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Abstract: Pigment epithelium-derived factor (PEDF) is a secreted glycoprotein that belongs to the
serine protease inhibitor (serpin) family. An increase in PEDF activity has been shown to be a potent
inhibitor of tumour progression and proliferation, suggesting a possible therapeutic target. There
is still a great deal to learn about how PEDF controls metabolic pathways in breast cancer and its
metastatic form. Given this, the primary purpose of this study was to use a metabolomics approach
to gain a better understanding of the mechanisms driving the reprogramming of metabolic events
involved in breast cancer pertaining to PEDF under various glycaemic loads. We employed gas
chromatography–quadrupole mass spectrometry (GC-Q-MS) to investigate metabolic changes in
the triple-negative breast cancer (TNBC) cell line MDA-MB-231 treated with PEDF under glycaemic
loading. Multivariate and univariate analyses were carried out as indicative tools via MetaboAnalyst
(V.5.0) and R packages to identify the significantly altered metabolites in the MDA-MB-231 cell
line after PEDF exposure under glycaemic loading. A total of 61 metabolites were found, of which
nine were selected to be distinctively expressed in MDA-MB-231 cells under glycaemic conditions
and exhibited differential responses to PEDF (p < 0.05, VIP > 1). Abnormalities in amino acid
metabolism pathways were observed. In particular, glutamic acid, glutamine, and phenylalanine
showed different levels of expression across different treatment groups. The lactate and glucose-6-
phosphate production significantly increased in high-glucose vs. normal conditions while it decreased
when the cells were exposed to PEDF, confirming the positive influence on the Warburg effect. The
TCA cycle intermediates, including malate and citric acid, showed different patterns of expression.
This is an important finding in understanding the link of PEDF with metabolic perturbation in TNBC
cells in response to glycaemic conditions. Our findings suggest that PEDF significantly influenced
the Warburg effect (as evidenced by the significantly lower levels of lactate), one of the well-known
metabolic reprogramming pathways in cancer cells that may be responsive to metabolic-targeted
therapeutic strategies. Moreover, our results demonstrated that GC-MS-based metabolomics is an
effective tool for identifying metabolic changes in breast cancer cells after glycaemic stress or in
response to PEDF treatment.
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1. Introduction

The most common cancer diagnosed in women worldwide is breast cancer (BC).
In 2020, there were approximately 2.26 million BC cases and 685,000 BC-related deaths
worldwide, with predictions of reaching 3.03 million and 1.04 million by 2040, respectively,
according to the Global Cancer Observatory (GCO) [1], making BC the second leading
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cause of cancer death among females. As a heterogeneous disease, BC is both molecu-
larly and clinically complex [2]. Several classification systems have been proposed for
human BC. An example of this is an approach to classifying BC into subtypes based on
gene expression patterns determined through complementary DNA microarrays and hi-
erarchical clustering analyses [3]. Luminal-like tumours, including luminal-A (estrogen
receptor (ER+)/progesterone receptor (PR+)/oncogene Erb-B2 (HER2−) and luminal-B
(ER+/PR−/HER2+) tumours, are the most prevalent subtypes of BC, comprising 40%
and 20% of BC cases, respectively, with good prognoses [4,5]. HER2-enriched BCs are
responsible for 12% to 20% of all BC cases, representing cancers with overexpression of
the Erb-B2 oncogene with a worse prognosis. Basal-like tumours (triple-negative breast
cancer (TNBC)) are heterogeneous subtypes that account for 15% of all BCs [4,5]. TNBC
lacks the expression of ER and many genes related to ER expression, with a poor prognosis
and limited treatment options [6]. TNBC does not respond to the usual treatments for
BC, such as hormone therapy or drugs targeting HER2. These tumors tend to be more
aggressive and have a higher rate of recurrence than other subtypes of BC [7]. Despite
the advances in BC treatment, the management and treatment efficiency is still dismal,
particularly when it comes to TNBC conditions. Hence, it is imperative to explore novel
and safe therapeutic interventions.

