
Citation: Bosch, A.M.; Assenza, S.

Interplay of Hydropathy and

Heterogeneous Diffusion in the

Molecular Transport within Lamellar

Lipid Mesophases. Pharmaceutics

2023, 15, 573. https://doi.org/

10.3390/pharmaceutics15020573

Academic Editor: David Barlow

Received: 14 December 2022

Revised: 18 January 2023

Accepted: 3 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Interplay of Hydropathy and Heterogeneous Diffusion in the
Molecular Transport within Lamellar Lipid Mesophases
Antonio M. Bosch 1 and Salvatore Assenza 1,2,3,*

1 Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid,
28049 Madrid, Spain

2 Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
3 Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
* Correspondence: salvatore.assenza@uam.es

Abstract: Lipid mesophases are being intensively studied as potential candidates for drug-delivery
purposes. Extensive experimental characterization has unveiled a wide palette of release features
depending on the nature of the host lipids and of the guest molecule, as well as on the environmental
conditions. However, only a few simulation works have addressed the matter, which hampers a solid
rationalization of the richness of outcomes observed in experiments. Particularly, to date, there are no
theoretical works addressing the impact of hydropathy on the transport of a molecule within lipid
mesophases, despite the significant fraction of hydrophobic molecules among currently-available
drugs. Similarly, the high heterogeneity of water mobility in the nanoscopic channels within lipid
mesophases has also been neglected. To fill this gap, we introduce here a minimal model to account
for these features in a lamellar geometry, and systematically study the role played by hydropathy and
water–mobility heterogeneity by Brownian-dynamics simulations. We unveil a fine interplay between
the presence of free-energy barriers, the affinity of the drug for the lipids, and the reduced mobility of
water in determining the net molecular transport. More in general, our work is an instance of how
multiscale simulations can be fruitfully employed to assist experiments in release systems based on
lipid mesophases.

Keywords: Brownian dynamics; effective diffusion; potential of mean force; partition coefficient;
release setups

1. Introduction

Lipid mesophases are self-organized structures where nanoscopic solvent channels
emerge from the self-arrangement of lipids in the host solvent. Despite often maintaining
the fluidity of the membrane, these aggregates show spatial periodicity following standard
crystallographic space groups. In previous studies, the geometry and topology of lipid
mesophases have been shown to depend on various parameters, such as pH, temperature,
and lipid–solvent (usually water) ratio [1–8]. This has recently made these systems of
significant interest for biotechnological applications in material design and drug delivery,
as well as fundamental research on ion pumps, membrane protein crystallization, and
cryo-enzymatic reactions [9–15].

In particular, heterogeneity, reproducibility, and high biocompatibility of lipid mesophases
have made them a potential tool for drug and nutraceutical delivery [14]. Moreover, the rich
structural landscape of lipid mesophases has recently been shown to be naturally explored
during digestion of tryglycerides, which likely impacts the delivery of drugs embedded
in such hosts [16]. As a consequence, a large amount of research has been devoted to
understanding how the chemical and structural features of lipid mesophases influence their
transport properties [5,17–33]. Experimental efforts in characterizing the molecular trans-
port through lipid mesophases have unveiled an extensive palette of delivery performance
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depending on factors such as the geometry and symmetry of the lipid mesophase, the
size of the diffusion domain, the hydropathy of the diffusing molecule, and lipid–solvent
composition. While opening many possibilities for devising tailored applications, this rich
heterogeneity of relevant features makes it lengthy and costly to fully characterize the role
played by each of them via experimental assays. Theoretical considerations and computa-
tional simulations can provide a complementary insight into these systems, due to their
faster and cheaper implementation, but also because they allow to address the effect of the
various factors one at a time, which is not always possible in experiments. Although there
is a vast literature focused on the modelling of diffusion in confined environments [34,35]
and on the exotic water mobility at the interface with hydrophilic objects [36–39], little
work has studied these topics within the context of lipid mesophases [8,28,29,40].

Strikingly, there is a lack of theoretical studies addressing the influence of molecular
affinity for the lipids on the transport of the guest particle. This is a particularly important
gap in view of the potential applications of lipid mesophases for drug delivery, since about
one third of current drugs show low solubility in water [41,42]. The importance of this
aspect in drug delivery is being increasingly acknowledged, for instance by investigations
focused on solubility aspects in biorelevant media [43]. In this work, we take a step in
understanding the impact of hydropathy by studying the diffusion kinetics of a particle
spending a finite amount of time in both the water channels and the lipid bilayers. We
analyze the role played by the complex interaction free energy between the guest particle
and the lipid molecules, as well as the impact of the reduced mobility of water in the
vicinity of lipid heads. The latter is expected to strongly affect the quantitative determina-
tion of transport properties, as water with lower mobility extends beyond roughly 1 nm
starting from the lipid heads [8,40,44], which is comparable to the overall size of the water
nanochannels inside lipid mesophases. We focus on the case of a lamellar arrangement
with geometrical parameters obtained from reported experimental data. We find that
diffusion in the direction perpendicular to the lipid/water interface is strongly regulated
by the free-energy barriers obstaculating particle exchange between the lipid and water
phases, while parallel diffusion is determined by the hydropathy of the guest molecule, as
quantified by the partition coefficient. Heterogeneity of water mobility enters the picture in
quantitatively regulating the large-scale diffusion coefficient.

2. Materials and Methods

In a lamellar geometry, the system can be conveniently expressed by considering a
reference frame with the z-axis oriented along the normal to the lipid/water interface. The
diffusion of a guest molecule can be assessed by considering a Brownian dynamics in a
periodic free-energy landscape U(z) and with a space-dependent diffusion coefficient D(z).
Within this framework, the physico-chemical properties of the particle, as well as its interac-
tion with the solvent and the lipids, are concealed within the profiles U(z) and D(z). Ideally,
these functions are obtained by running dedicated atomistic simulations of the system; an
example is provided by the amino acids study presented later in the manuscript, where
U(z) is implemented according to previously-published results of atomistic simulations.
Here, we also consider a physically-sound toy model, which accounts, in a minimalistic
fashion, for the main features of a typical system, as detailed below. Although simplistic,
this framework enables accounting for the features of the system which are the focus of
the present study; for example, in the context of strongly-hydrophilic particles in cubic
phases, this approach has enabled estimation of the amount of bound water by comparison
of theoretical and experimental diffusion coefficients, obtaining values in agreement with
direct experimental observations [28]. However, one always has to keep in mind that
various microscopical features are not accounted for, including for instance the impact of
electrostatics in the diffusion of charged molecules, or the presence of perturbations in the
bilayer such as Helfrich undulations [45].
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2.1. Model

