

2.5. Determination of the Antioxidant Activity of BASs from T. vulgare Extracts

The antioxidant activity (AOA) of the BASs from extracts of T. vulgare was studied
using three methods: a method based on the ability to trap free radicals DPPH (2,2-diphenyl-
1-picrylhydrazyl); a method based on the ability to trap free radicals ABTS (2,2/-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid); and a method based on the restoring power
upon interaction with the Fe(III)-2.4.6-tripyridyl-s-triazine (FRAP) complex.
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DPPH is a stable free radical that reacts with the hydrogen atom released by the
substrate. The antioxidant activity was assessed by the presence or absence of a dark purple
color of the DPPH solution and absorption bands in the ethanol solution at a wavelength
of 517 nm using a CLARIOstar microplate reader (BMG Labtech, Ortenberg, Germany).

To prepare a solution of ABTS radicals, an aliquot of a solution of ABTS with a
concentration of 7.0 mmol/L and a solution of potassium persulfate with a concentration
of 2.45 mmol/L were mixed and incubated in a dark place at 25 ◦C for 16 h. Then, 20 µL of
BASs or a standard sample was added to 300 µL of the prepared solution of the ABTS radical
cation. The mixture was incubated for 15 min at 37 ◦C in the dark and the optical density
was determined at 734 nm on a UV-1280 spectrophotometer (Shimadzu, Kyoto, Japan).

The antioxidant activity of the biologically active substances was studied using a
FRAP solution. For this, one part of a 10 mmol/L solution of 2,4,6-tripyridyl-s-triazine in an
HCl solution with a concentration of 40 mmol/L, one part of a FeCl3 × 6H2O solution with
a solution concentration of 20 mmol/L, and 10 parts of an acetate buffer with concentration
of 0.3 mol/L (pH = 3.6) were mixed [23]. The reaction was performed at 37 ◦C in the dark
for 10 min. The light absorption was measured at 593 nm on a UV-1280 spectrophotometer
(Shimadzu, Kyoto, Japan).

2.6. Determination of the Antimicrobial Activity of BASs from T. vulgare Extracts

The antimicrobial properties of biologically active substances were studied using the
disk-diffusion method against test strains of Bacillus subtilis (Gram-positive bacterium),
Escherichia coli, Pseudomonas aeruginosa (Gram-negative bacteria), Candida albicans (yeast).
E. coli, P. aeruginosa, and B. subtilis strains were cultivated on solid and liquid LB nutrient
mediums (Dia-M, Moscow, Russia) at 37 ◦C. The strains of microscopic fungi C. albicans
were cultivated on a Ringer’s nutrient medium (Dia-M, Moscow, Russia) at a temperature
of 25 ◦C. The following concentrations were used to determine antimicrobial activity:
0.625, 1.25, 2.5, 5, 10, 25, 50, 100, 150, and 200 µg/disk. An antibiotic (kanamycin) at a
concentration of 50 µg/disk (for bacteria) and fluconazole at a concentration of 500 µg/disk
(for yeast-like fungi—C. albicans) were used as a positive control. A solution of TFA (31%)
and acetonitrile (69%) was used as a negative control.

Three parallel measurements were recorded. The measurement result was selected as
the mean value.

2.7. Molecular Docking

In the Schrödinger software package for selected antibiotic activity target proteins,
the molecular modeling of binding to isolated natural compounds was performed. The
molecular modeling algorithm was standard and consisted in the preparation of selected
target proteins, preparation of ligands, subsequent docking, and evaluation of target binding.
The compounds are ranked in scoring function values as Gibbs binding energies. The crystal
structures of all the targets were downloaded from RCSB PDB database (https://www.
rcsb.org/ accessed on 9 February 2023) with corresponding PDBID—transcription initiation
complex (6VVT) [24], dihydrofolate reductase (2WV3) [25], elongation factor G (2BV3) [26],
enoyl-acyl carrier protein reductase (2PD4) [27], and deacetylase LpxC (2GO4) [28]. All the
ligands, ions, and water molecules were removed from the structures. Hydrogen was first
added to each structure, and then the polar hydrogen atoms were removed. The compound
library was prepared in the LigPrep module. Molecular docking was performed using the
Schrödinger software package (Schrödinger, LLC: New York, NY, USA, 2017) using the gelid
algorithm with the corresponding scoring function calculated [29,30].