One of the hallmarks of cancer cells is the heightened metabolic activity that boosts
cell growth and proliferation [8]. Cancer cells show high demand for energy by heavily
relying on glucose, which can be converted to lactate even under oxygen-rich conditions—a
phenomenon called the Warburg effect; by doing so, adenosine triphosphate (ATP) is
supplied to sustain tumour cell growth and proliferation [9]. Moreover, under hypoxic (low
oxygen tension) conditions, ATP is reduced intracellularly in pathophysiological states,
leading to rising glucose uptake and aerobic glycolysis metabolism; subsequently, the
lactate generation from pyruvate is increased [10]. Over the past decades, growing evidence
has shown that hyperglycaemia could affect breast tumour formation and progression,
triggering tumour metabolic reprogramming, the Warburg effect, and therapy resistance
in breast tumours [11,12]. Hence, developing strategic therapies that specifically affect
breast tumours requires comprehensive knowledge concerning the types of metabolic
reprogramming in this domain.

Pigment epithelium-derived factor (PEDF) is a 50 kDa secreted glycoprotein that
belongs to the serine protease inhibitor (serpin) family encoded by the SERPINF1 gene [13].
PEDF is a multifunctional protein and possesses differentiating, neurotrophic, antiangio-
genic, antiapoptotic, and antimetastatic capabilities [14]. PEDF is generally expressed in
human tissues, fluctuating during pathophysiological conditions, including in metabolic
syndromes [15], aging-related diseases [16], and cancer [14]. In the wake of the discovery
that PEDF modulates the lipolytic pathway through its binding to adipose triglyceride
lipase (ATGL) and also improves insulin resistance, it has recently been regarded as a
metabolic regulator protein [17]. However, there are still conflicting suggestions as to
whether PEDF causes or exacerbates inefficient metabolism. Several studies have been con-
ducted on BC concerning PEDF expression, which showed that PEDF was downregulated
in BC, particularly metastatic BC cells [18–21]. Despite the research on the antitumour and
antimetastatic activities of PEDF, little is known about its exact molecular mechanism of
tumour growth and progression in response to glycaemic loading, and subsequently the
metabolic responses when tumour cells are exposed to PEDF.

In the context of cancer, metabolomics can be used to identify changes in the metabolism
of cancer cells that may be exploited for diagnosis, prognosis, or predicting a response
to treatment [22]. To date, no metabolomics approaches have been used to investigate
how PEDF affects the abundance distribution of metabolites in BC cells, especially under
different glucose conditions. In this area, this study aimed to deepen our understanding of
the complex mechanisms underlying the reprogramming of metabolic pathways involved
in TNCB cells pertaining to PEDF under various glycaemic loads. The TNBC cell line MDA-
MB-231 is primarily used in in vitro studies worldwide as it represents a couple of major
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BC phenotypes, and is a highly invasive and metastatic breast cancer cell line, making it an
excellent sample for studying the biology of breast cancer and testing potential therapeutics.
Moreover, in MDA-MB-231, the production of ATP is mainly based on glycolysis (Warburg
effect), which is a good reason to choose it as a candidate for investigating the landscape of
metabolic pathways contributed to tumorigenesis and progression, and subsequently the
metabolic responses to the PEDF.

2. Materials and Methods
2.1. Reagents

The recombinant PEDF was purchased from MD Bioproducts (Bethesda, MD, USA).
The cell line (MDA-MB-231) was obtained by the American Tissue Culture Collection, ATCC
(Manassas, VA, USA). The media and supplements obtained from Sigma-Aldrich included
Dulbecco’s modified Eagle’s medium (DMEM), foetal bovine serum (FBS), and the antibi-
otics and antimycotics. The isopropanol alcohol (IPA), methanol (MeOH), water (H2O)-
grade HPLC, undecane (C11), pentadecane (C15), heptadecane (C17), henicosane (C21), pen-
tacosane (C25), C29 nonacosane (C29), tritriacontane (C33), 4,4′-dibromooctafluorobiphenyl,
and hexane were purchased from Sigma-Aldrich. The methoxyamine (MOX) and trifluo-
roacetamide (MSTFA) plus 1% trimethylsilyl chloride (TMCS) reagents were obtained from
ThermoFisher Scientific (Waltham, MA, USA).