The hydropathy of the guest molecule is described by considering a periodic potential
of mean force U(z) such as the one depicted in Figure 1b (we show only one periodicity),
which corresponds to the equation

U(z) =



∆U if |z| ≤ l − h
∆U + 8 ∆Ub−∆U

h2 (l − h− |z|)2 if l − h < |z| ≤ l − 3
4 h

∆Ub − 8 ∆Ub−∆U
h2

(
l − 1

2 h− |z|
)2

if l − 3
4 h < |z| ≤ l − 1

2 h

∆Ub − 8 ∆Ub
h2

(
l − 1

2 h− |z|
)2

if l − 1
2 h < |z| ≤ l − 1

4 h

8 ∆Ub
h2 (l − |z|)2 if l − 1

4 h < |z| ≤ l
0 if l < |z| ≤ a

2

. (1)

In the previous formula, a is the lattice parameter, l is the total length of a lipid within
the bilayer, and h is the size of the lipid head (see Figure 1). In order to set reasonable values
for these parameters, we considered a = 6.65 nm, which corresponds to fully-hydrated
Lα lamellar mesophases obtained by water/dipalmitoylphosphatidylcholine mixtures at
43 ◦C [46]. Moreover, we also set l = 2.365 nm and h = 1 nm based on the electron-density
profile computed in Ref. [47] for the same mixture. As for the energy parameters, ∆U is the
free-energy difference between the plateaus corresponding to the lipid tails and the water
region. Therefore, ∆U > 0 for hydrophilic molecules (such as in Figure 1b), while ∆U < 0
in the case of hydrophobicity. The parameter ∆Ub introduces a barrier in correspondence
with the lipid heads, which can mimic the kinetic barriers associated with the permeability
of the membrane; moreover, ∆Ub can be employed to introduce depletion of molecules
from the lipid heads (∆Ub > 0) or the tendency to sit at the water/lipid interface typical
of amphiphilic molecules, which is the case for many proteins (∆Ub < 0) [48]. The use
of parabolic fragments in Equation (1) allows for tuning the potential between 0, ∆U and
∆Ub, while ensuring that both U(z) and its derivative are continuous throughout space
(see Figure 1b), which avoids undesirable numerical instabilities in the simulations.

A similar approach was used to account for heterogeneity in molecular transport. To
this aim, we introduced a space-dependent diffusion coefficient D(z) (Figure 1c):

D(z) =


Dlip if |z| ≤ l

Dlip + 2
Dwat−Dlip

w2 (l − |z|)2 if l < |z| ≤ l + 1
2 w

Dwat − 2
Dwat−Dlip

w2 (l + w− |z|)2 if l + 1
2 w < |z| ≤ l + w

Dwat if l + w < |z| ≤ 1
2 a

. (2)

In the previous formula, Dwat and Dlip correspond to the diffusion coefficients of the
guest molecule when considered in pure water and in the lipid bilayer, respectively, while
w is the thickness of the water layer in which the continuous change between Dlip and
Dwat takes place; therefore, w accounts for the reduced mobility of water molecules in the
vicinity of the lipid heads [44].

Typical values of Dwat for nanoscopic objects are found in the range 10−10–10−9m2/s.
For instance, at 25 ◦C, one has Dwat = 0.7–0.9× 10−9 m2/s for amino acids [49–53], and
Dwat = 0.5, 0.7, 0.8 × 10−9 m2/s for ibuprofen [54], aspirin [55], and paracetamol [56],
respectively. The value of Dwat is expected to be dependent on temperature, T. When small
temperature differences are considered (such as estimation of Dwat at physiological tem-
perature starting from room-temperature measurements), a simple yet effective approach
to estimate the effect of T is to assume a Stokes–Einstein relation Dwat = kBT/(6πη(T)R),
where kB is Boltzmann’s constant, R is the size of the particle, and η(T) is the temperature-
dependent viscosity of water. This approach has enabled accurate predictions of transport
of glucose molecules in monolinolein-based cubic phases [57]. Unless stated otherwise, in
our simulations, we consider Dwat = 0.7× 10−9 m2/s.
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Figure 1. General features of the theoretical model. (a) sketch of a repeating unit in a lamellar
mesophase and definition of the main parameters; molecules are not at scale; (b) representative peri-
odic potential of mean force U(z) corresponding to the system in (a). In this case, U(z) corresponds
to a hydrophilic molecule (∆U > 0) with low affinity for the lipid heads (∆Ub > 0). The orange circles
correspond to the free energy extracted from a control simulation to determine the optimal timestep,
as described in the Methods; (c) representative periodic, position-dependent diffusion coefficient
D(z) corresponding to the system in (a), smoothly changing from Dlip within the lipid phase to Dwat

in the water phase far from the lipid/water interface.

As for the diffusion coefficient in the lipid phase, Dlip, one expects its value to be
significantly smaller than Dwat due to the lower fluidity of the lipid membrane as compared
to water. For instance, the three-dimensional self-diffusion of lipids for various monoacyl-
glycerols with cubic symmetry has been reported to be 1.1–1.3× 10−11m2/s [26], which
gives values in the range 1.7–2× 10−11 m2/s for the lateral diffusion coefficient when
accounting for the geometric constraint imposed by the minimal surface at the mid-plane of
the lipid bilayer [58]. Amino acids and drugs such as the ones mentioned above are smaller
than lipid molecules, so that Dlip is expected to be somewhat larger for them. Here, we fix
Dlip = 0.09Dwat, based on molecular dynamics simulations of paracetamol in DPPC [47].

Finally, the parameter w was set in accordance with experimental evidence and molec-
ular dynamics simulations, which point to the existence of 3–4 layers of water with reduced
mobility in proximity of the lipid heads [8,40,44]. The specific value of this thickness was
selected to be w = 0.96 nm (Figure 1c), in order to ensure that Dwat is reached exactly
at z = a/2, thus avoiding a discontinuity in the derivative of D(z), which would have
occurred for larger values of w.
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2.2. Brownian Dynamics

Based on the model introduced above, we run Brownian Dynamics simulations to
study the diffusion kinetics. Despite the one-dimensional nature of the potential U(z)
and the diffusion coefficient D(z), we integrated the motion in three dimensions, thus
also including the movement along planes parallel to the lipid/water interface. This was
motivated by the expected effect of a space-dependent diffusion coefficient also on lateral
diffusion. Following standard Euler integration, and including a drift term to correctly
implement the spatial dependence of the diffusion coefficient [59,60], the updating rule for
the position r ≡ (x, y, z) of a particle is:

x(t + dt) = x(t) +
√

2Ddt ξx,
y(t + dt) = y(t) +

√
2Ddt ξy,

z(t + dt) = z(t)− D
kBT

dU
dz dt + dD

dz dt +
√

2Ddt ξz.
(3)

In the previous formula, t is time and dt is the integration timestep, while ξx, ξy and
ξz are random variables distributed according to a Gaussian function with zero average
and unit variance. Although molecular dynamics simulations indicate that diffusion in
parallel and perpendicular directions to the lipid/water interface are distinct [8,39], for
simplicity in Equation (3), we consider, for a given position, the same diffusion coefficient
for the random movement in any direction. More accurate quantitative estimations will
require a proper account of this feature for the system under study.

