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Abstract: Selective antiadhesion antagonists of Uropathogenic Escherichia coli (UPEC) type-1 Fimbrial
adhesin (FimH) are attractive alternatives for antibiotic therapies and prophylaxes against acute
or recurrent urinary tract infections (UTIs) caused by UPECs. A rational small library of FimH
antagonists based on previously described C-linked allyl α-D-mannopyranoside was synthesized
using Heck cross-coupling reaction using a series of iodoaryl derivatives. This work reports two
new members of FimH antagonist amongst the above family with sub nanomolar affinity. The
resulting hydrophobic aglycones, including constrained alkene and aryl groups, were designed to
provide additional favorable binding interactions with the so-called FimH “tyrosine gate”. The newly
synthesized C-linked glycomimetic antagonists, having a hydrolytically stable anomeric linkage,
exhibited improved binding when compared to previously published analogs, as demonstrated
by affinity measurement through interactions by FimH lectin. The crystal structure of FimH co-
crystallized with one of the nanomolar antagonists revealed the binding mode of this inhibitor
into the active site of the tyrosine gate. In addition, selected mannopyranoside constructs neither
affected bacterial growth or cell viability nor interfered with antibiotic activity. C-linked mannoside
antagonists were effective in decreasing bacterial adhesion to human bladder epithelial cells (HTB-9).
Therefore, these molecules constituted additional therapeutic candidates’ worth further development
in the search for potent anti-adhesive drugs against infections caused by UPEC.

Keywords: uropathogenic Escherichia coli (UPEC); FimH; antagonists; mannosides; glycocomimetics;
crystallography; adhesion inhibition; bladder cells; molecular dynamic simulations

1. Introduction

One of the major pathogens responsible for urinary tract infections (UTIs) is uropathogenic
Escherichia coli (E. coli) (UPEC), leading to a major burden in public health [1]. As part of
the normal microbiota, E. coli exhibits diverse species with a wide spectrum of phenotypes
that reside in the large intestine of humans and many animals [2]. Several virulence factors
are responsible for the establishment of current infections [2,3]. While E. coli mainly live
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harmlessly in the gut as their primary niche by establishment of a symbiotic relationship,
some strains act as pathogens and cause a variety of enteric and extra-enteric diseases [4–6].
Among these, the adhesion of UPECs to the host uroepithelial tissues is due to the E. coli
type 1 pili, called FimH, which mediate their attachment in a mannose-dependent inter-
action [4,5]. FimH adhesin of type 1 fimbriae promotes intestinal colonization by binding
to colonic crypts of epithelial cells, facilitating E. coli adhesion and invasion to the urinary
epithelium, a key player in UPEC pathogenicity [6]. Preventing bacterial FimH adhesion to
highly mannosylated glycoprotein uroplakin Ia from bladder cells represents an appealing
strategy to control UTIs [4]. Since bacterial adhesion to host cells is a critical and initial step
in most infectious diseases, anti-adhesion therapy can effectively compete against antibiotic
therapy and is seriously considered for the treatment of acute uncomplicated lower UTIs
(AUC) [7–9].

Importantly, the mannose-specific adhesin FimH has an essential hydrophobic binding
pocket of non-polar amino acids that surrounds the aglycon portion of α-D-mannopyranoside
glycomimetics. These findings have been fully exploited in the design of potent FimH
anti-adhesins [10–13]. Glycomimetics are simplified representatives of more complex gly-
coconjugate structures found in nature. They have been designed to improve carbohydrate-
protein binding interactions and to provide better pharmacokinetic and pharmacodynamic
properties [14,15].

As alternative therapeutic strategies against UTIs, monomeric mannoside antago-
nists [15–18] and clusters [19–25] with varied hetero-anomeric linkages O-[26–29], S-[30–32],
or N-[33,34] have been developed as appealing candidates. Using a plethora of available
crystallographic data, detailed structure-activity relationships (SARs) have been established
to provide further insight into the binding mode of E. coli FimH. This approach has greatly
helped in improving the conception of potent antagonists [4,35–39]. Amid the various α-D-
mannopyranoside inhibitors described thus far, C-linked glycomimetics residues harboring
hydrophobic aglycons are still considered worthy candidates as potent FimH inhibitors.
Several of these synthetic candidates showed improved binding affinities and increased
hydrolytic stability [30,40,41].

This work describes the synthesis, relative binding affinities, crystallographic data,
and anti-adhesive properties of a small library of C-linked mannopyranoside inhibitors.
The data provide further pivotal insights into the potential of these glycomimetics against
UPEC strains and give rise to a solid basis toward the development of new and effective
FimH antagonists.

2. Results and Discussion
2.1. Synthesis and Structural Characterization

In previous studies, several aryl C-mannopyranosides carrying alkenyl aglycons were
shown as promising candidates with excellent binding affinities against E. coli FimH [40,41].
However, their poor water solubility has restricted their further development as drug
candidates. To address this issue, we propose herein the use of heteroaryl-substituted
mannopyranosides based upon numerous available crystallographic data.

The first step toward this next generation of antagonists was the improved preparation
of C-allyl α-D-mannopyranoside 1 as a key starting material. Compound 1 was obtained
by per-O-benzoylation of commercially available methyl α-D-mannopyranoside (MeMan)
followed by a Hosomi–Sakurai reaction to afford the pure α-anomer 1 [40]. Key precursor
1 was next treated under palladium-catalyzed Heck conditions in the presence of aryl
iodides (DMF, TBAB, NaHCO3, Pd(OAc)2, 90 ◦C, o.n.) to afford a family of (E)-linked aryl
derivatives (2–10) in good yields (Scheme 1).

As depicted in Figures S1, S2 and S20, 1H-NMR spectra (600 MHz) of both compounds
2 and 11, together with detailed 2D NMR spectrum of compound 2, unambiguously
confirmed that all the major compounds were the trans stereoisomers. Reliable evidence
of this claim was the signal of H-3’ of the alkene that appeared as a doublet at δ 6.67 ppm
with a J2’,3’ = 15.8 Hz and 16 Hz for both compounds 2 and 11, respectively. Moreover,
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the coupling constants for the H4 signal at δ 6.00 ppm (dd, 1H, J3,4 = J4,5 = 8.5 Hz, H-4)
unambiguously indicated a trans-diaxial relationship between H3-H4 and H4-H5, thus
confirming this series of compounds to be in the proper 4C1 chair conformation.
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Heck reaction.

Because C-linked mannopyranosides do not exhibit an anomeric effect in comparison
to their O-linked analogs, there was a risk that the analogs had undergone conformational
changes from the desired 4C1 chair to skew boats (0S2 or 0S2) [4]. The X-ray crystal structure
of perbenzoylated compound 2 showed it to be in the desired chair conformation as
previously observed with several related analogs (Figure S4). Since the conformation of
2 in the solid-state could be different than that in solution, an in-depth NOESY analysis
was also performed to further confirm its conformation (Figure S3). The nOe between the
geminal H1’a, H1’a’ with the axial H3 and H5 unmistakably implied the 4C1 conformation.
Analysis of the 1H-NMR spectrum of C-linked mannosides (11–18, and 20) also showed
values of ca. 1.63 Hz for their 3J1,2 coupling constants of their vicinal equatorial/axial
arrangements (Figure S2).

Finally, benzoyl ester deprotection of C-linked mannopyranosides (2–9) was performed
using ammonia in methanol (1M, r.t., o.n.) to provide unprotected derivatives (11–18 and
20), essentially quantitatively.