2.2. Cell Line and Culture Conditions

The human BC cell line MDA-MB-231 was initially cultured in normal-dose glucose
(5 mM) with DMEM containing 10% heat-inactivated fetal bovine serum (FBS) and 1% an-
tibiotics and antimycotics. All cultures were maintained at 37 ◦C in a humidified incubator
at 5% CO2 and passaged 2 times per week following protocols approved by the ATCC. To
perform the metabolomics analysis, the MDA-MB-231 cells were seeded in 24-well plates
at a density of 3.5 × 104 cells/well in two groups of media containing 5 mM and 25 mM
glucose and incubated overnight. The cells were then treated with 100 nM PEDF (a normal
physiological concentration of PEDF) [23] and incubated for 24 h. For the intracellular
metabolite analysis, the cells were trypsinised and centrifuged at 700× g for 5 min. The
cell pellets were then stored at 80 ◦C until sample preparation. Four replicates per media
condition were cultivated.

2.3. Sample Extraction and Derivatisation

The metabolite extraction process was carried out as follows. A cooled extraction
solvent of 2:2:1 (v/v/v) methanol/isopropanol/water was added to each sample tube. The
mixtures were vortexed for 60 s, followed by chilling for 20 min at 20 ◦C, then centrifuged
at 21,952× g for 15 min at 4 ◦C. After centrifugation, the supernatants were evaporated to
dryness using a 24-position MICROVAP evaporator supplied with nitrogen.

In the first step of the derivatisation process, dried samples were methoximated by
adding 30 µL of methoxyamine hydrochloride and mixed for 30 s. Then, the mixtures were
placed on a thermo-shaker at 900 rpm for 1 h at 60 ◦C, followed by the addition of MSTFA
containing 1% TMCS and a standard mixture (C11, C15, C17, C21, C25, C29, and C33) of
the alkane retention index (50 µL), then placed on a thermo-shaker to react at 900 rpm for
20 min at 45 ◦C. Afterwards, the samples were mixed with 20 µL of an injection standard
that contained 4,4′-dibromooctafluorobiphenyl (concentration = 10 mg/L in hexane). The
extracted supernatants were then transferred into a GC-MS autosampler in glass vials and
analysed via GC-MS.

2.4. GC-Q MS Analysis

Derivatised samples were analysed on an Agilent 5977B MSD/Agilent 8860 GC system
equipped with a Restek Rxi-5-ms column (30-m length × 0.25-mm internal diameters (id);
0.25 µm film). Every sample (1 µL) was injected into the inlet at a split ratio of 1:1. Using
helium as the carrier gas, the chromatographic method was run at a constant flow rate of
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1 mL/min, ramping from 20 ◦C/min to 320 ◦C before holding at 320 ◦C for 5 min. The
transfer line, the quadrupole temperature, and the MS source were set at 290, 250, and
150 ◦C, respectively, in electron ionisation mode at −70 eV. Mass spectrometry data were
collected at m/z 50–600 at a scan rate of 20 spectra/s after a 5.4 min solvent delay.

2.5. Data Processing and Statistical Analysis

For data processing, MS-DIAL (version 4.9) was used for peak detection, deconvolu-
tion, gap filling, and accurate mass/retention time (m/z-RT) data. GC-MS spectra were
annotated to metabolite names using two orthogonal parameters, such as mass spectral sim-
ilarity and retention indices. In order to calculate the retention indices, a mixture of alkanes
was used. In ChIKey, peak intensity features and the original dataset’s average retention
time (RT) were exported from MS-DIAL for a further analysis. A blank subtraction was
performed to verify that only features with a maximum sample intensity/average blank
intensity ratio greater than 3 were selected. The GC-MS spectra were compared to mass
spectral libraries, including Fiehn library, MassBank, Golm DB, GNPS, and the Human
Metabolome Database (HMDB). To achieve a normal distribution, the peak intensity was
normalised by the sum and scaled using autoscaling in MetaboAnalyst 5.0. Multivariate
statistics and visualisation were carried out using a supervised partial least square dis-
criminant analysis (PLS-DA). In the univariate one-way ANOVA, significant differences in
mean values were assessed among the different extraction methods. Tukey’s HSD using
the R statistics language (ver. 3.5.3) was used to compare significant differences. The R
packages “ggpubr” and “tidyverse” were used to visualise the data. To investigate the main
biological pathways, we performed an enrichment pathway analysis using MetaboAnalyst
(v5.0) with significance thresholds of a p-value < 0.05 and FDR < 0.1.