The choice of length units (σ = 1 nm) together with the value chosen for Dwat de-
termines a “natural” simulation timescale τ = σ2/Dwat for the time t. For instance, if
Dwat = 0.7× 10−9 m2/s = 0.7 nm2/ns, one has τ ' 1.4 ns. The value of τ is important in
the determination of the integration of the timestep dt. Our rationale in its choice was to
consider the largest possible value of dt which correctly recovers the equilibrium distribu-
tion of a collection of particles. In this regard, for the system corresponding to U(z) and
D(z) as in Figure 1, we performed simulations of 104 particles initially located at z = 0 for
a total time 2× 104τ, by considering several values of dt; the optimal choice turned out to
be dt = 3× 10−4τ, which at the end of the simulation led to the correct sampling of the
implemented U(z) (orange points Figure 1b).

For each study reported in Section 3, we performed simulations for ensembles of 103

particles up to times ranging between 5× 103τ and 5× 105τ. Particles were pre-equilibrated
by randomly extracting their initial position from their Boltzmann distribution by using the
Ziggurat algorithm [61]. The value of the total simulation time was adapted according to
the system under study, to ensure that the mean-square displacement in the perpendicular
direction reached at least 100 nm2. We found that this threshold value was sufficient to
ensure a good estimation of the long-time diffusion coefficient.

The diffusion kinetics of the system was monitored by computing the mean-
square displacement:MSD‖(t) =

〈
(x(t)− x0)

2
〉
+
〈
(y(t)− y0)

2
〉

MSD⊥(t) =
〈
(z(t)− z0)

2
〉

.
(4)

In the previous formula, r0 ≡ {x0, y0, z0} is the initial position of each particle, while
〈· · · 〉 denotes averaging over the whole ensemble. MSD‖(t) and MSD⊥(t) describe the
diffusion kinetics in the directions parallel and perpendicular to the lipid/water interface,
respectively. At long times, in both cases, the MSD is expected to be purely diffusive [28]:
MSD‖(t) = 4D‖t and MSD⊥(t) = 2D⊥t, where D‖ and D⊥ are the effective diffusion
coefficients. The different prefactors account for the different dimensionalities of the two
diffusion kinetics (two and one dimensions, respectively).
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2.3. Relationship between log P and 〈D〉
The logarithm of the partition coefficient log P is defined as log P = log10(clip/cwat),

where clip and cwat are the concentrations of particles in the lipid and water phases [62].
Denoting as l the length of the lipids and as a the lattice parameter, one has in general

10log P =
clip

cwat
=

∫ l
0 e−

U(z)
kBT dz/l∫ a

2
l e−

U(z)
kBT dz/

( a
2 − l

) (5)

where we consider only half repeating units due to the symmetry of the system. Note
that this formula is not restricted to our choice of U(z) operated above; instead, it holds,
in general, under the approximation that one can sharply distinguish the lipid and water
phases. As a further approximation, we assume that within the water phase U(z) = 0. This
neglects desolvation effects on the guest molecule within the water layer in contact with
the lipid heads, as well as electrostatic interactions. Nevertheless, actual computation of
U(z) from atomistic simulations suggests that this assumption is pretty reasonable (see,
e.g., Figure 7a). Within this approximation, the denominator in the previous formula is 1,
thus yielding ∫ l

0
e−

U(z)
kBT dz = l 10log P . (6)

The average diffusion coefficient 〈D〉 is obtained by thermal averaging of D(z):

〈D〉 =
∫ a

2
0 D(z)e−

U(z)
kBT dz∫ a

2
0 e−

U(z)
kBT dz

. (7)

The denominator in the previous formula can be rearranged by means of Equation (6) as

∫ a
2

0
e−

U(z)
kBT dz =

∫ l

0
e−

U(z)
kBT dz +

∫ a
2

l
e−

U(z)
kBT dz = l 10log P +

( a
2
− l
)

. (8)

Similarly, the numerator in Equation (7) can be rearranged as

∫ a
2

0
D(z)e−

U(z)
kBT dz =

∫ l

0
D(z)e−

U(z)
kBT dz +

∫ l+w

l
D(z)e−

U(z)
kBT dz +

∫ a
2

l+w
D(z)e−

U(z)
kBT dz . (9)

In the first and third term on the right-hand side of the previous formula, one can
assume constant values for the diffusion coefficient equal to Dlip and Dwat, respectively.
The second term can be rewritten as w D̄, where D̄ is the average value of D(z) in the
layer of water molecules with non-trivial mobility (compare Figure 1c). We assume that
D̄ = (Dwat + Dlip)/2, which considers a symmetric profile of D(z) within this region, as
is the case for the toy model introduced in Equation (2). This allows for rewriting the
numerator as∫ a

2

0
D(z)e−

U(z)
kBT dz = Dlip

∫ l

0
e−

U(z)
kBT dz + w

Dwat + Dlip

2
+
( a

2
− l − w

)
Dwat (10)

that is, by rearranging and making use of Equation (6),

∫ a
2

0
D(z)e−

U(z)
kBT dz = Dlip

(
l 10log P +

w
2

)
+ Dwat

( a
2
− l − w

2

)
. (11)

Plugging Equations (8) and (11) in Equation (7) finally yields the formula reported in
Equation (14) in the main text.
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2.4. Amino Acids Simulations