2.2. Synthesis of a Key Ortho-Substituted Biphenyl Derivative

In our previous work, an ortho-substituted C-linked biphenyl mannopyranoside can-
didate was considered as a promising lead with a KD of 6.9 nM [41]. Unfortunately, this
compound had poor water solubility. To further exploit this promising series of analogs, we
envisaged the insertion of heteroaryl moieties at the ortho position in order to improve their
water-solubility. Hence, compound 10 was synthesized under the above Heck reaction
conditions using 1-bromo-2-iodobenzene (DMF, TBAB, NaHCO3, Pd(OAc)2, 90 ◦C, o.n.).
This intermediate was then treated under Suzuki–Miyaura [42,43] coupling conditions
using 4-pyridylboronic acid (cesium carbonate, [1,1’-bis(diphenylphosphino)ferrocene]
dichloropalladium(II), 80 ◦C, dioxane/water, 5:1, o.n.) to give compound 19 in 55% yield.
Compound 19 was deprotected using a solution of ammonia (1M) in methanol (r.t., o.n.) to
afford compound 20 in 80% yield (Scheme 2).
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2.3. Affinity Evaluation of Mannosides through FimH LEctPROFILE Kit

To measure the relative binding affinity of the newly synthesized compounds 11,
20, and 18 against FimH, the usual referenced standards were used for comparison with
previously published data: heptyl α-D-mannopyranoside (HepMan, 21), para-nitrophenyl
α-D-mannopyranoside (PNPMan, 22), and methyl α-D-mannopyranoside (MeMan, 23) [4].
The relative inhibitory potential of the above compounds was determined against a biotiny-
lated Man-BSA conjugate using a FimH lectin domain (amino acids 1-158) LEctPROFILE
kit (provided by GLYcoDiag) (Figure 1, Table 1). In this assay, IC50s of 19.4 nM, 74.1 nM,
and 2810.7 nM, were respectively obtained for 21, 22, and 23. As Figure 1 shows, the best
inhibition was obtained from the inhibitor 20, followed by 11, and finally the C-linked
mannopyranoside 18 with IC50s of 0.82 nM, 3.17 nM, and 30.28 nM, respectively. Un-
doubtably, the ortho-substituted pyridyl derivative 20 is the most efficient monomeric
antagonist identified thus far. Interestingly, and as anticipated, compound 20 showed a
calculated LogP (cLogP) improved (1.66) in comparison to its fully aromatic counterparts
18 (3.16).
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Table 1. Relative binding affinities as measured by FimH LEctPROFILE kit for mannoside derivatives.

Cpd Structure IC50
(nM) RIP a cLogP

11
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2.4. X-ray and Molecular Dynamic Simulations

Unfortunately, no crystalline structure could be obtained from our best inhibitor
20. However, co-crystallized FimH with the second-best inhibitor 11 was obtained at a
resolution of 3 Å (Figure S38, Table S1, PDB entry code 8BVD). The structure was solved
using the PHENIX [44] software to visualize the detailed binding interactions which took
place between the FimH binding domain and the inhibitor.

Delightfully, the co-crystal structure of compound 11 and E. coli C43 (DE3) FimH [45,46]
also revealed the expected 4C1 chair conformation of the ligand 11 bound into the active
site of the tyrosine gate. In the mannose-binding site of FimH, we observed Tyr48 in
parallel, while the Tyr137 residue was in T-aromatic stacking with the quinoline group of
ligand 11. Four FimH lectin domains were observed in the asymmetric unit of the crystal
(Figure S38) and the mannose-binding site of each FimH lectin domain was in proximity
with a symmetry-related neighbor in the crystal packing (Figure 2) [34]. The two binding
sites of FimH molecules were held together by the two quinoline substituents crossed
over in a parallel stacking (Figure 2), while their mannosides projected into the binding
pocket of FimH. The distance between the axial O2 hydroxyl group of the non-reducing
end mannoside was 12 A◦ which exactly matched the distance previously observed in
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divalently bound trimannoside to FimH (crystal structures with PDB entry codes 6GTV and
6GTW). Therefore, the binding of FimH to compound 11 appeared to simulate the bivalent
binding of the natural oligomannosidic N-glycan structures [47]. Inhibitor 11 interacted via
different amino acids that included Ile 13, Phe 1, Asp 47, Gln 133, Asp 54, Asn 135, Asp 140,
Phe 142 in the open conformation of FimH (Figure 3).
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Further Insights into the Design and Binding of Compound 20

Given that the best compound 20 failed to crystallize with the FimH lectin domain,
we tried to explain its improved potency using molecular dynamics (MD) simulations. The
best low energy score was obtained from its docking within the FimH half-open tyrosine
gate (−90.70 kcal/mol) (PDB 4AUY) (Figure 4). For comparison, the lowest FimH closed
and open energy conformations were at −60.34 and −89.76 kcal/mol, respectively [48–51].

According to previous work [41], the ortho-biphenyl substituted C-linked mannopy-
ranoside with KD = 6.9 ± 5.7 nM had a higher affinity over the para-substituted analog
(compound 18, Table 1) with KD = 17 ± 3.5 [41]. Previously published MD simulation
with an ortho-substituted biphenyl derivative could nicely explain the origin of the better
affinity observed with 20. Indeed, the MD simulation allowed us to postulate that the
higher affinity might originate from a π-stacking between the first phenyl ring of 20 with
Tyr48, while the second ortho pyridyl moiety can interact with the hydroxyl group of
Tyr137 through a hydrogen bond (2.70 A◦). Thus, the MD simulation was instrumental in
the replacement of the second phenyl group with a heterocyclic pyridyl moiety to improve
the solubility as well as the affinity of ligand 20.
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2.5. Mannosides Do Not Affect Bacterial Growth, Cell Viability, and Antibiotic Activities

To test whether the above mannoside derivatives could exert bactericidal and/or
cytotoxic activities, bacterial growth and cell viability assays were undertaken in the
presence of each mannoside at different concentrations. Natural D-mannose (D-Man) was
included as control. As shown in Figure 5, bacteria grown in the presence of mannoside
analogs showed similar growth rates compared to bacteria grown in LB (Luria–Bertani)
medium that represents the positive control for bacterial replication. Moreover, no cytotoxic
effect was recorded for urinary bladder cell line 5637 (HTB-9 cell) monolayers [48,52], as
measured by the MTT test (Figure 6). Since D-mannose can serve as nutrient replacement
for E. coli when there is a shortage of D-glucose, we tested whether these new derivatives
could be used as carbon sources as well [5]. To further this aim, bacteria were cultured in LB
medium for 12 h and then diluted to 1.5 × 107 colony forming unit/mL (CFU/mL) in PBS
buffer. Bacteria were incubated for an additional 24 h in the absence and in the presence of
different mannosides and the number of viable bacteria was assessed by CFU/mL counting.
Results show no statistically significant differences in the number of mannoside-treated
bacteria compared to non-treated control (Figure 7). Conversely, the number of bacteria
increased significantly in the presence of D-mannose, at both concentrations tested (500 µM
and 83 mM) (Figure 7) [5]. The results indicated that the synthetic mannoside antagonists
did not enter into the metabolic cycle of the bacterial cells to support their growth even
in the absence of any other carbon sources. Differently, D-mannose as a natural sugar
molecule is metabolized by bacteria, thereby maintaining bacterial replication [5]. Since
carbohydrates can influence the activity of conventional antibiotics, the activity of different
classes of antibiotics such as ampicillin (AMP 30 µg/mL), streptomycin (SM 50 µg/mL),
and gentamycin (GM 50 µg/mL) in the presence of the synthetic mannoside analogs
was evaluated. A broth-dilution test showed no differences in bacterial susceptibility,
irrespectively in the presence of C-mannoside antagonists (Figure 8).

Altogether these results demonstrate the lack of toxicity of the synthetic mannoside
derivatives toward both bacteria and eukaryotic cells. Moreover, these molecules are not
used for bacterial metabolism and, unlike natural D-mannose, do not favor bacterial replication.