3. Results
3.1. Untargeted Metabolomics Profiling

We analysed the metabolomic profiles of the human TNBC MDA-MB-231 cell line
cultured under two glucose conditions (5 mM for normal glucose and 25 mM for high
glucose) exposed to PEDF. As a result of the MS-DIAL data processing, 435 GC-MS peaks
were detected, of which 61 metabolites were structurally annotated and were visually
reliable across four groups (Table S1), including the normal-glucose and high-glucose
groups with and without PEDF.

3.2. Effect of PEDF on MDA-MB-231 Metabolomes under Glycaemic Loading

The large majority of the identified metabolites fell into the categories of amino acids,
lipids, and carbohydrates. Dicarboxylic acids, hydroxy acids, nucleotides, and others were
less displayed (Figure 1A). The PLS-DA plot revealed a separation between clusters of
MDA-MB231 cancer cell samples under glycaemic loading with and without PEDF with
good prediction power (Figure 1B, left, middle). The model’s appropriateness was cross-
validated by a permutation test (n = 100), revealing that the model was significant (Figure 1B,
right). The PLS-DA variable importance in projection (VIP) score was determined and
features with a VIP score >1 were considered important for group separation (Figure S1).

As depicted in Figure 2, the average peak intensities of the metabolomics dataset were
pictured as heatmaps to visualise the alterations in metabolites between groups. According
to the data, there was a specific pattern of differences in metabolites when cells in the
high-glucose and normal-glucose conditions were exposed to PEDF.

The calculated VIP scores and a one-way ANOVA test were used to find the key
metabolites that were significantly altered among the four groups (Table 1). A total of
9 metabolites out of 61 with the criteria of VIP scores >1 and p-values of <0.05 were iden-
tified as differing significantly between the compared groups. These comprised the TCA
cycle and glycolysis intermediates, amino acids, and nucleotides. Figure 3 compares the
average intensities for the most significantly altered metabolites among the four groups.
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Figure 1. (A) Numbers of up- and downregulated metabolites following treatment with PEDF
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The red asterisk implies the best classifier. The histogram showing the permutation test with a
permutation number n = 100, which showed that the model was significant. Key: H, high glucose; N,
normal glucose.

Three amino acids, including glutamic acid, glutamine, and phenylalanine, showed
different levels when the cells were cultured in normal and high-glucose conditions. Con-
comitant with a significant increase in the levels of glutamine in cancer cell lines, the
level of glutamic acid was significantly elevated in the high-glucose conditions compared
to low-glucose conditions (Figure 3). These differences were more evident for glutamic
acid. In addition, after exposing the cells to PEDF, the levels of glutamine moderately
decreased and considerably increased in normal and high-glucose conditions, respectively.
In contrast, the levels of glutamic acid in normal glucose conditions increased and those
in high-glucose conditions decreased substantially when cell lines were exposed to PEDF.
Moreover, a decreased level of phenylalanine was observed in high-glucose conditions
compared to normal-glucose conditions, and following the PEDF treatment the intensity
levels decreased and increased in the normal and high-glucose conditions, respectively.
The results showed that the PEDF functioned differently under the two different glucose
conditions with respect to the amino acid metabolism.
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Table 1. Significantly altered metabolites among groups in normal and high-glucose conditions with
and without PEDF using a one-way ANOVA and Tukey’s HSD tests.

Metabolites RT VIP One-Way ANOVA Multiple Comparisons Tukey HSD (a p-Value)
a p-Value FDR HT vs. HC NC vs. HC NT vs. HC NC vs. HT NT vs. HT NC vs. NT

Lactic acid 5.58 1.9908 3.63 × 10−5 0.002216 0.488 0.0002 ↓↑ 4.20 × 10−5 ↓↑ 0.002 ↓↑ 0.0003 ↓↑ 0.56

Phenylalanine 9.56 1.532 0.00052 0.015849 0.983 0.001 ↑↓ 0.025 ↑↓ 0.001 ↑↓ 0.047 ↑↓ 0.304

Malate 8.65 1.7187 0.001395 0.023962 0.213 0.001 ↓↑ 0.003 ↓↑ 0.055 0.121 0.966

Glutamic acid 9.46 1.6052 0.001571 0.023962 0.285 0.001 ↓↑ 0.006 ↓↑ 0.026 ↓↑ 0.171 0.68

Glucose-6-phosphate 13.01 1.834 0.00251 0.030615 0.601 0.031 ↓↑ 0.0024 ↓↑ 0.248 0.021 0.481