2.8. Statistical Data Processing

The obtained data were statistically processed using the SigmaPlot 12.3 program
(Systat Software GmbH, Erkrath, Germany). The obtained indicators were expressed as
the mean value ± standard deviation. All the experiments were repeated three times. A
one-way ANOVA was used to determine statistically significant differences between the

https://www.rcsb.org/
https://www.rcsb.org/
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mean values. Using the Shapiro–Wilks test and uniformity of variance, the data were
tested for normal distribution before ANOVA analysis. The Tukey test was used to find the
differences between the data’s mean values at a significance level of p < 0.05.

3. Results

The maximum yield of dry extracts was determined in the experiment. Table 1 shows
the total yield of T. vulgare plant extracts.

Table 1. Total yield of T. vulgare extracts.

Name

Extract Yield, wt. %

Soxhlet
Method Maceration Method

Methanol Methanol Methanol–
NaOH

Methanol–
NH4OH Methanol–TFA Methanol–

HCOOH

T. vulgare 17.10 ± 0.51 a 8.98 ± 0.27 b 4.56 ± 0.13 c 18.74 ± 0.56 a 22.65 ± 0.68 d 17.25 ± 0.51 a

Values in row followed by the same letter do not significantly differ (p < 0.05) as assessed using the post hoc test
(Duncan’s test). Data presented as a mean ± SD (n = 3).

Since the highest extract yield (22.65 ± 0.68%) was observed when using the method
of maceration of T. vulgare with a mixture of methanol and trifluoroacetic acid (TFA). Then,
HPLC was used to study the composition of all the obtained extracts (Table 2). Among the
methanolic extracts, the highest yield was observed during extraction using the Soxhlet
method; therefore, this extract was subjected to further study.

Table 2 lists the BASs identified in the T. vulgare extract samples.

Table 2. Amount of biologically active substances identified in T. vulgare extracts.

BAS Retention Time, min
Content, mg/kg

Methanol–TFA Methanol Methanol–NaOH

3,4-dihydroxybenzoic acid 5.8 ± 0.5 14.40 ± 0.43 15.36 ± 0.46 -
Neochlorogenic acid 7.6 ± 0.5 112.14 ± 3.36 - -
Caftaric acid 9.1 ± 0.5 63.00 ± 1.89 - * -
Chlorogenic acid 10.3 ± 0.5 5945.40 ± 178.36 2265.24 ± 67.96 -
Caffeic acid 10.5 ± 0.5 280.80 ± 8.42 93.45 ± 2.80 - *
Coumaric acid 13.9 ± 0.5 - * - * - *
Ferulic acid 16.3 ± 0.5 1818.00 ± 54.54 - - *
Luteolin-7-glucoside 20.7 ± 0.5 550.80 ± 16.52 104.88 ± 3.15 -
Chicoric acid 21.7 ± 0.5 - * 80.05 ± 2.40 -
Apigenin-7-O-glucoside 26.1 ± 0.5 30.60 ± 0.91 - -
Rosmarinic acid 29.3 ± 0.5 1764.00 ± 52.92 661.31 ± 19.84 3.72 ± 0.11
Acacetin 54.7 ± 0.5 23.40 ± 0.70 - -

* Below detection limit. Data presented as a mean ± SD (n = 3).

The extract producing methanol with trifluoroacetic acid had the highest concentration
of the phenolic components. This extract was selected for research on biological activity. All
the other identified BASs that are demonstrated in the chromatogram (Figure 1) were found
in trace amounts. In addition to the components listed in Table 2, the chromatogram of this
extract showed unidentified peaks of high intensity (24.3 min, 35.7 min, and 41.5 min); the
absorption spectra of which corresponded to phenolic acids. Further research is needed to
identify these components.
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Figure 1. HPLC chromatogram of T. vulgare extract samples (Methanol–TFA).

The HPLC chromatogram of the T. vulgare methanol extract with 0.1 N TFA is presented
in Figure 1.