We simulated the diffusion of 16 amino acids by considering for U(z) the potential
of mean force derived in Ref. [63], where these residues were considered in the pres-
ence of DOPC. For the four charged amino acids (Arg, Lys, Glu, Asp), we considered
U(z) = min{Uc(z), U0(z)}, where Uc(z) and U0(z) are the free-energy profiles obtained
for the charged and neutral variants of the amino acids, shifted according to the free-energy
cost of their neutralization in pure water [63]. We deem this approximation to be reasonable,
as seen explicitly in constant-pH simulations performed for similar systems [64]. The U(z)
profiles are reported in Figure 7a. As for the diffusion profile, we considered Equation (2)
with parameters adapted to the present system. We kept the value a = 6.65 nm for the
lattice parameter. Following Ref. [63], we assigned to the lipid length the value l = 2.5 nm.
Accordingly, we set w = 0.825 nm in order to attain Dwat exactly at z = a/2. The diffusion
coefficients in water, Dwat, were obtained by considering for each residue the values ob-
tained experimentally [49–53,65,66] and subsequently estimating the corresponding values
at 37 ◦C according to the Stokes–Einstein equation, as discussed above [57]. The obtained
values range between 0.9 nm2/ns (obtained for Trp) and 1.3 nm2/ns (obtained for Cys),
with an average equal to 1.04 nm2/ns. As in the toy model, the value of Dlip was set to
Dlip = 0.09Dwat for each residue.

Brownian dynamics simulations were performed with the same parameters as dis-
cussed above. Due to the large values of the free-energy barriers, the diffusion coefficients
for Arg, Asn, Lys, Asp, Gln, and Ile could not be assessed by brute-force simulations.
Instead, for each of these systems, we considered various sets of simulations in which U(z)
was renormalized by a factor α < 1. The value of D⊥(α) was computed for each simulation
set and its dependence on α was fitted via an exponential decay. The sought value for the
original system was then obtained by extrapolating to α = 1. For Asn, Lys, Asp, Gln, and
Ile, we considered α = 0.3, 0.4, 0.5, 0.6. In the case of Arg, the strong barrier imposed lower
values α = 0.15, 0.20, 0.25, 0.30. As for D‖, for each value of α, we checked the quantita-
tive agreement between the value obtained from the simulations and the result found by
applying Equation (13); then, we considered the predicted value computed for α = 1.

3. Results

Periodic lipidic mesophases exist in a wide variety of arrangements, including lamellar,
hexagonal, and cubic symmetries [14]. Moreover, for each symmetry, an extended range of
geometrical features can be obtained, e.g., channel swelling by addition of co-surfactants [5].
For the lamellar symmetry, the lipids in the bilayer can be arranged in different ways, such
as crystals (Lc phase), gels (Lβ), or fluid membranes (Lα) [1,46]. As the main goal of this
work is to understand the combined effect of heterogeneous diffusion and hydropathy
on molecular transport, we focused on the simple case of a lamellar symmetry with fixed
geometrical features (Figure 1), leaving the important topic of the impact of topology and
geometry to future work. We fixed the lattice parameter a = 6.65 nm, the lipid length
l = 2.365 nm, and the size of lipid heads h = 1 nm by following data reported in the
literature [46,47] (see Methods for further details). It is expected that quantitative results
depend on the choice of these parameters, but the qualitative impact of hydrophobicity and
spatial dependence of diffusion on molecular transport does not change once the values
of a, l and h have been fixed. We note that, for any system of interest, these parameters
can be obtained directly from experiments such as small-angle X-ray or neutron scattering;
particularly, a can be obtained by analyzing the peak positions of the scattering profiles [17],
while l and l − h correspond to half the thickness of the bilayer and of its hydrophobic part,
respectively, which can be computed by suitably fitting the scattering profiles [67] or by
employing geometric arguments based on the known composition of the system [1].

In order to establish a connection between the microscopic insights gathered by
molecular dynamics simulations and the macroscopic transport properties relevant for
experiments and practical applications, it is necessary to introduce a mesoscopic description
of lipid mesophases, which takes as input the microscopic details of the system and provides



Pharmaceutics 2023, 15, 573 8 of 20

predictions on the macroscopic diffusion. We can describe the heterogeneous environment
offered by lipid mesophases at the nanoscopic scale by introducing a periodic potential
of mean force U(z) and a space-dependent diffusion coefficient D(z), both depending
on the position z of the particle with respect to the the lipid–water interface (Figure 1).
These features can be extracted from molecular dynamics simulations or, although only
partially, from experimental data. To assess the impact of hydropathy, we first consider a
minimalistic model of U(z), for which we report a representative plot for a single periodicity
in Figure 1b. The parameter ∆U gives the overall change in free energy upon inclusion of
the guest molecule in the lipid membrane as compared to water, while ∆Ub represents the
free-energy barrier (or well, for negative values) which regulates the timescale of particle
exchange between the lipid and water regions. Heterogeneous transport is captured by
a position-dependent diffusion coefficient D(z) (Figure 1c), which continuously changes
from Dlip in the lipid membrane to Dwat in water, with the change happening within a
distance range of about w = 1 nm, as reported in the literature [8,40,44] (see Methods for
further discussion on the matter). U(z) and D(z) were then employed to run Brownian
Dynamics simulations aimed at assessing the diffusion kinetics of the system at large scales.
Full details of the model and of the simulation setup are described in the Methods. In a
later section, we also consider a practical case study focused on amino acids, for which
more realistic potentials were extracted from molecular dynamics simulations reported in
the literature.

3.1. Assessing the Importance of Each Physical Ingredient
3.1.1. Impact of ∆Ub

The simulation setup enables devising systems which, albeit unrealistic, provide
clear insights on the impact of each feature taken separately. In this section, we focus on
how the barrier ∆Ub affects large-scale diffusion. To this aim, we thus fix ∆U = 0 and
Dlip = Dwat = 0.7 nm2/ns, so as to isolate the effect of ∆Ub alone. Examples of potentials
U(z) are reported in the insets of Figure 2. In the figure, the main plots show the mean-
square displacement (MSD) for selected values of ∆Ub, in order to highlight the role played
by the magnitude and sign of this parameter. Particularly, in Figure 2a, we show the MSD
for ∆Ub = −4kBT (green squares) and ∆Ub = 4kBT (orange circles). The empty symbols
correspond to the MSD computed along planes parallel to the lipid/water interface, MSD‖.
Since in the considered systems the diffusion coefficient is constant throughout space,
lateral diffusion is unaffected by the value of U(z). Therefore, MSD‖ shows a standard
diffusive behavior characterized by a diffusion coefficient D‖ = Dwat, i.e., MSD‖ = 4Dwatt
(grey dashed line in Figure 2a). In a log-log plot such as the ones considered in the figure,
this corresponds to a linear function with slope one shifted according to the value of D‖.