Myo-inositol 13.5 1.5331 0.003189 0.03242 0.794 0.087 0.037 ↓↑ 0.017 ↓↑ 0.007 ↓↑ 0.957

Glutamine 10.33 1.4553 0.00443 0.035565 0.735 0.067 0.054 0.011 ↓↑ 0.009 ↓↑ 0.999

Citric acid 10.62 1.5986 0.004664 0.035565 0.999 0.030 ↑↓ 0.035 ↑↓ 0.032 ↑↓ 0.038 ↑↓ 0.999

Adenosine 14.29 1.1194 0.006105 0.041381 0.785 0.009 ↑↓ 0.399 0.046 ↑↓ 0.898 0.148

Key: ANOVA, analysis of variance; RT, retention time; VIP, variation important in the projection; FDR, false
discovery rate; HT, high-glucose treated; HC, high-glucose control; NT, normal-glucose treated; NC, normal-
glucose control. a p-values are from the one-way ANOVA and the Tukey post hoc test; p < 0.05 was considered
statistically significant. Arrows (↑↓) show up/down regulation of the metabolites that changed significantly.
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However, the intensity of the lactic acid substantially increased in high-glucose condi-
tions vs. normal-glucose conditions, but in both high-glucose and normal-glucose condi-
tions the lactic acid intensities decreased after being exposed to PEDF. The level of the major
intermediate in glycolysis, glucose 6-phosphate, was also reduced in both conditions with
PEDF treatment. These results may indicate the positive effect of PEDF on the Warburg
effect, regardless of the glucose level.

TCA cycle intermediates, including malate and citric acid, showed different patterns
in terms of their intensities in normal and high-glucose conditions and after exposing
the cells to PEDF. Adenosine and myo-inositol were the other significant metabolites that
responded differently to PEDF depending on the glucose level. The noteworthy point is
that the normal-glucose and high-glucose conditions showed different trends in fatty acid
intensities, and PEDF induces different responses, albeit not significantly (Figure 2 and
Table S1).

3.3. Pathway Analysis

An enrichment analysis was performed on the 9 significant metabolites using Metabo-
Analyst 5.0. The results indicated that the Warburg effect and the transfer of acetyl groups
to mitochondria were the major metabolic factors responsible (Figure 4). The enrichment
analysis table containing all the enriched pathways is provided in Table S2. An overview of
the altered metabolites exposed to PEDF, and the linked pathways is illustrated in Figure 5.
From the results, metabolic reprogramming is characterised mainly by metabolites related
to amino acid metabolism, the Warburg effect, and TCA cycle intermediates.
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4. Discussion

Over the past decades, hyperglycaemia, a metabolic characteristic of diabetes, has
been considered one of the most prominent confounding comorbidities and risk factors in
the development of BC [11]. Besides being associated with higher mortality and prevalence
in BC, hyperglyacemia negatively impacts the functionality of chemotherapy and can lead
to chemoresistance [12]. Indeed, reprogramming in glucose metabolism contributes to
biological and biochemical pathways by promoting remodelled glycolysis and intensify-
ing acidity uniquely in the tumour microenvironment, consequently enhancing tumour
metastasis and recurrence and ultimately leading to the therapeutic resistance of BC [12].
Developing strategic therapies that specifically affect the remodelled pathways in BC re-
quires comprehensive knowledge concerning the types of metabolic reprogramming in
this domain.

PEDF is known to be associated with several metabolic disorders linked to insulin
resistance, including type 2 diabetes, obesity, metabolic syndrome (PCOS), and hepatic
dysfunction [15]. Several studies have demonstrated that PEDF was downregulated in BC,
particularly metastatic BC cells [19–21]. However, there is no evidence to date suggesting
a role of PEDF in the metabolic reprogramming of BC cells under glycaemic conditions.
Cancer cell metabolic pathways can be precisely characterised using the metabolomics
approach. We used GC/MS-based metabolomics to obtain the altered metabolite profiles in
one of the aggressive subtypes of a human BC cell line (MDA-MB 231). Cancer cells utilise
glycolysis to provide ATP for their growth and survival (Warburg effect) [24], which is a
good reason to choose them as candidates for investigating the metabolic responses to the
PEDF treatment under glycaemic loading. To the best of our knowledge, this is the first
study that identifies pathways and metabolite level changes in BCs comparing glycaemic
conditions treated with PEDF.