2.6. C-Mannoside Antagonists Are Effective in Decreasing Bacterial Adhesion to Human Bladder
Epithelial Cells

To evaluate the efficacy of the synthetic mannoside antagonists to inhibit the ability of
CFT073 strain to adhere to epithelial cells, an in vitro adhesion assay was performed. For
this purpose, equal amounts of strain CFT073 strain were inoculated in PBS supplemented
with different concentrations of each mannoside at final concentrations of 100, 500 µM, and
1 mM and incubated for 3h under static conditions. Bacterial inoculation was used to infect
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cell line 5637 (HTB-9 cell) monolayers at a multiplicity of infection (MOI) of 10. At 2.5 h
post-infection, the number of cell-associated bacteria was calculated by CFU/mL counting
(Figure 9). No significant inhibition of bacterial adhesion to bladder cells was obtained
using mannoside inhibitors at 100 µM. Conversely, a significant reduction (more than 1 log)
in the number of adherent bacteria was observed by increasing the concentration of the
mannosides to 500 µM in comparison to non-treated bacteria (Figure 10). The same extent
of reduction in bacterial adhesion to bladder cells was obtained by increasing mannosides
concentration to 1 mM, thereby showing a dose-dependent effect. Interestingly, among
the mannosides studied, the quinoline analog 11, having an IC50 of 3.17 nM, was the
most efficient at reducing FimH-mediated bacterial adherence (Figures 9 and 10). On
the other hand, compound 23 (MeMan) was the less efficient; however, it achieved the
same extent of bacterial adhesion inhibition of natural D-mannose but at a 164-fold lower
concentration. These results nicely confirmed previous observations from the control
reference compounds 21, 23, and D-mannose [46]. To appraise qualitatively the reduction
of bacterial adhesion, parallel infected cells were fixed, and Giemsa stained. As shown in
Figure 10, no macroscopic differences in the shape, integrity, adhesiveness, cytoplasmic
vacuolization, proliferation, or cytotoxic effects were observed in HTB-9 cell monolayers
incubated with the synthesized mannosides, in line with the results of the MTT assay [5].
Overall, these results revealed that these synthetic inhibitors finely mimic the interaction
between FimH and its natural receptor, thereby significantly decreasing the adhesion of
strain CFT073 to bladder cells.
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Figure 5. Bacterial growth is not affected by mannoside antagonists. Strain CFT073 was grown in LB
medium supplemented with each mannoside derivative at a final concentration of 500 µM. Natural
D-mannose (D-Man) at equal concentration to the mannosides was used as control. LB supplemented
with DMSO (LB) was included as growth control. Bacterial cultures were incubated in a 96-well plate
at 37 ◦C over a period of 10 h and the OD600 reads were determined every 30 min.
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mannoside molecules and natural D-Man at a final concentration of 500 µM. Cell viability was
assessed by the MTT assay by measuring the OD570. Bars represent the means ± SDs of three
experiments carried out in duplicate. p values were evaluated by one-way ANOVA; p > 0.05.
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Figure 8. Mannoside antagonists do not affect antibiotic activity. The antibiotic susceptibility of strain
CFT073 was assessed in the presence or absence (non-treated) of 500 µM mannosides and natural
D-Man by broth-dilution assay. Bars represent the means ± SDs of two experiments carried out in
duplicate. p values were evaluated by one-way ANOVA; p > 0.05.
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Figure 9. Mannoside antagonists efficiently inhibit bacterial adhesion to bladder cells. Bacteria were
pre-incubated or not (non-treated) with mannose molecules at a final concentration of 500 µM. One
mL of inoculation was used to infect HTB-9 cells at a MOI of 10. The total number of adherent
bacteria was determined after 2.5 h of incubation and expressed as a percentage of CFU/mL (%)
relative to the non-treated bacteria considered as 100%. Data represent the means ± SDs of three
independent experiments performed in triplicate. p values were evaluated by one-way ANOVA;
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Giemsa-stained after 2.5 h cell incubation. Representative images of three independent experiments
are shown. Scale bar, 10 µm. Images were recorded with the 40× objective using a Leica DM5000B
microscope and processed using the Leica Application Suite 2.7.0.R1 software (Leica). Arrows show
the adherent bacteria.

3. Materials and Methods
3.1. General Information

Nuclear magnetic resonance (NMR) spectra were recorded on Varian Geminin 300 MHz
or Innova 600 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) (δ)
relative to CDCl3 (δ 7.27 and 77.23 ppm for 1H- and 13C-NMR, respectively) or relative to
the signal of CD3OD (δ. 3.31 and 4.8 ppm for 1H- and 49.7 ppm for 13C-NMR, respectively).
Where necessary, DEPT, APT, and two-dimensional 1H-1H COSY and HSQC experiments
were performed for complete signal assignments. Coupling constants (J) are reported in
Hertz (Hz). Signal multiplicities are used as singlet (s), doublet (d), doublet of doublet
(dd), triplet (t), multiplet (m). Accurate mass measurements were performed on a LC-MSD-
Tof instrument from Agilent technologies in positive electrospray with protonated ions
[M + H]+; sodium adducts [M + Na]+ and [M + NH4]+ were used for empirical formula
confirmation. Flash chromatography was performed using Merck silica gel 60 (40–63 µm).
TLC was performed on Kiesel gel 60 F254 plates from Merck. Detection was carried out
under UV light or by spraying with 20% ethanolic sulfuric acid or molybdate solution
followed by heating. Optical rotations were measured with a JASCO P-1010 polarimeter.
Melting points were measured on a Fisher Jones apparatus and are uncorrected. Purifica-
tion of some compounds were done by semi-preparative HPLC (Agilent, Santa Clara, CA,
USA). All eluents contained 0.1% formic acid and flow rate was set to 5 mL/min. Solvents
were dried by distillation from drying agents as follows: DMF (Barium oxide), CH2Cl2
(P2O5), Et3N and pyridine (CaH2), MeOH was stored over 4A molecular sieves. Some aryl
iodides were synthesized according to literature procedures [53–55]: 2-iodophenyl acetate,
4-iodophenyl acetate, 4-iodobenzyl acetate and methyl 4-iodobenzoate. Compound 9 and
18 were prepared as previously published [30].

3.2. Synthetic Methods and Analytic Data of Compounds
3.2.1. General procedure for Heck Coupling of Protected C-Mannopyranosides 2–10

To a solution of mannopyranosides 1 [40] in degassed anhydrous DMF, were added
the various iodoaryl derivatives (2 equiv.), 10% palladium(II) acetate, tetrabutylammo-
nium bromide (1 equiv.), and sodium bicarbonate (3 equiv.). The reaction mixture was
heated at 85 ◦C under N2. The course of the reactions was followed by TLC. The solution
was evaporated under reduced pressure and the residue was purified by flash column
chromatography on silica gel (from 0 to 425% AcOEt-Hexanes).