In contrast, the kinetics along z (filled symbols in Figure 2a) are characterized by richer
dynamics, where three regimes can be identified. At short times (e.g., t . 0.1 ns for the
orange circles in Figure 2a), the particles diffuse with a diffusion coefficient D⊥ = Dwat. In
contrast, a subdiffusive behavior is detected at intermediate times (0.1 ns . t . 10 ns), as
evidenced by a local slope lower than one. At longer times (t & 10 ns), standard diffusion
is retrieved, but with an effective diffusion coefficient D⊥ < Dwat. Notably, the two sets of
data collapse onto the same curve in this diffusive regime, suggesting that the long-time
behavior of the system is independent of the sign of ∆Ub, although the onset of this regime
is shifted towards larger values of t for positive values of the barrier. In Figure 2b, we
show that similar considerations apply for ∆Ub = ±8kBT, but the larger magnitude of the
barriers results in lower values of the effective diffusion coefficient D⊥ along the direction
perpendicular to the lipid/water interface.

In Figure 3a, we report the long-time diffusion coefficients obtained by varying the
magnitude of |∆Ub| in the range 1–10kBT, for both positive (purple hexagons) and negative
(golden stars) values of the barrier. Coherently with Figure 2, the lateral diffusion coeffi-
cients D‖ (empty symbols) are independent of the height of the barrier, and correspond to
the value of Dwat (grey dashed line). On the other hand, the perpendicular diffusion coeffi-
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cients (filled symbols) are strongly affected by ∆Ub, displaying an exponential decay start-
ing from 5kBT, for which a two-parameters best fit yields D⊥(nm2/ns) = 8.0 e−0.93|∆Ub |/kBT

(red continuous line). This can be rationalized by observing that, for large values of |∆Ub|,
jumping events from one side of the barrier to the other are rare. The rate k at which these
events take place is approximately captured by the Arrhenius equation, k ' Ae−|∆Ub |/kBT .
At time t (assumed to be large enough for the system to be found in the long-time diffusing
regime), the cumulate number of expected events is kt. Each jump corresponds to a certain
length λ within the same order of magnitude of the lattice parameter a. The total distance L
travelled by the random set of jumps thus satisfies the relation L2 = ktλ2 = Ae−|∆Ub |/kBTλ2t.
Since one has also L2 = 2D⊥t, one thus obtains D⊥ = (A/2)e−|∆Ub |/kBTλ2 ∝ e−|∆Ub |/kBT .
Note that the Arrhenius formula predicts a prefactor equal to −1 in the exponent, which
is in good agreement with the best-fitting value. Finally, the results obtained for ∆Ub > 0
and ∆Ub < 0 fall on the same master curve, confirming the trend observed in the long-time
regime of MSD⊥ in Figure 2.

Figure 2. Representative evolution of mean-square displacement as a function of time for
|∆Ub| = 4 (a) and |∆Ub| = 8 (b), while ∆U = 0 and Dlip = Dwat. In both panels, filled and empty
symbols correspond to MSD⊥ and MSD‖, respectively, as reported in the legends. The dashed lines
correspond to the formula 4Dwatt. In the insets, the potential of mean force for each case is reported.

Figure 3. (a) Dependence of long-time diffusion coefficients on the size of the barriers |∆Ub|, for
∆U = 0 and Dlip = Dwat. The horizontal dashed line corresponds to Dwat = 0.7 nm2/ns. The red
continuous line is obtained by fitting the values for |∆Ub| > 5kBT via an exponential function. In
the inset, we report a representative potential of mean force U(z) for this study, corresponding to
∆Ub = 4kBT; (b) same as (a), but focusing on varying |∆U| in systems with ∆Ub = 0 and Dlip = Dwat.
In the inset, we report U(z) for ∆U = 4kBT.
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3.1.2. Impact of ∆U

We performed a similar study focused on the hydropathy parameter ∆U, for which a
representative profile of U(z) is reported as an inset in Figure 3b. Qualitatively, the trend is
very similar to the previous study. This is expected, since the system is being described
by a set of periodically-placed barriers with equal heights, which is similar to the case
reported in Figure 3a. The same reasoning as in the previous section applies, although
the quantitative details of the exponential fit change. In this case, the fitting formula for
the perpendicular diffusion coefficient is D⊥(nm2/ns) = 2.6 e−0.97|∆U|/kBT (red continuous
line in Figure 3b).

3.1.3. Impact of Dlip/Dwat

Finally, we also considered systems with a position dependent diffusion coefficient
D(z) as in Figure 1c, but in which no potential was present, i.e., U(z) = 0, which cor-
responds to ∆Ub = ∆U = 0. We report the long-time diffusion coefficients D‖ (empty
symbols) and D⊥ (filled symbols) in Figure 4. In contrast with the previous cases, here the z
dependence of the local diffusion coefficient affects D‖, which is found to increase linearly
with the ratio Dlip/Dwat. Considering that in the Brownian motion (Equation (3)) the drift
term does not involve directly the parallel direction, it is expected that the long-term value
of D‖ is the average value of D(z). From Equation (2), one thus finds

D‖ =
1
a

∫ a
2

− a
2

D(z)dz = Dwat − (Dwat − Dlip)
2l + w

a
(12)

which is reported in Figure 4 as a red continuous line, and quantitatively reproduces the
simulation data.

Figure 4. Effective diffusion coefficients in a system with position-dependent D(z) and no external
potential. The red continuous line is the prediction from Equation (12). The blue dashed line
corresponds to a fit of the simulation data by a power law.

As for the perpendicular direction, from Figure 4, one finds that D⊥ is systematically
lower than D‖. The simulation results can be rationalized by considering the two extreme
cases. When Dlip ' Dwat, one retrieves the diffusion coefficient obtained in the trivial case
D(z) = Dwat, i.e., D⊥ = Dwat due to the absence of an external potential. In contrast, for
Dlip � Dwat, one expects that the particles are effectively confined along the perpendicular
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direction, i.e., that they do not diffuse transversally to the lipid/water interface. Indeed,
in order to increase MSD⊥, they need to traverse the full periodic repeat of the system;
however, within the lipid region, there is practically no diffusion, so that the particle will
need a large amount of time to cross it. In other terms, one expects in this limit that the
transition to the long-time regime (see, e.g., Figure 2) moves towards larger and larger
times, thus resulting in a vanishing value of D⊥. Note that this reasoning does not apply
to D‖, since there is no need for the system to cross the lipid phase in order to increase
MSD‖. Quantitatively, we found that a good description of the data is obtained by means

of a power law D⊥ = Dwat

(
Dlip/Dwat

)0.92
, which provides the correct limiting behavior

and is reported as a blue dashed line in Figure 4.