Our data showed cell-line-specific responses to PEDF under normal and high-glucose
conditions. The high-glucose group showed increased levels of lactate and glucose-6-
phosphate compared to the normal glucose group, and their intensity levels were consid-
erably reduced by PEDF, suggesting that the Warburg effect was affected. The Warburg
effect refers to a remodelling of glucose metabolism in cancer, where glucose is converted to
lactate even when oxygen is present and mitochondria are functioning properly [9]. Other
pathways, such as the pentose phosphate pathway (PPP) and one-carbon metabolism, also
transform glucose into critical molecules for cancer progression [25]. Our data showed
that the high and normal glucose concentrations produced distinct patterns of ribose-5-
phosphate (R5P) intensities. The rate of R5P increases in cells when grown under high-
glucose conditions compared to normal-glucose conditions. However, these changes were
not significant, even though R5P showed a VIP score greater than 1, which contributed
towards the discrimination of the PLSD-DA model representing a discriminator metabolite
(Table S1). Nevertheless, we did not observe a significant change in this mechanism, but
the more we investigate it in the future, the more apparent it should become as to how
PEDF might attenuate it.

Cancer cell proliferation is tightly linked with the mitochondrial metabolism [26].
Amino acids may be used as substrates for the TCA cycle in cancer cells in order to
maintain ATP production [27]. One of the metabolic features seen in cancer cells is the
perturbation of glutamine metabolism. In addition, to generate continuous energy, cancer
cells have a high demand for glutamine as a precursor to synthesise other molecules critical
for cancer growth and progression [28]. Upon exposure to PEDF, we observed significant
alterations to glutamine and glutamic acid levels under glycaemic conditions. Compared
to normal conditions, cells in hyperglycaemic conditions contained more glutamine and
glutamic acid. Importantly, the levels of glutamic acid in high-glucose conditions without
PEDF were significantly increased compared to glutamine. After exposing the cells to PEDF,
the glutamine levels increased in high-glucose conditions and decreased in normal glucose
conditions. In contrast, glutamic acid was reduced under high-glucose conditions with
PEDF and increased under normal-glucose conditions. This shows the different functions
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of PEDF in normal and high-glucose conditions regarding the metabolism of glutamine
and glutamic acid to control the cells’ energy. Glutamine and glutamic acid play a vital role
in metabolism and are the primary nitrogen and carbon sources for amino acids, lipids,
nucleic acids, and glutathione biosynthesis [29]. The transport of glutamine into cells
is followed by its conversion to glutamic acid by an enzyme called glutaminase. Then,
glutamic acid is transformed to α-ketoglutarate (α-KG) by glutamic acid dehydrogenase
(GDH), which is then supplied to the TCA cycle as fuel [30]. In hyperglycaemic conditions,
such as those that occur in diabetes, the levels of these amino acids in the body may
be affected. Some studies have suggested that high blood sugar levels may lead to an
increase in the breakdown of glutamine in the body to glutamic acid, which could lead to
an increase in the levels of glutamic acid [31–33]. Additionally, the glutamine and glutamic
acid levels may also be influenced by their synthesis and uptake in the body. Hence, this
finding, while preliminary, suggests that PEDF has a dual function in high- and low-glucose
environments to control the glycaemic conditions by affecting the glutamine and glutamic
acid metabolism. The levels of other metabolites, including citric acid and malate, changed
in the control and high-glucose conditions. High glucose levels resulted in a decrease in
citric acid and an increase in malate. When exposed to PEDF, the cystic acid levels were
unaffected but the malate levels showed a slight reduction in high-glucose conditions and
an increase in normal-glucose conditions. Thus, a link, albeit weak, may exist between
PEDF and mitochondrial metabolism. Phenylalanine is one of the aromatic amino acids
whose catabolism contributes to sustaining tumour growth and proliferation. In MDA-
MB-231 cells, the phenylalanine levels were high and low in normal and high-glucose
conditions, respectively. The intensity of phenylalanine changed by treating BC cells with
PEDF, which led to an increase in phenylalanine in high-glucose conditions and a decrease
in normal conditions. The phenylalanine metabolism was perturbed in obesity, insulin
resistance, and pre-diabetes conditions [34]. Moreover, decreased levels of phenylalanine
have been observed in a few tumour types [35,36]. Although the role of phenylalanine in
regulating insulin signalling and glucose uptake is unclear, a study by Zhou et al. reported
that phenylalanine modifies insulin receptor beta (IRβ) and inactivates insulin signalling
and glucose uptake [37].