Compound 2: 40 mg, 0.053 mmol, 66%, [α]20
D = −9.13 (c = 0.5, CHCl3). Rf = 0.29

(Hexane/EtOAc, 5.5: 4.5), m.p: 149–150 ◦C. 1H-NMR (600 MHz, CDCl3): δ ppm 8.8–7.19 (m,
26H, H-arom ), 6.75 (d, 1H, J2’,3’ = 15.8 Hz, CH=CH-), 6.46–6.36 (m, 1H, CH=CH-), 5.98–5.88
(m, 2H, H-4, H-3), 5.27 (dd, 1H, J1,2 = J2, 3 = 2.7 Hz, H-2), 4.75 (dd, 1H, J6a,6b = 12.0 Hz, J5,
6a = 6.9 Hz, H-6a), 4.50 (dd, 1H, J6a,6b = 12.0 Hz, J5,6b = 2.6 Hz, H-6b), 4.56–4.52 (m, 1H,
H-1), 4.50–4.47 (m, 1H, H-5), 3.05–2.96 (m, 1H, H-1’a), 2.85–2.75 (m, 1H, H-1’b). 13CNMR
(151 MHz, CDCl3): δ ppm, 166.2, 165.9, 165.6, 165.4 (4×CO), 150.1, 147.9, 135.89, 135.1,
133.5, 133.4, 132.9, 129.8, 129.6, 129.5, 128.59, 128.5, 128.2, 127.0, 121.3 (Carom, C-3’, C-2’),
74.2 (C-1), 71.2 (C-5), 71.1 (C-4), 69.6 (C-3), 68.0 (C-2), 62.9 (C-6), 33.1 (C-1’). ESI+-HRMS:
[M + H]+ calcd for C46H37NO9 + H+: 748.2541; found, 748.2479.

Compound 3: 44.6 mg, 0.064 mmol, 80 %. [α]20
D = −28.86 (c = 0.2, CHCl3). Rf = 0.23

(Hexane/EtOAc, 1.8:1.2). 1H-NMR (600 MHz, CDCl3): δ ppm 8.44 (d, 1H, 4JH-H = 2.2 Hz,
H-arom), 8.36 (dd, 1H, 3JH-H = 4.7 Hz, 4JH-H = 1.5 Hz, H-arom), 7.91–7.21 (m, 21H, H-arom),
7.11–6.93 (m, 1H, H-arom), 6.51 (d, 1H, J2’,3’ = 16 Hz, CH=CH-Py), 6.24 (m, 1H, J2’,3’ = 16.3 Hz,
J2,’H1’a = 13.4 Hz, J2’,H1’b = 5.8 Hz CH=CH-Py), 6.02 (dd, 1H, J3,4 = J4,5 = 8.3 Hz, H-4), 5.81 (dd,
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1H, J2,3 = 3.1 Hz, J3,4 = 8.6 Hz, H-3), 5.63 (dd, 1H, J1,2 = J2, 3 = 3.4 Hz, H-2), 4.68 (dd, 1H,
J6a,6b = 12.0 Hz, J5,6a = 6.7 Hz, H-6a), 4.52 (dd, 1H, J6a,6b = 12. Hz, J5,6b = 3.2 Hz, H-6b),
4.46–4.41 (m, 1H, H-1), 4.38–4.35 (m, 1H, H-5), 2.94–2.82 (m, 1H, H-1’a), 2.74–2.68 (m, 1H,
H-1’b). 13CNMR (151 MHz, CDCl3): δ ppm, 166.2, 165.6, 165.6, 165.4 (4 × CO), 148.4, 148.2,
133.5, 133.4, 133.0, 132.4, 129.6, 128.9, 128.5, 126.7, 123.5 (Carom, C-3’, C-2’), 74.1 (C-1), 71.2
(C-5), 71.1 (C-2), 69.4 (C-4), 67.80 (C-3), 62.7 (C-6), 33.2 (C-1’). ESI+-HRMS: [M + H]+ calcd
for C42H35NO9 + H+: 698.2385; found, 698.4013.

Compound 4:115 mg, 0.152 mmol, 80% yield. [α]20
D = −9.92 (c = 0.5, CHCl3).

Rf = 0.17 (Hexane/EtOAc, 2:1). 1H-NMR (300 MHz, CDCl3): δ, 8.21–7.00 (m, 24H, H-
arom), 6.67 (d, 1H, J2’,3’ = 15.9 Hz, CH=CHPh), 6.39–6.2 (m, 1H, CH=CHPh), 6.00 (dd,
1H, J3,4 =J4,5 = 8.5 Hz, H-4), 5.91 (dd, 1H, J2,3 = 3.1 Hz, J3,4 = 8.9 Hz, H-3), 5.74 (dd, 1H
J1,2 = J2,3 = 3.1 Hz, H-2), 4.66 (m, 2H, H-6a, H-6b), 4.74 (dd, 1H, J6a, 6b = 12 Hz, J5, 6a = 6.5 Hz,
H-6a), 4.62 (dd, 1H, J5, 6b = 12 Hz, J6a, 6b = 2.8 Hz, H-6b), 4.59–4.36 (m, 2H, H-1, H-5), 3.09–
2.92 (m, 1H, H-1’a), 2.85–2.78 (m, 1H, H-1’b), 2.37 (s,3H, Ac). 13C-NMR (75 MHz, CDCl3): δ
169.3, 166.2, 165.6, 165.4, 147.5 (5 × CO), 135.5, 133.4, 133.0, 129.8, 129.6, 129.5, 129.0, 128.4,
128.2, 126.7, 126.1, 122.5 (Carom, C-3’, C-2’), 74.4 (C-1), 71,4 (C-5), 71.0 (C-4), 69.7 (C-3), 67.8
(C-2), 62.8 (C-6), 33.23 (C-1’) and 21.1 (Ac). ESI+-HRMS: [M + H]+ calcd for C45 H39 O11,
755.2487; found, 755.2469.

Compound 5: 49 mg, 0.064 mmol 80% yield. [α]20
D = −16.63 (c = 0.5, CHCl3)).

Rf = 0.22 (Hexane/Toluene/EtOAc, 71: 24: 5). 1H-NMR (300 MHz, CDCl3): δ, 8.14–7.29 (m,
22H, H-arom), 6.98 (dd, 1H, 3JH-H = 9.0 Hz, 4JH-H = 2.4 Hz, H-arom), 6.61 (d, 1H, J2’,3’ = 15.9 Hz,
CH=CHPh), 6.32–6.17 (m, 1H, CH=CHPh), 5.95 (dd, 1H, J3,4 =J4,5 = 8.8 Hz, H-4), 5.90 (dd,
1H, J2,3 = 3.0 Hz, J3,4 = 8.8 Hz, H-3), 5.74 (dd, 1H J1,2 = J2,3 = 3.1 Hz, H-2), 4.72 (dd, 1H,
J6a,6b = 12 Hz, J5,6a = 6.5 Hz, H-6a), 4.62 (dd, 1H, J6a,6b = 12.1 Hz, J5,6b = 2.8 Hz, H-6b),
4.56–3.36 (m, 2H, H-1, H-5), 3.05–2.87 (m, 1H, H-1’a), 2.83–2.79 (m, 1H, H-1’b), 2.32 (s, 3H,
Ac). 13C-NMR (75 MHz, CDCl3): δ 169.3, 166.3, 165.6, 165.4, 147.5 (5 × CO), 135.4, 133.3,
133.0, 129.8, 129.5, 129.0, 128.4, 126.7, 126.1, 122.5 (Carom, C-3’, C-2’), 74.4 (C-1), 71,4 (C-5),
71.0 (C-4), 69.7 (C-3), 67.8 (C-2), 62.8 (C-6), 33.23 (C-1’) and 21.0 (Ac). ESI+-HRMS: [M + H]+

calcd for C45H39O11, 755.2487; found, 755.2453.
Compound 6: 52 mg, 0.067 mmol, 90% yield. [α]20