3.2. Putting the Physical Ingredients Together

Having assessed the role played by each feature of the model, we now consider their
interplay in more complex scenarios. In this regard, we performed simulations with the
full potential U(z) (Figure 1a), by varying simultaneously the values of ∆U and ∆Ub. We
run two sets of simulations: in Set 1, the diffusion coefficient was considered to be constant
(Dlip = Dwat), while, in Set 2, we implemented a more realistic profile for D(z), with
Dlip = 0.09Dwat (see Methods for further details). The results of these simulations are
reported in Figures 5 and 6.

Figure 5. Dependence of the perpendicular long-time diffusion coefficient D⊥ on hydropathy (∆U)
and affinity for lipid heads (∆Ub), implemented according to the corresponding potential of mean
force U(z) (Figure 1a); (a) is obtained by assuming Dlip = Dwat, while (b) considers a more realistic
diffusion profile with Dlip = 0.09Dwat (Figure 1c). The contours correspond to the indicated values
of D⊥/Dwat.

In Figure 5, we report the results obtained for D⊥ in the simulations of Set 1 (Figure 5a)
and Set 2 (Figure 5b). In both cases, the largest values of D⊥ are obtained for lower values
of |∆Ub| and |∆U|, i.e., close to the center of each figure. This is intuitively understandable,
as this region corresponds to lower barriers to be overcome. Similarly to what is observed
in Figure 3, increasing the magnitude of |∆Ub| and |∆U| has a dramatic effect on D⊥, which
rapidly decreases to low values (note that, in Figure 5, the scale in the bar is logarithmic).
When comparing the results of the two sets of simulations for given values of |∆Ub| and
|∆U|, it is evident that, for Set 2, the value of D⊥ is systematically lower than for Set 1. This
is also expected, since the average diffusion coefficient 〈D〉 for the variable case is lower.
However, the overall change of D⊥ cannot trivially be ascribed to a normalization of the
results by 〈D〉, i.e., in general, D⊥,Set 2 6= D⊥,Set 1 · 〈D〉.
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Figure 6. (a) Dependence of the parallel long-time diffusion coefficient D‖ on hydropathy (∆U)
and affinity for lipid heads (∆Ub), implemented according to the corresponding potential of mean
force U(z) (Figure 1a). The diffusion profile corresponds to Figure 1c with Dlip = 0.09Dwat;
(b) dependence of D‖/Dwat on log P for the simulation data (golden stars) and for an extended
set of systems (purple triangles), for which the lateral diffusion coefficient was computed ac-
cording to Equation (13). The extended systems with log P < 0 were obtained by considering
∆U = ∆Ub = 20kBT, 200kBT, 2000kBT; the extended systems with log P > 0 were obtained by
setting ∆U = ∆Ub = −10kBT,−9kBT,−8kBT,−7kBT,−6kBT. The red continuous line corresponds
to Equation (14).

As for the lateral diffusion coefficient D‖, in the simulations of Set 1, one finds trivially
that D‖ = Dwat, analogous to what was reported in Figure 3. The results obtained for
Set 2 are instead reported in Figure 6a. In this case, the largest values are obtained for
∆Ub > 0, ∆U > 0 with a large magnitude, i.e., by maximizing the depletion from the lipid
phase. This can be understood by observing that, to achieve an efficient lateral diffusion,
one does not need the particles to cross a full periodicity, but rather to maximize the time
spent in the water phase, characterized by a larger mobility (Figure 1c). This is best achieved
by increasing the energy penalty for particle localization in the lipid phase, i.e., by large,
positive values of ∆Ub and ∆U (Figure 1b). Quantitatively, as discussed above, the absence
of a direct drift term in the parallel direction suggests that D‖ can be identified with the
average 〈D〉. Hence, in the presence of a potential U(z), one can generalize Equation (12) as

D‖ =
1
a

∫ a
2

− a
2

e−
U(z)
kBT D(z)dz . (13)

To enable a direct link with experimentally-measurable quantities, we quantify the
relative amount of time spent in the lipid phase by means of the logarithm of the partition
coefficient, log P = log10(clip/cwat) [62], where clip and cwat are the concentrations in the
lipid and water phase. Rewriting Equation (13) by means of the partition coefficient yields
(see Methods),

D‖ =
Dlip

(
l 10log P + w

2

)
+ Dwat

( a
2 − l − w

2
)

l 10log P + a
2 − l

. (14)

Note that, for strongly hydrophobic molecules, log P is positive and has a large
magnitude, so that, in the previous formula, the terms containing the factor 10log P are
much larger than the rest. In this case, one thus obtains D‖ ' Dlip, which is expected since
the molecule spends virtually all the time within the lipid bilayer. In contrast, for strongly
hydrophilic molecules log P < 0 and large in magnitude, so that 10log P ' 0. The value
obtained for D‖ in this case is the average diffusion coefficient within the water phase, which



Pharmaceutics 2023, 15, 573 13 of 20

does not trivially correspond to Dwat due to the position dependence of D(z) (Figure 1c).
In Figure 6b, we compare the numerical results from the simulations (golden stars) with
Equation (14) (red continuous line). The excellent agreement confirms the quantitative
correspondence between D‖ and 〈D〉. To fully appreciate the dependence of D‖ on log P,
in Figure 6b, we also considered an extended set of systems (purple triangles), with ∆U
and ∆Ub going beyond the maximum magnitude 5kBT considered in the simulations. For
these systems, D‖ was computed according to Equation (13).

3.3. Application: Large-Scale Transport of Amino Acids

As a practical example of the usage of the present approach, we dedicate this section
to the study of diffusion of amino acids through lamellar phases. The potential of mean
force U(z) for amino acids within phospholipidic bilayers has been the focus of previous
investigation work [63,68]. Rather than using the toy model proposed in Figure 1b, we
thus consider here U(z) for 16 amino acids as computed in Ref. [63], where the authors
performed enhanced-sampling molecular dynamics of various residues embedded in
DOPC bilayers. The resulting potentials are reported in Figure 7a. Although being more
complex, they resemble the toy model introduced in Figure 1b, showing a plateau in
correspondence of the lipid tails (z close to zero) and barriers or wells in proximity of the
lipid heads (|z| around 2–2.5 nm). Albeit being accessible to atomistic simulations [69],
the position dependence of the diffusion coefficient was unfortunately not addressed in
Ref. [63], so that we consider the toy model for D(z) presented in Figure 1c. Further details
of the simulations are provided in the Methods.