Another important factor that changed considerably between low- and high-glucose
conditions was adenosine, which decreased significantly in high-glucose conditions. Af-
ter treating cells with PEDF, adenosine decreased and increased in normal and high-
glucose conditions, respectively (p > 0.05). Adenosine is a nucleoside that is present in
all living cells and is involved in many important biological processes, including energy
metabolism [38,39]. In cancer cells, adenosine is often found at elevated levels and is
thought to play a role in cancer cell metabolism [40]. One way that adenosine may be
involved in cancer metabolism is through its role in the generation of ATP (adenosine
triphosphate), which is the primary source of energy for cells. Adenosine is converted
to ATP through a process called cellular respiration, which occurs in the mitochondria
of cells. While cancer cells may have an increased reliance on ATP production through
cellular respiration, which may contribute to the abnormal metabolism characteristic of
cancer cells [41], the role of adenosine in cancer metabolism is not fully understood. In
hyperglycaemic conditions, such as those that occur in diabetes, adenosine may play a role
in regulating blood sugar levels. An increased glucose concentration was associated with
decreased adenosine levels [42,43]. One way that adenosine may be involved in regulating
blood sugar levels is through its effects on insulin secretion. Some studies have suggested
that adenosine may stimulate the secretion of insulin, which could help to lower blood
sugar levels under hyperglycaemic conditions [44,45]. It can, therefore, be assumed that
PEDF has a dual effect on adenosine levels in TNBC cells under glycaemic conditions and
control glucose metabolism and the growth of the cells.

Lipid metabolism is a critical facet of tumour progression. It is well established that
cancer cells have a higher demand for cholesterol than normal cells and that they often
upregulate the synthesis and uptake of cholesterol to meet this demand. This increased
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demand for cholesterol may be due, in part, to the fact that cancer cells have a higher rate of
proliferation and require more cholesterol for membrane biogenesis [46,47]. PEDF exhibited
a dual effect on lipid metabolism in MDA-MB-231 cells under normal and high-glucose
conditions. In our study, the cholesterol was increased more under high-glucose than
normal conditions. Following the PEDF treatment, the cholesterol levels decreased under
both conditions. The cholesterol VIP score was higher in the PLS-DA model, which was one
of the discriminatory metabolites. It is, therefore, likely that PEDF could modify the lipid
metabolism when cells are facing critical states. This warrants further studies in the future.

5. Conclusions

Overall, PEDF showed dual effects across the two different glycaemic conditions.
The novel findings here point out the potential roles that PEDF plays in BC metabolism
and identified novel metabolic markers activated or downregulated by PEDF in TNBC,
and showed us the metabolic perturbation of BC cells in two different conditions (normo-
and hyperglycaemic), which can possibly assist with developing novel targets for treating
patients with triple-negative BC. The GC-MS-based metabolomics approach identified
several breast-cancer-specific metabolic traits and demonstrated that the top enriched
classes of metabolites were linked to the Warburg effect—the transfer of acetyl groups
to mitochondria. This may show how these pathways are disrupted in conditions with
various glucose levels to accelerate cancer progression and metastasis, and how PEDF
influences them. In view of the diverse metabolism of BC, one limitation of our study is the
use of a single cell line to explain the effects of the PEDF treatment on the glycaemic load.
To demonstrate the effect of PEDF on cancer metabolism and possibly extend it to other
subtypes of cancer, further experiments are needed across multiple BC lines. Furthermore,
the effectiveness of PEDF under glycaemic loads requires further research at the protein
level to integrate the results. This may be aided to develop novel targets for treating BC
patients. Nevertheless, this study has seminally shown the effects of PEDF on metabolites
in a TNBC cell line under normal-glucose versus hyperglycaemia conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics15020543/s1. Figure S1: Variable importance in projection
(VIP) scores indicate the most important metabolites that contribute to the separation of metabolic
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mean value of the significant metabolites’ peak intensity. Table S3: The pathway enrichment analysis
of altered metabolites.
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