D = −8.3 (c = 0.5, CHCl3). Rf = 0.25
(Hexane/ EtOAc, 3:1). 1H-NMR (300 MHz, CDCl3): δ, 8.16.7.12 (m, 24H, H-arom), 6.63
(d, 1H, J2’,3’ = 15.8 Hz, CH=CHPh), 6.49–6.21 (m, 1H, CH=CHPh), 6.08–5.84 (m, 2H, H-4,
H-3), 5.75 (dd, 1H J1,2 = J2,3 = 2.9 Hz, H-2), 5.11 (s, 2H, CH2Ph), 4.72 (dd,1H, J6a,6b = 11.9 Hz,
J5,6a = 6.3 Hz, H-6a), 4.63 (dd, 1H, J6a,6b = 11.9 Hz, J5,6b = 2.6 Hz, H-6b), 4.57–4.39 (m, 2H,
H-1, H-5), 3.01–2.93 (m, 1H, H-1’a), 2.84–2.77 (m, 1H, H-1’b), 2.84–2.77 (s, 3H, Ac). 13C-NMR
(75 MHz, CDCl3): δ 166.2, 165.6, 165.6, 165.4, 137.6 (5 × CO), 134.9, 133.4, 133.0, 132.8, 129.8,
129.5, 128.9, 128.5, 126.3, 124.7 (Carom, C-3’, C-2’), 74.5 (C-1), 71,2 (C-5), 70.9 (C-4), 69.7
(C-3), 67.8 (C-2), 66.1 (CH2Ph), 63.0 (C-6), 29.6 (C-1’) and 21.0 (Ac). ESI+-HRMS: [M+NH4]+

calcd for C46H44NO11, 786.2909; found, 786.2919.
Compound 7: 194 mg, 0.237, 73% yield. [α]20

D = −16.6 (c = 0.3, CHCl3). Rf = 0.18
(Hexane/EtOAc, 3:1). 1H-NMR (300 MHz, CDCl3): δ, 8.11–7.08 (m, 24H, H-arom), 6.65 (d,
1H, J2’,3’ = 15.9 Hz, CH=CHPh), 6.45–6.35 (m, 1H, CH=CHPh), 6.01–5.88 (m, 2H, H-4, H-3),
5.75 (dd, 1H, J1,2 = 3.9 Hz, J2,3 = 7.3 Hz, H-2), 4.78 (dd, 1H, J6a,6b = 12.0 Hz, J5,6a = 6.7 Hz,
H-6a), 4.63 (dd, 1H, J6a,6b = 12 Hz, J5,6b = 2.8 Hz, H-6b), 4.58–4.42 (m, 2H, H-1, H-5), 3.93
(s, 3H, COOMe), 3.03–2.93 (m, 1H, H-1’a), 2.92.-2.71 (m, 1H, H-1’b). 13C-NMR (75 MHz,
CDCl3): δ 166.8, 166.2, 165.7, 165.4, 141.4 (5 × CO), 133.4, 133.1, 132.4, 129.7, 129.6, 128.9,
128.5, 128.3, 127.1, 126.0 (Carom, C-3’, C-2’), 74.1 (C-1), 71.3 (C-5), 71.2 (C-4), 69.6 (C-3), 67.9
(C-2), 62.8 (C-6), 51.9 (COOMe), 33.1 (C-1’). ESI+-HRMS: [M + H]+ calcd for C45H39O11,
755.2487; found, 755.2493.

Compound 8: 158 mg, 88% yield. [α]20D = −6.12 (c = 0.5, CHCl3). Rf = 0.27 (Hex-
ane/EtOAc, 3:1)1H-NMR (300 MHz, CDCl3): δ, 8.09–7.31 (m, 24H, H-arom), 6.65 (d, 1H,
J2’,3’ = 15.9 Hz, CH=CHPh), 6.44 (m, 1H, CH=CHPh), 5.90 (m, 2H, H-4, H-3), 5.74 (dd, 1H
J1,2 =3.7, Hz, J2,3 = 2.4 Hz, H-2), 4.86 (dd, 1H, J6a,6b = 12 Hz, J5,6a = 7.2 Hz, H-6a), 4.63–4.44
(m, 3H, H-6b, H-1, H-5), 3.12–2.98 (m, 1H, H-1’a), 2.76–2.85 (m, 1H, H-1’b). 13C-NMR
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(75 MHz, CDCl3): δ 166.2, 165.6, 165.4, 164.7 (4 × CO), 146.7, 143.3, (Carom-q),133.5, 133.1,
131.3, 129.8, 128.9, 128.3, 126.5, 123.6, (Carom, C-3’, C-2’), 73.4 (C-1), 71.4 (C-5), 71.0 (C-4),
69.4 (C-3), 68.2 (C-2), 62.6 (C-6), 33. 3 (C-1’). ESI+-HRMS: [M + Na]+ calcd for C45H35NO11,
764.2102; found, 764.2157.

Compound 10: This compound was synthesized according to general procedure
A. 56 mg, 0.072 mmol, 90% yield, [α]20

D = −14.16 (c = 0. 39, CHCl3). Rf = 0.27. (Hex-
ane/EtOAc, 9:3). 1H-NMR (300 MHz, CDCl3): δ, 8.69 (d, 1H, 3JH-H = 5.6 Hz), 8.10–7.23
(m, 23H, H-arom), 6.56 (d, 1H, J2’,3’ = 15.7 Hz, CH=CHPh), 6.33–6.12 (m, 1H, CH=CHPh),
6.01 (dd, 1H, J3,4 = 12 Hz, J4,5 = 9.0 Hz, H-4), 5.92 (dd, 1H, J2,3 = 3.1 Hz, J3,4 = 9.0 Hz, H-3),
5.15 (dd, 1H J1,2 = J2,3 = 3.1 Hz, H-2), 3.93–3.90 (m, 1H, H-1), 4.72 (dd, 1H, J6a,6b = 12.1, Hz,
J5,6a = 6 Hz, H-6a), 4.58–4.41 (m, 2H, H-5, H-1), 3.09–2.98 (m, 1H, H-1’a), 2.93–2.76 (m, 1H,
H-1’b). 13C-NMR (75 MHz, CDCl3): δ 166.2, 166.6, 165.6, 165.4, (4 × CO), 136.8, 133.3, 133.0,
132.8, 132.2, 129.7, 128.5, 128.9, 128.4, 127.5, 127.3, 127.1, 123.3 (Carom- C-3’,C-2’), (Carom),
127.5 (Carom, C-2’), 127.3, 127.1 (Carom), 74.5 (C-1), 71,3 (C-5), 70.9 (C-4), 69.7 (C-3), 67.8
(C-2), 62.9 (C-6), 32.9 (C-1’). ESI+-HRMS: [M + NH4]+: calcd for C43H39BrNO9, 794.1792;
found, 794.1770

3.2.2. General Procedure for De-O-Benzoylation

Compounds 11–18 and 20 were deprotected by treatment with 1M ammonia in
methanol at room temperature for 36 h. Removal of solvent under vacuum afforded the
crude residues which were purified by column chromatography (MeCN/MeOH, 9.5/0.5)
and the compounds (11, 13, 15) were purified by semi-preparative HPLC (A: H2O + 0.1%
trifluoroacetic acid, B: ACN + 0.1% trifluoroacetic acid, 5 mL/min).

Compound 11: 15 mg, 0.045 mmol, 85% yield. [α]20
D = +41.3 (c = 0.1, CH3OH).