Based on our analysis in the previous sections, we expect that the presence of barriers
in U(z) has a dramatic effect on the perpendicular diffusion coefficient D⊥. To quantify the
extent of such barriers, for each amino acid, we computed the minimum and maximum
values of the potential of mean force, which we denote as Umin and Umax, respectively.
For instance, for arginine, we obtain Umin ' −8.5kBT and Umax ' 23.5kBT (second panel
from the top-left corner in Figure 7a). In Figure 7b, we report D⊥ as a function of the
difference Umax −Umin, which we took as an indicator of the strength of the barriers. The
heterogeneity of profiles for U(z) results in extremely different values for D⊥, which span as
many as ten orders of magnitude (compare main plot and inset in Figure 7b). Moreover, an
Arrhenius-like exponential dependence captures the data over all the different scales, with
the best-fitting formula being D⊥ ' 0.5 · e−0.77(Umax−Umin)/kBT (grey dashed line). The data
cluster according to the physico-chemical properties of the amino acids. Particularly, the
ones with charged or polar side chains are characterized by the lowest values of D⊥ (golden
stars and red circles in Figure 7b, respectively). This is not expected a priori, since free-
energy barriers are expected also for apolar residues. However, as stressed by the different
values of Umax −Umin obtained for the various sets of amino acids (see also full profiles
of U(z) in Figure 7a), the depletion of charged and polar residues from the lipid bilayer
is significantly stronger than the free energy gained by embedding apolar amino acids. A
closer look to the free-energy profiles indicates that, for apolar residues, localization within
the whole lipid region is either energetically favourable or it comes at a negligible cost. The
barrier for perpendicular diffusion is thus provided by the depth of the free-energy wells.
In contrast, for charged and polar residues, localization in the region corresponding to the
lipid tails is highly costly, while the lipid heads are favoured or have low associated cost.
Overall, this provides a significantly steeper barrier to perpendicular diffusion.
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Figure 7. (a) Potential of mean force for 16 amino acids as computed in Ref. [63]. The plots were
colour-coded according to the physico-chemical properties of the side chain: gold↔ charged, red
↔ polar and green ↔ apolar; (b) perpendicular diffusion coefficient D⊥ for charged (filled gold
stars), polar (filled red circles) and apolar (filled green squares) residues as a function of the difference
Umax − Umin between maximum and minimum height of the corresponding potential of mean
force. In the inset, the full range of Umax −Umin is considered to include the case of Arg, for which
Umax−Umin ' 32kBT. The dashed grey line is a best fit via an exponential decay; (c) parallel diffusion
coefficient D‖ for charged (empty gold stars), polar (empty red circles) and apolar (empty green
squares) residues as a function of the logarithm of the partition coefficient log P. The dashed grey
line corresponds to the theoretical prediction according to Equation (14).

As for D‖, analogous to Figure 6b, in Figure 7c, we plot the results obtained from
the simulations as a function of log P. The grey dashed line is the prediction according
to Equation (14), which is again found to quantitatively capture the simulation data. Im-
portantly, D‖ is always found within the same order of magnitude (10−1 nm2/ns), which
indicates that D‖ � D⊥ for large enough barriers, hence suggesting parallel diffusion to
be dominant in such scenario. Similar to D⊥, also in this case, we find a clustering of the
points according to the physico-chemical properties of the residues. Particularly, apolar
residues (green empty squares) have a stronger affinity for the lipid phase, as denoted by
the larger values of log P (taken with sign). This implies that a larger fraction of time is
spent in the slowly-diffusing region corresponding to the lipids, thus yielding low values of
D‖. Similarly, polar residues (red empty circles) have lower affinity for lipids, thus resulting
in faster parallel diffusion. Unintuitive results are obtained instead for charged residues
(golden empty stars), for which one would imagine a strong depletion from the lipid phase.
While Glu (E) and Asp (D) abide by the expected behavior (low affinity for lipids, a large
value of D‖), quite surprisingly, Lys (K) and Arg (R) show instead the opposite behavior.
An inspection of the corresponding U(z) profiles for these residues (Figure 7a) reveals
the presence of a deep well (' −10kBT) in correspondence with the lipid heads. Thus,
despite being strongly depleted from the lipid tails, Lys and Arg spend most of the time
sitting at the lipid/water interface, which is characterized by slow diffusion. In terms of
the toy model, one can locate these residues in Figure 6a in correspondence with ∆U > 0
and ∆Ub < 0, both with large magnitudes. However, it is important to stress that the
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quantitative value of D‖ for Lys and Arg (and more in general for all the amino acids
with positive values of log P) strongly depends on the profile chosen for D(z) (Figure 1c)
and on the value of Dlip, so that a more precise quantitative estimation requires a proper
determination of D(z) from ad hoc atomistic simulations. The cases of Lys and Arg are also
an instructive example of how the size of barriers (Umax −Umin) and the hydropathy of the
molecule (log P) are not necessarily correlated with each other.

4. Discussion

Wrapping up, the systematic study of the toy model and the simulation of the diffusion
of amino acids lead us to the following key points:

1. The key determinant for perpendicular diffusion is the overall height of the free-
energy barriers. For barrier heights larger than roughly 5kBT, one finds that D⊥
decreases exponentially with the size of the barrier (Figures 3, 5 and 7a).

2. Parallel diffusion is determined by the relative time spent in the lipid phase as com-
pared to water, which provides a direct relation between D‖ and the partition coeffi-
cient log P (Equation (14), Figures 6 and 7b);

3. The lower boundary of D‖ is equal to Dlip, obtained for highly-hydrophobic guest
molecules. Together with point 1, this indicates that, for large enough barriers, parallel
diffusion is dominant.