Figures 2–4 exhibit the absorption spectra of the main isolated biologically active
substances from the extracts.
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Figure 2. Absorption spectrum of luteolin-7-glucoside isolated from T. vulgare extracts.
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Figure 5 shows the structural formulas of the main HPLC-identified (by retention time
and absorption spectra) BASs from T. vulgare extracts.
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Figure 5. Structure of BASs from T. vulgare extracts: (a) luteolin-7-glucoside; (b) chlorogenic acid; (c)
rosmarinic acid.

The predetermined BAS detection threshold is small (about 20%), which indicates
a rare structure of the compound for the predicted activities. We focused on the three
main components of T. vulgare extracts in this study: lutelin-7-glucoside, chlorogenic,
and rosmarinic acids, because they are found in the greatest quantities in the T. vulgare
extracts and have the highest antioxidant and antimicrobial activity when compared to
other identified biologically active substances (3,4-dihydroxybenzoic acid, neochlorogenic
acid, caftaric acid, caffeic acid, coumaric acid, ferulic acid, and apigenin-7-O-glucoside).
Lutelin-7-glucoside, chlorogenic, and rosmarinic acids are well-known compounds with
numerous research papers describing their properties [31–33].

The simulation results show a high binding capacity of the natural compounds found
in the T. vulgare extracts to the selected targets. For each target, natural compounds capable
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of binding were found. The highest binding properties are: Neochlorogenic acid, Luteolin-7-
glucoside, Apigenin-7-O-glucoside, and Chlorogenic acid. The following enzymes have the
most sensitive binding: enoyl-acyl carrier protein reductase, which is prone to the selective
action of Luteolin-7-glycoside and Apigenin-7-O-glucoside, and deacetylase LpxC, which
selectively binds neochlorogenic, chlorogenic, and cafftaric acids. The high selectivity of
binding of caftaric acid to elongation factor G (2BV3) is noticeable. From the modeling
results, it can be concluded that the potentiation of the 2PD4 and 2GO4 enzymes can
lead to an antibacterial effect against gamma-positive and Gram-negative bacteria. The
results of molecular docking are in good agreement with the literature data on the study
of the potentiation of the enzymatic targets of our choice using antibacterial drugs with
new mechanisms of action [34–36]. Table 3 presents the scoring function (Gibbs energy in
kcal/mol) to the corresponding compound end target.

Table 3. Scoring function for corresponding enzyme and natural product.

Compounds 6VVT 2WV3 2BV3 2PD4 2GO4

3,4-dihydroxybenzoic acid 2.90 5.29 6.75 5.42 3.07
Neochlorogenic acid 6.54 9.02 7.71 10.22 9.14
Cafftaric acid 5.88 7.65 9.65 8.66 8.37
Chlorogenic acid 5.77 9.49 6.15 9.77 9.93
Caffeic acid 3.68 5.67 5.38 4.66 1.35
Coumaric acid - - - - 8.22
Ferulic acid 2.96 5.58 - 5.02 4.47
Luteolin-7-glucoside 8.20 11.46 7.12 12.55 7.57
Apigenin-7-O-glucoside 6.27 10.34 7.32 12.12 8.00
Rosmarinic acid 5.49 8.92 9.29 8.94 5.59
Acacetin 2.23 5.68 3.64 4.80 3.97

Figure 6 depicts the interaction of amino acid side chains of binding sites with most
potent ligands and their targets.

The antioxidant and antimicrobial properties of biologically active substances in
T. vulgare extracts were studied to confirm the biological activity. The antioxidant activity
(AOA) of the BASs from the T. vulgare extracts was assessed using three different methods to
produce more convincing results: the capacity to bind free radicals DPPH and ABTS, as well
as the reducing power when interacting with the Fe (III) complex (FRAP). Six crude extracts
of T. vulgare were obtained for analysis in the first stage, and individual biologically active
substances of these extracts were isolated: lutelin-7-glucoside, chlorogenic, and rosmarinic
acids, and compared with pure, standard samples of lutelin-7-glucoside, chlorogenic,
and rosmarinic acids purchased for analysis. Table 4 presents the results of studying the
antioxidant activity of individual biologically active substances isolated from T. vulgare
extracts (lutelin-7-glucoside, chlorogenic, and rosmarinic acids).