1H-NMR (600 MHz, CD3OD): δ ppm 8.87 (dd, 1H, 3JH-H = 4.4 Hz, 4JH-H = 1.6 Hz, H-
arom), 8.33 (dd, 1H, 3JH-H = 8.4 Hz, 4JH-H = 1.6 Hz, H-arom), 7.97 (d, 2H, 3JH-H = 1.1
Hz, H-arom), 7.84 (s, 1H, H-arom), 7.52 (dd, 1H, 3JH-H = 8.3 Hz, 4JH-H = 4.4 Hz, H-
arom), 6.75 (d, 1H, J2’,3’ = 16.0 Hz, CH=CH-), 6.65–6.48 (m, 1H, CH=CH-), 4.07 (ddd, 1H,
J1,2 = 2.7 Hz, J1,H1’a = 8.7 Hz, J1, H1’b = 6.0 Hz, H-1), 3.84–3.65 (m, 5H, H-4, H-3, H-2, H-6a
H-6b), 3.64–3.55 (m, 1H, H-5), 2.84–2.69 (m, 1H, H-1’a), 2.68–2.51 (m, 1H, H-1’b). 13C-
NMR (151 MHz, CD3OD): δ ppm: 149.2, 146.8, 136.9, (Carom-q), 136.4, 131.1, 128.4, 128.2,
127.6, 127.4, 125.2, 121.4, (Carom, C-3’, C-2’), 76.6 (C-1), 75,0 (C-5), 71.3 (C-4), 70.7 (C-3),
68.1 (C-2), 61.6 (C-6), 32.6 (C-1’). ESI+-HRMS: [M + H]+ calcd for C18H21NO5, 332.1492;
found, 332.1515.

Compound 12: 15 mg, 0.053 mmol, 84% yield. [α]20
D = +27.8 (c = 0.1, CH3OH).

1H-NMR (300 MHz, CD3OD): δ ppm 8.53 (s, 1H, H-arom), 8.38 (d, 1H, 3JH-H = 3.8 Hz, H-
arom), 7.94 (dd, 1H, 3JH-H = 3.5 Hz, 4JH-H = 1.8 Hz, H-arom), 7.42- (dd, 1H, 3JH-H = 8.0 Hz,
4JH-H = 4.9 Hz, H-arom), 6.60 (d, 1H, J2’,3’ = 16.0 Hz, CH=CH-Py), 6.50–6.41 (m, 1H,
CH=CH-Py), 4.08 (ddd, 1H, J1,2 = 2.7 Hz, J1,H1’a = 8.7 Hz, J1,H1’b’ = 6 Hz, H-1) 3.91–3.65 (m,
5H, H-4, H-3, H-2, H-6a, H-6b), 3.62–3.57 (m, 1H, H-5), 2.81–2.69 (m, 1H, H-1’a), 2.62–2.51
(m, 1H, H-1’b). 13C-NMR (75 MHz, CD3OD): δ ppm: 146.9, 146.6, 133.6, 129.3, 128.2, 124.2,
121.1 (Carom, C-3’, C-2’), 76.8 (C-1), 74.1 (C-5), 70.7 (C-4), 70.7 (C-3), 67.5 (C-2), 61.4 (C-6),
32.5 (C-1’). ESI+-HRMS: [M + H]+: calcd for C14H19NO5, 282.1336; found, 282.1331.

Compound 13: 38 mg, 0.128 mmol, 85% yield. [α]20
D = +8.54 (c = 0.2, CH3OH).

1H-NMR (300 MHz, CD3OD): δ, 7.38 (dd, 1H, 3JH-H = 8.3 Hz, 4JH-H = 1.3 Hz, H-arom),
7.03 (td, 1H, 3JH-H = 7.7 Hz, 4JH-H = 1.6 Hz, H-arom), 6.76 (m, 3H, H-arom, CH=CHPh),
6.31–6.21 (m, 1H, CH=CHPh), 4.06–3.96 (m, 1H, H-1), 3.89–3.61 (m, 5H, H-4, H-3, H-6a,
H-6b, H-2), 3.56 (ddd, 1H, J4,5 = 8.5 Hz, J5,6a = 5.4 Hz, J5,6b = 2.9 Hz, H-5), 3.01 (s, 1H, PhOH),
2.66 (ddd, 1H, 1H, JH1’a, H1’b = 14.7 Hz, J1,H1’a = 1.4 Hz, J1’,2’ = 8.1 Hz, H-1’a), 2.54 (ddd,
1H, 1H, JH1’a,H1’b = 14.4 Hz, J1,H1’b = 3.9 Hz, JH1’b,2’ = 10.6 Hz, H-1’b). 13C-NMR (75 MHz,
CD3OD): δ 154.1 (C-PhOH), 127.5 (C-3’), 127.3, 126.2 (Carom-q), 122.0 (C-2’), 124.4, 118.9,
115.0 (Carom), 77.5 (C-1), 74,8 (C-5), 71.4 (C-4), 70.6 (C-3), 67.9 (C-2), 61.6 (C-6), 33.09 (C-1’).
ESI+-HRMS: [M+Na]+: calcd for C15H20NaO6, 319.1158; found, 319.1175.
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Compound 14: 16 mg, 0.054 mmol, 85% yield. [α]20
D = +31 (c = 0.1, CH3OH). 1H-NMR

(300 MHz, CD3OD): δ, 7.23 (d, 2H, 3JH-H = 8.6 Hz, H-arom), 6.72 (d, 2H, 3JH-H = 8.6 Hz, H-
arom), 6.42 (d, 1H, J2’,3’ = 15.7 Hz, CH=CHPh), 6.14–6.04 (m, 1H, CH=CHPh),4.10–3.91 (m,
1H, H-1), 3.87–3.61 (m, 5H, H-4, H-3, H-6a, H-6b, H-2), 3.62–3.44 (m, 1H, H-5), 2.66–2.57 (m,
1H, H-1’a), 2.53–2.43 (m, 1H, H-1’b). 13C-NMR (75 MHz, CD3OD): δ 153.6 (C-PhOH), 131.7
(C-3’), 129.1, 126.9 (Carom-q), 122.6 (C-2’), 115.1 (Carom), 77.5 (C-1), 74,8 (C-5), 71.4 (C-4),
70.6 (C-3), 67.9 (C-2), 61.6 (C-6), 33.09 (C-1’). ESI+-HRMS: [M+Na]+: calcd for C15H20NaO6,
319.1152; found, 319.1165.

Compound 15: 16.2 mg, 0.052 mmol, 80% yield. [α]20
D = +20 (c = 0.1, CH3OH). 1H-

NMR (300 MHz, CD3OD): δ, 7.38 (d, 2H, 3JH-H = 8.2 Hz, H-arom), 7.29 (d, 2H, 3JH-H = 8.2 Hz,
H-arom), 6.52 (d, 1H, J2’,3’ = 15.9 Hz, CH=CHPh), 6.39–6.24 (m, 1H, CH=CHPh),4.58 (s,
2H, CH2Ph), 4.07–3.94 (m, 1H, H-1), 3.86–3.61 (m, 5H, H-4, H-3, H-6a, H-6b, H-2), 3.56
(ddd, 1H, J4,5 = 8.5 Hz, J5,6a = 5.5 Hz, J5,6b = 3.0 Hz, H-5), 2.72–2.61 (m, 1H, H-1’a), 2.57–2.61
(m, 1H, H-1’b). 13C-NMR (75 MHz, CD3OD): δ 140.2,136.6 (Carom-q), 131.8, (C-3’), 126.8,
125.7 (Carom), 125.6, (C-2’), 77.2 (C-1), 74,9 (C-5), 71.2 (C-4), 70.7 (C-3), 68.0 (C-2), 63.5
(CH2Ph), 61.6 (C-6), 32.4 (C-1’). ESI+-HRMS: [M+NH4]+: calcd for C16H26NO6, 328.1416;
found, 328.1771.