Experimental assays, such as pulsed-field gradient NMR [26] or macroscopic release
setups [17], can access a macroscopic, three-dimensional diffusion coefficient Deff, probing
scales equal to or larger than microns. How is Deff related to the diffusion coefficients
considered in the simulations? It is key to observe that, although being ordered at the
nanoscale, lipid mesophases are formed by micrometer-sized domains separated by grain
boundaries, which usually lack orientational order at larger scales [70]. Hence, assuming
neighboring domains to be randomly oriented with respect to each other, there is no net
distinction between parallel and perpendicular diffusion at experimentally-relevant scales.
The assumed random orientation enables accounting for large-scale diffusion by averaging
over the various domains, hence the particles are expected to experience three-dimensional
diffusion with an effective diffusion coefficient Deff = 2D‖/3 + D⊥/3. The weights 2/3
and 1/3 associated with parallel and perpendicular diffusion are chosen so as to account
properly for the dimensionality of the corresponding process. For large barriers, one can
thus approximate Deff = 2D‖/3; by means of Equation (14), one obtains

Deff =
2
3

Dlip

(
l 10log P + w

2

)
+ Dwat

( a
2 − l − w

2
)

l 10log P + a
2 − l

. (15)

Remarkably, Equation (15) enables estimating the macroscopic diffusion coefficient
Deff from knowledge of local geometrical (a, w, l) and transport (Dlip, Dwat) properties, as
well as from the overall thermodynamic equilibrium distribution (log P). In Figure 8, we
test the accuracy of Equation (15) by comparing its prediction with the value obtained
directly from the simulations, both for the toy model (panel a) and for the amino-acids’
simulations (panel b). For barriers larger than 5 kBT, the prediction gives values within 10%
of the numerical ones. Nevertheless, it should be kept in mind that the threshold value of
the barrier for which the approximation works reasonably is expected to depend on the
numerical values chosen for the parameters, particularly for the ratio Dlip/Dwat.

As seen from Figure 8b, in the case of amino acids, the approximation works quite well
in virtually all cases. From the literature, typical values of the barriers for various drugs
are typically well beyond the threshold value of 5 kBT. For instance, molecular dynamics
simulations have accessed the potential of mean force for embedding paracetamol in DPPC,
obtaining a barrier ' 50 kBT [47]. Similarly, for aspirin and ibuprofen in DPPC, the free-
energy barriers have been estimated to be ' 20–30 kBT [71]. These values suggest that, in
practical applications, parallel diffusion is often dominant, thus enabling the employment
of the approximation given by Equation (15). Based on this, as a further example, we
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collected experimental values of log P and Dwat for various drugs from the literature,
and plugged them into Equation (15) to estimate the effective diffusion coefficient Deff

characterizing the release from a Lα lamellar mesophase with a ' 6.7 nm, l ' 2.4 m,
and w ' 1 nm. These values are the geometrical parameters fixed in the toy model, and
correspond to experimentally-observed structures for water/DPPC mixtures at 43 ◦C [46].
The estimations of Deff are listed in Table 1, and can provide a reference for researchers
interested in studying the release of these drugs from lipidic mesophases. Following our
treatment, we assume that, for each case, Dlip = 0.09Dwat.

Figure 8. Approximation error on Deff when employing Equation (15) for the toy model (a) and the

amino-acids simulations (b). The error is computed as 100 ·
∣∣∣1Deff,pred/Deff,sim

∣∣∣, where Deff,pred is the
predicted value according to Equation (15), and Deff,sim is computed directly from the simulations.

Table 1. Estimated values of effective diffusion coefficient for release of various drugs from a lamellar
mesophase at 43 ◦C with geometric parameters chosen from the literature. The values of Dwat were
obtained by renormalizing experimental values obtained at different temperatures via the Stokes–
Einstein equation, as discussed in the Methods [57]. Experimental values of Dwat and log P were
taken from Refs. [42,54,72–80].

Name log P Dwat (nm2/ns) Deff (nm2/ns)

Cephalexin −0.67 0.70 0.27
Hydrochlorothiazide −0.15 1.69 0.43

Levodopa 0.00 0.95 0.21
Piroxicam 0.29 0.85 0.14

Methyldopa 0.39 1.14 0.18
Paracetamol 0.46 1.06 0.15
Antipyrine 1.01 1.04 0.11

Carbamazepine 2.93 1.13 0.10
Ketoprofen 3.31 0.67 0.06

Desipramine 3.94 0.46 0.04
Ibuprofen 3.99 0.77 0.07

Although providing a useful starting point, the results reported in Table 1 are, however,
only estimations based on the limited knowledge provided by the experimental partition
coefficient. As mentioned above, the ideal strategy is to combine the present approach with
atomistic simulations of the system of interest, so as to compute the free-energy profile U(z)
and the diffusion profile D(z) to be used as input [69]. As a word of caution, some care has
to be taken when dealing with molecules with pKa values close to the pH of the solution.
Indeed, in this case, the possibility of dynamic protonation has to be taken into account.
For instance, for the charged amino acids in Figure 7a, we considered for U(z) the value
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corresponding to the charged or neutral state according to their relative thermodynamic
stability, which changes with z [63]. The best practice is to run constant-pH atomistic
simulations [81], which yield directly the correct free-energy profile [64]. However, we
believe that, in practice, this will result in small changes in the predicted transport values,
as a molecule with preference for charged states (in pure water) tends to be depleted by
the hydropobic center of the lipid bilayer, thus resulting in a high free-energy barrier for
bilayer permeation [82]. In turn, this yields negligible values for D⊥ (Figure 7b), making
parallel diffusion the dominant transport mechanism. While charge neutralization lowers
the barrier at the center of the bilayer, it is expected that such barrier is still present and
large in magnitude [82]; hence, while promoting perpendicular diffusion, the value of D⊥
is still expected to be too small to significantly affect overall diffusion.

To summarize, we have presented a multiscale approach to predict the macroscopic
diffusion coefficient by a combination of atomistic simulations, from which the profiles
for U(z) and D(z) (Figure 1b,c) can be extracted, and Brownian-dynamics simulations,
which enable access to the effective large-scale diffusion emerging from the interplay of
the nanoscopic features. Based on a minimalistic toy model and a case study focused on
amino acids, we have discerned the impact of the main dynamic and thermodynamic
features of the system on molecular transport at macroscopic scales. A further possibility
is to use our results the other way round: from experimental knowledge of Deff, Dwat and
log P, and under the assumption of large barriers and a diffusion profile with the shape
considered here (Figure 1c), one can access the value of Dlip, characterizing diffusion of the
inspected molecule within the lipid bilayer. Future work will consider ad hoc studies to
obtain the detailed shape of D(z) for selected systems based on established procedures
from the literature [69]. Moreover, we will also adapt the present framework to more
complex topologies of lipid mesophases of direct relevance for release studies, including,
for instance, hexagonal and cubic phases. From a wider perspective, the great potential
of multiscale simulations is already being exploited in affine fields, such as the study of
biological membranes [83] or the pathways of antibiotic intake from bacteria [84]; it is our
hope that the results presented here will spark a similar interest for multiscale simulations
in the field of controlled release from lipid mesophases, thus paving the way for the
development of an invaluable complement to experimental assays.
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