The results of determining the antimicrobial activity of BASs from T. vulgare extracts
are presented in Table 5.

Table 4. Antioxidant properties of BASs from T. vulgare extracts.

Active Ingredients
Antioxidant Activity, mmol Trolox Equivalent/g

ABTS DPPH FRAP

Luteolin-7-glucoside 6.5 ± 0.34 2.99 ± 0.16 1.79 ± 0.06
Chlorogenic acid 12.31 ± 0.98 7.52 ± 0.32 6.91 ± 0.22
Rosmarinic acid 5.69 ± 0.29 3.44 ± 0.19 3.74 ± 0.12

Data presented as a mean ± SD (n = 3).
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Table 5. Antimicrobial activity (diameter of the growth inhibition zone of test microorganisms, mm)
of BASs from T. vulgare extracts.

Active Components

BAS Weight, µg/disk

200 150 100 50 25 10 5 2.5 1.25 0.625

B. subtilis

Luteolin-7-glucoside – – – 6.0 ± 0.2 a 8.0 ± 0.2 b 8.0 ± 0.2 b 10.0 ± 0.3 b 7.0 ± 0.2 ab 3.0 ± 0.1 c –
Chlorogenic acid – – – 4.0 ± 0.1 a 5.0 ± 0.2 a 6.0 ± 0.2 ab 8.0 ± 0.2 b 6.0 ± 0.2 ab 2.0 ± 0.1 a –
Rosmarinic acid – – – 3.0 ± 0.1 a 4.0 ± 0.1 a 6.0 ± 0.2 ab 7.0 ± 0.2 b 5.0 ± 0.2 a 2.0 ± 0.1 a –
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Table 5. Cont.

Active Components

BAS Weight, µg/disk

200 150 100 50 25 10 5 2.5 1.25 0.625

P. aeruginosa

Luteolin-7-glucoside – – – 5.0 ± 0.2 a 6.0 ± 0.2 a 7.0 ± 0.2 ab 8.0 ± 0.2 b 5.0 ± 0.2 a 2.0 ± 0.1 c –
Chlorogenic acid – – – 6.0 ± 0.2 a 6.0 ± 0.2 a 7.0 ± 0.2 a 7.0 ± 0.2 a 3.0 ± 0.1 b – –
Rosmarinic acid – – – 4.0 ± 0.1 a 6.0 ± 0.2 ab 7.0 ± 0.2 b 8.0 ± 0.2 b 6.0 ± 0.2 ab 3.0 ± 0.1 a –

E. coli

Luteolin-7-glucoside – – – 1.0 ± 0.1 a 2.0 ± 0.1 a 2.0 ± 0.1 a 5.0 ± 0.2 b 1.0 ± 0.1 a – –
Chlorogenic acid – – – 1.0 ± 0.1 a 2.0 ± 0.1 a 3.0 ± 0.1 ab 4.0 ± 0.1 b 2.0 ± 0.1 a – –
Rosmarinic acid – – – 1.0 ± 0.1 a 3.0 ± 0.1 a 4.0 ± 0.1 ab 5.0 ± 0.2 b 2.0 ± 0.1 a – –

C. albicans

Luteolin-7-glucoside – – – – 1.0 ± 0.1 a 6.0 ± 0.2 b 2.0 ± 0.1 a – – –
Chlorogenic acid – – – – – – – – – –
Rosmarinic acid – – – – – – – – – –

Values in row followed by the same letter do not differ significantly (p < 0.05) as assessed using the post hoc test
(Duncan’s test).

4. Discussion

The following BASs were mainly identified using HPLC in samples of T. vulgare extract,
produced using the maceration method with a mixture of methanol–TFA solvents: luteolin-
7-glucoside (C21H20O11)—550.80 mg/kg, chlorogenic acid (C16H18O9)—5945.40 mg/kg,
and rosmarinic acid (C18H16O8)—661.31 mg/kg. 3,4-dihydroxybenzoic, neochlorogenic
acid, caffeic, coumaric, ferulic, and cafftaric acids, acacetin, and apigenin-7-O-glucoside
were detected either in minimal or trace amounts.