Compound 16: 16 mg, 0.047 mmol, 85% yield. [α]20
D = +42.62 (c = 0.1, CH3OH). 1H-

NMR (300 MHz, CD3OD): δ, 7.95 (d, 2H, 3JH-H = 8.4 Hz, H-arom), 7.51 (d, 2H, 3JH-H = 8.4 Hz,
H-arom), 6.64–6.44 (m, 2H, CH=CHPh, CH=CHPh), 4.04 (ddd, 1H, J1,2 = 6.0 Hz, J1,1’a = 8.7 Hz,
J1,1’b = 2.7 Hz, H-1), 3.83 (dd, 1H, J3,4 =6.1 Hz, J4,5= 3.1 Hz, H-4,), 3.81–3.64 (m, 4H, H-3,
H-6a, H-6b, H-2), 3.55 (ddd, 1H, J4,5 = 9.9 Hz, J5,6a = 6.5 Hz, J5,6b = 3.8 Hz, H-5), 2.76–2.66
(m, 1H, H-1’a), 2.64–2.47 (m, 1H, Hb). 13C-NMR (75 MHz, CD3OD): δ 167.0 (COOMe),
142.3 (Carom-q), 131.0 (C-3’), 129.4 (Carom-q), 128.2, 125.9 (C-2’), 77.1 (C-1), 75,2 (C-5), 70.9
(C-4), 70.7 (C-3), 67.8 (C-2), 61.5 (C-6), 51.4 (COOMe), 32.6 (C-1’). ESI+-HRMS: [M+Na]+:
calcd for C17H22NaO7, 361.1258; found, 361.1253.

Compound 17: 16 mg, 0.049 mmol, 85% yield. [α]20
D = +40.6 (c = 0.1, CH3OH). 1H-

NMR (300 MHz, CD3OD): δ, 8.19 (d, 2H, 3JH-H = 5 Hz, H-arom), 7.64 (d, 2H, 3JH-H = 4.9 Hz,
H-arom), 6.95–6.45 (m, 2H, CH=CHPh, CH=CHPh), 4.26–3.89 (m, 1H, H-1), 3.84–3.54 (m,
6H, H-4, H-3, H-6a, H-6b, H-2, H-5), 3.10–2.64 (m, 1H, H-1’a), 2.71–2.37 (m, 1H, H-1’b).
13C-NMR (75 MHz, CD3OD): δ 146.4, 144.3 (Carom-q), 132.1, 129.9, 126.2, 123.7 (Carom,
C-3’, C-2’), 76.5 (C-1), 74.9 (C-5), 71.1 (C-4), 76.5 (C-3), 67.9 (C-2), 61.2 (C-6), 32.4 (C-1’).
ESI+-HRMS: [M+NH4]+: calcd for C15H23N2O7, 343.15; found, 343.1512.

3.2.3. Synthesis of Compounds 19 and 20 by Suzuki Reaction

To a solution of compound 10 (40 mg, 0.051 mmol) in degassed (N2) dioxane-water
(5:1) were added 4-piridinylboronicacid (10 mg, 2 equiv.), 15% Pd2Cl2 (PPh3)2 ferrocene,
and cesium carbonate (48 mg, 3 equiv.). The reaction mixture was heated at 80 0C. The
reaction was followed by TLC. The solution was evaporated under reduced pressure and
the residue was purified by flash column chromatography on silica gel (6:4 Hexane/EtOAc)
to afford compound 19 as colorless oil. 22 mg, 0.028 mmol, 55%, [α]20

D = −10.7 (c = 0.
4, CHCl3). Rf = 0.17 (Hexane/EtOAc, 6:4). 1H-NMR (300 MHz, CDCl3): δ, 8.69 (d, 1H,
H-arom), 8.06.7.23 (m, 27H, H-arom), 6.56 (d, 1H, J2’,3’ = 15.6 Hz, CH=CHPh), 6.28 (ddd,
1H, J1’a,2’ = J1’b, 2’=6.9 Hz, J2’,3’ = 15.6 Hz, CH=CHPh), 6.01 (dd, 1H, J3,4 = J4,5 = 8.6 Hz, H-4),
5.92 (dd, 1H, J2,3 = 3.3 Hz, J3,4 = 9.0 Hz, H-3), 5.72 (dd, 1H J1,2 = J2,3 = 3.2 Hz, H-2), 4.71 (dd,
1H, J6a,6b = 12.1 Hz, J5,6a = 5.9 Hz, H-6a), 4.62 (dd, 1H, J6a,6b = 12.2 Hz, J5,6b = 2.9 Hz, H-6a),
4.52–4.44 (m, 1H, H-1), 4.41–4.34 (m, 1H, H-5), 2.94–2.68 (m, 2H, H-1’a, H-1’b). 13C-NMR
(75 MHz, CDCl3): δ 166.2, 165.6, 165.5, 165.4, (4 × CO), 148.9 (Carom-N), 137.3, 135.0, 133.5,
133.4, 133.3, 133.0, 131.3, 129.8, 129.7, 128.9, 128.5, 127.7, 126.5, 125.2 (Carom, C-3’, C-2’),
74.5 (C-1), 70,4 (C-5), 69.1 (C-4), 67.8 (C-3), 66.0 (C-2), 62.8 (C-6), 33.3 (C-1’). ESI+-HRMS:
[M + H]+: calcd for C48H40NO9, 774.26; found, 774.2690.

Compound 19 was deprotected according to general procedure above to afford com-
pound 20: 7 mg, 0.02 mmol, 80%, [α]20

D = +17.38 (c = 0.13, CH3OH). 1H-NMR (300 MHz,
CD3OD): δ 8.61 (s, 2H, Harom), 7.69 (d, 1H, 3JH-H = 7.9 Hz, H-arom), 7.49–7.29 (m,
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5H, 3JH-H = 7.9 Hz, H-arom), 6.43 (d, 1H, J2’,3’ = 15.7 Hz, CH=CHPh), 6.33–6.14 (m, 1H,
CH=CHPh), 4.04–3.91 (m, 1H, H-1), 3.83–3.62 (m, 5H, H-4, H-3, H-2, H-6a,H-6b) 3.5–3.47
(m, 1H, H-5), 2.69–2.51 (m, 1H, H-1’a), 2.50–2.38 (m, 1H, H-1’b). 13C-NMR (151 MHz,
CD3OD): δ, 148.6, 136.9, 135.4, 129.9 (Carom), 129.1 (C-2’), 128.7, 128.6 (C-3’), 128.0, 127.2,
126.3, 125.1 (Carom), 76.5 (C-1), 74,8 (C-5), 71.1 (C-4), 70.6 (C-3), 68.9 (C-2), 61.7 (C-6), 32.5
(C-1’). ESI+-HRMS: [M + H]+: calcd for C20H24NO5, 357.16; found, 357.1666.

3.3. Bioactivity Assay
3.3.1. Expression and Purification of FimH

The FimH lectin (Phe1-Thr158) was produced and purified as described previously [46]
by expression from the pET-24a vector in E. coli C43(DE3) [45] in MinA medium comple-
mented with the 20 amino acids, the vitamins biotin and thiamin, glucose and MgCl2.
Soluble FimH lectin secreted in the periplasm was extracted by applying 30% sucrose and
2.5 mM EDTA, in 20 mM HEPES at pH 7.4, onto the washed bacterial pellet followed by a
30-fold dilution in the same buffer to cause the desired osmotic shock. A 30’ centrifugation
at 13,000× g was carried out to eliminate the cellular debris present in the pellet and
isolate the soluble proteins in the supernatant. The supernatant was acidified using HCl to
pH = 3.9 and centrifuged again before cation exchange chromatography onto an HiTrap
Sulfopropyl Fast Flow column (SPFF, Cytiva). The SPFF column was washed in 20 mM
formic acid (pH = 3.9) and eluted using a salt gradient. The fractions containing FimH
lectin eluted between 150–250 mM NaCl and were immediately neutralized upon elution
by adding a drop of 1 M HEPES at pH 7.4. Finally, pure protein fractions were pooled and
dialyzed against 20 mM HEPES at pH 7.4 containing 150 mM NaCl.