It is known [37] that different classes of phenolic compounds exhibit different an-
tioxidant activity measured in vitro with respect to 2,2-diphenyl-1-picrylhydrazyl and
2,2/-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, and also differ in the abil-
ity to reduce Fe (III) in a complex with 2.4.6-tripyridyl-s-triazine. Chlorogenic and ros-
marinic acids, a subclass of hydroxycinnamic acids, were isolated from T. vulgare extracts.
Chlorogenic acid had the maximum antioxidant activity measured by all three methods
(12.31 ± 0.98, 7.52 ± 0.32, and 6.91 ± 0.22 mmol Trolox equivalent/g measured using ABTS,
DPPH, and FRAP methods, respectively). Rosmarinic acid, also belonging to the class of
hydroxycinnamic acids and Isolated from T. vulgare extracts, showed approximately 2 times
lower antioxidant activity compared to chlorogenic acid (5.69 ± 0.29, 3.44 ± 0.19, and
3.74 ± 0.12 mmol Trolox equivalent/g according to the ABTS, DPPH, and FRAP methods,
respectively) [38].

The results show that in vitro antimicrobial activity of 5 µg/disk of luteolin-7-glucoside
against B. subtilis, P. aeruginosa, and E. coli and 10 µg/disk of luteolin-7-glucoside against
C. albicans; 5 µg/disc of chlorogenic acid exhibited antimicrobial activity against B. subtilis,
P. aeruginosa, and E. coli but no antimicrobial activity against C. albicans; 5 µg/disk of
rosmarinic acid exhibits antimicrobial activity against B. subtilis, P. aeruginosa, and E. coli,
but not against C. albicans.

The data above demonstrated that the wide range of pharmacological effects and
mechanisms of action that the BASs from T. vulgare extracts can have was confirmed by the
diversity of the biological activities of these BASs. Particularly, several activities indicated
that investigations into the potential use of these compounds as pharmaceutical ingredients
with previously unknown antimutagenic, antihypoxic, antioxidant, antibacterial, and
cardioprotective actions are promising. In the case of synergism or antagonism of the
combined action of biologically active substances in real extracts, in vitro and in vivo
experiments are required to confirm the presence of the activities [39–41].

To study the mechanism of antioxidant and antibacterial properties, Filimonov et al. [39]
studied the processes of molecular docking of carvacrol with xanthine oxidase enzyme and
antibacterial protein. In the course of the study, the author proved that the xanthine oxidase
enzyme is actively involved in the formation of reactive oxygen species, and the carrier
protein reductase is a target for inhibiting bacterial growth [39].
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A group of scientists led by Kurashov [42] proved that certain compounds, such as
androstanol; biform; geranilacetone; kauren; manul; muketon; rimouin; sandaracopymara-
diene; α-eudesmol; α-muurolene; β-eudesmol; β-ionone; (22E)-3α-ergosta-14.22-dien-5β-
ol acetate; (2Z,4Z)-hepta-2,4-dienal; (3E,5E)-octa-3,5-diene-2-one; (9Z,12Z)-octadeca-9.12-
dienoic acid; 2,6-dimethylcyclohexan-1-ol; 2-phenylacetaldehyde; 5α—androstan-16-one;
and 8-(2.5.5.8A-tetramethyl-1.4.4A.5.6.7.8.8A-octahydro-1-naphthalenyl)-6-methyl-5-octen-
2-ol, have pronounced antitumor, antimicrobial, and anti-inflammatory properties, which
indicates the high potential for using plant extracts containing these substances in the
pharmacological industry.

In a study [15], extracts of T. vulgare inflorescences were obtained, which were distin-
guished by their high (8.8 mmol Trolox equivalent/g) antioxidant activity and determined
by the value of their DPPH inhibition. The obtained values of the antioxidant activity of the
T. vulgare extracts correlate well with the total content of the phenolic acids [11,21]. These
results confirm that the presence of chlorogenic and rosmarinic acids affect the antioxidant
activity of extracts of T. vulgare inflorescences. The presence of antioxidant activity of
T. vulgare plant extracts confirm the high probability of antioxidant activity of individual
BASs isolated in our studies. The difference in the values of antioxidant activity obtained
in our study and the values of antioxidant activity obtained in the study [15] is explained
by different habitats of T. vulgare.

The research by Devrnja et al. [1] enabled it to be possible to establish that the extract
of T. vulgare has the ability to inhibit biofilm synthesis and also exhibits antioxidant and
antimicrobial properties. The same research group showed the possibility of using T. vulgare
extract in the pharmaceutical and cosmetic industries [1].

A study [43] aimed to determine the antibacterial and antioxidant activities of T. vul-
gare hydroethanol extracts based on their chemical profiles. The dominant compound of
T. vulgare extracts, determined using gas chromatography with mass spectrometry, was
trans-chrysanthenyl acetate (18.39%). HPLC-DAD was used to determine the chemical
composition of phenolic acids and flavonoids. Chicoric acid was the dominant phenolic
compound (4311.3 mg × 100 g−1). The of T. vulgare extract had a high antioxidant potential
(determined using FRAP and DPPH).

The plant extracts have been found to have antioxidant and antimicrobial properties,
causing them to be promising raw materials for the pharmaceutical and food industries.
These properties were also confirmed in studies by Bączek et al. [43]. They found that
extracts of T. vulgare are characterized by antibacterial, fungicidal, and antioxidant prop-
erties. The phytochemical analysis of plant extracts revealed the presence of flavonoids
(luteolin, quercetin, and apigenin) and phenolic acids (dicaffeoylquinic acid, caffeic acid,
and chlorogenic acid) [43].

In a study [44], T. vulgare essential oil extracts demonstrated antioxidant activity, signif-
icantly inhibiting tert-butyl hydroperoxide-induced DCFH oxidation. Sharopov et al. [44]
proved that thymol, carvacrol, and eugenol, which belong to the terpenoid series, have
antioxidant, antimicrobial, and antifungal activity [45]. It was established that the α-pinene
and caryophyllene oxide compounds contained in extracts of T. vulgare have the highest
antioxidant activity [46]. The paper [47] described moderate levels of α-pinene antioxidant
activity based on DPPH analysis. However, in [47], the antioxidant activity of caryophyllene
oxide was reported for the first time.

As reported in [48], T. vulgare extracts have antibacterial activity [48–50]. The an-
tibacterial activity of T. vulgare from Romania [51] and Slovakia [52] against strains of
Gram-positive bacteria using the disk diffusion method has also been reported. The ex-
tracts of the essential oil of T. vulgare from Tajikistan were found to be weakly effective
against E. coli and MRSA [44]. The studies show that T. vulgare essential oil extracts are
effective against S. aureus and E. coli. In addition, the caryophyllene oxide and γ-terpinene
extracts were also active against S. aureus [53]. The antibacterial activity of caryophyl-
lene oxide and γ-terpinene from T. vulgare extracts has been previously reported in the
literature [54,55].



Pharmaceutics 2023, 15, 616 12 of 14

5. Conclusions

The following BASs were mainly identified using HPLC in samples of T. vulgare extract
produced using the maceration method with a mixture of methanol–TFA solvents: luteolin-
7-glucoside (C21H20O11)—550.80 mg/kg, chlorogenic acid (C16H18O9)—5945.40 mg/kg,
and rosmarinic acid (C18H16O8)—661.31 mg/kg. Additionally, 3,4-dihydroxybenzoic,
caffeic, p-coumaric, chicoric, and cafftaric acids, and quercetin-3D-glucoside were found in
minimal and trace amounts.

It has been proven through in vitro experiments that T. vulgare extracts can exhibit a
wide range of activities because of the presence of luteolin-7-glucoside, chlorogenic, and
rosmarinic acids, but the most likely ones are antimutagenic, antihypoxic, antioxidant, an-
tibacterial, and cardioprotective activities. This study also demonstrated that the dominant
components (luteolin-7-glucoside, chlorogenic, and rosmarinic acids) have antioxidant and
antimicrobial activity. Previously unknown types of biological activity of T. vulgare extract
secondary metabolites have been identified, and experimental confirmation of their pres-
ence will contribute to the advancement of phytochemical research and the development
of new drugs.
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