3.3.2. Co-Crystallization of Antagonist 11 with FimH

Purified FimH lectin was concentrated to 17.19 mg·mL−1 and 1 mM of ligand 11 was
added for co-crystallization at 20 ◦C using the sitting-drop vapor-diffusion method. A
single crystal was obtained in a condition from the JCSG crystallization screen (Molecular
Dimensions), containing 3.0 M NaCl and 0.1 M BIS-TRIS at pH = 5.5 (Figure S5). Cryopro-
tection prior to flash-freezing in liquid nitrogen was performed by dragging the crystal
through a drop containing 3.5 M NaCl, 50 mM BIS-TRIS at pH 5.5 and 30% glycerol. The
crystal diffracted to 3 Å resolution at the PX1 beamline of the French Soleil synchrotron.
Molecular replacement using PDB entry 2VCO (same as above) [46] of its oligomannose-3
ligands, led to the placement of four FimH lectin protomers in the unit cell of the hexagonal
crystal. Iterative rounds of refinements were performed using PHENIX and the model was
adjusted manually using Coot [56]. The crystal structure was run through PDB_REDO [57],
for further optimization, and validated using Molprobity [58] and Staraniso [59].

3.3.3. Affinity Evaluation of Mannosides through FimH LEctPROFILE Kit

FimH LEctPROFILE kit assays from GLYcoDiag (Orléans, France) were performed
according to GlycoDiag’s protocol already described [60–62]. Briefly, the interaction pro-
files of each compound were determined through a competitive inhibition assay based on
the inhibition by the compounds of the interaction between FimH lectin coated onto the
microplate surface and a biotinylated neoglycoprotein NeoM (Man-BSA) as a tracer. A mix
of biotinylated Man-BSA (fixed concentration) and the corresponding compounds (range
of concentrations) prepared in PBS supplemented with 1 mM CaCl2 and 0.5 mM MgCl2
was deposited in each well (50 µL each) in triplicate and incubated for two hours at room
temperature. After washing with PBS buffer, the conjugate streptavidin-DTAF (dichlorotri-
azinylamino fluorescein) was added (50 µL) and incubated 30 min more. The plate was
washed again with PBS. Finally, 100 µL of PBS was added for the readout of fluorescent
plate performed with a fluorescence reader (Pherastar microplate reader, BMG labtech,
λex = 485 nm, λem = 530 nm). The signal intensity is inversely correlated with the capacity
of the compound to be recognized by the lectin and expressed as inhibition percentage
with comparison with the corresponding tracer alone. Data analysis was performed with
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GraphPadPrism software (version 5.03 for windows, San Diego, CA, USA). 50% inhibitory
concentration (IC50) was determined according to a standard dose-response/inhibition
fitting model with the following equation: y = 100 / (1 + [inhibitor]/IC50) and expressed in
nanomolar units.

3.3.4. Bacterial Strains and Cell Line

The well characterized UPEC strain CFT073 (ATCC 700928) was used as the uropatho-
type in this study. Strain CFT073 was grown at 37 ◦C in LB or seeded onto MacConkey agar
plates. The presence of the fimH gene was confirmed by PCR using the primers fimH-F 5′-
TGCAGAACGGATAAGCCGTGG-3′ and fimH-R 5′-GCAGTCACCTGCCCTCCGGTA-3′

and E. coli fimH-proficient and -deficient strains served as positive and negative controls
(E1P and I2P strains), respectively [5,63,64]. The human bladder epithelial cell line 5637,
(ATCC HTB-9) (ATCC-LGC, Milan, Italy) was routinely cultured in T25 flasks at 37 ◦C
in a humidified atmosphere with 5% CO2 using Roswell Park Memorial Institute (RPMI)
1640 medium supplemented with 10% FBS (both Gibco, Milan, Italy).

3.3.5. Effect of Mannosides on Bacterial Growth and Metabolism

Mannosides dissolved in dimethyl sulfoxide DMSO or water at a final concentration
of 5 mM were prepared. To test the mannosides’ toxicity, strain CFT073 was grown on LB
medium supplemented with each molecule reported in Table 1, at a final concentration of
50, 100 and 500 µM. Natural D-mannose (D-Man) at equal concentration to the mannosides
was used as control. LB supplemented with DMSO was included as growth control.
Bacterial cultures were then incubated in a 96-well plate at 37 ◦C over a period of 10 h with
a 30 min temperature equilibration period before data acquisition started. Readings of
culture turbidity (OD600) were determined using a plate reader (POLARstar Omega BMG
Labtech plate reader, Germany). To evaluate whether mannosides could be used as carbon
sources, an initial inoculum of strain CFT073 of ~1.5 × 107 CFU/mL was incubated in
PBS supplemented with each molecule at a final concentration of 500 µM for 24 h at 37 ◦C.
Following incubation, the growth of strain CFT073 was determined by colony forming unit
(CFU/mL) counting by spot-plating serial dilutions.

3.3.6. Cell Viability and Toxicity Assay

To evaluate whether synthesized mannosides can affect eukaryotic cells viability,
HTB-9 cells were seeded onto 24-well plates at 5 × 105 cells per mL and incubated in
RPMI supplemented with 10% FBS in the presence of each mannoside molecule at a final
concentration of 50, 100 and 500 µM at 37 ◦C in a 5% CO2 atmosphere for 24 h. At this point,
cell viability was determined by the MTT assay. The medium was replaced by fresh RPMI
supplemented with 10% FBS and 1 mg/mL MTT, and the cells were further incubated
for 1 h. Viable cells, with active metabolism able to metabolize yellow tetrazole (MTT)
into purple formazan crystals, were quantified by measuring the absorbance at 570 nm of
formazan crystals formed and solubilized with isopropanol.

3.3.7. Antibiotic-Mannoside Interference Assay

To assess any interference with antibiotic activities, strain CFT073 (approximately
105–106 CFU/well) was inoculated into a 96-well microplate supplemented with LB con-
taining ampicillin (AMP 30 µg/mL), streptomycin (SM 50 µg/mL) and gentamycin (GM
50 µg/mL) with or without the addition of each mannoside antagonist (500 µM concentra-
tion). LB supplemented with DMSO was included as growth control in this experiment.
The microplate was incubated at 37 ◦C and bacterial growth kinetics were monitored by
measuring the OD600 over a period of 16 h.

3.3.8. Bacterial Adhesion Assay

HTB-9 cells were routinely seeded in cell culture plates and maintained 2–4 days at
37 ◦C in a humidified atmosphere containing 5% CO2. For the adhesion assay, cells were
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seeded in 35 mm tissue culture plates at a density of 1 × 105 cells/well and incubated at
37 ◦C for 48 h to reach confluency. CFT073 was grown in LB under mild shaking conditions
overnight and resuspended in phosphate buffer (PBS) to an inoculum of ~106 CFU/mL
(normalized according to OD600). Each mannoside molecule was added to CFT073 inoculant
at the final concentrations of 100, 500 µM and 1 mM and incubated for 3 h in static conditions.
One ml of these bacterial/mannosides mixtures was used to infect HTB-9 cell monolayers
at a multiplicity of infection (MOI) of 10; monolayers were centrifuged (10’ at 2000× g)
and incubated at 37 ◦C with 5% CO2 for 2.5 h. The CFT073 strain incubated without
any mannoside molecules was used as control. Monolayers were extensively washed
(seven times) with PBS and lysed with 0.1% Triton X-100 in PBS. Cell lysates were serially
diluted and spot-plated onto LB agar plates for CFU/mL counting. Parallel infected
cells were Giemsa stained for qualitative assessment of bacterial adhesion, as previously
described [5,65]. Images were recorded with a Leica DM5000B microscope equipped
with DFX340/DFX300 camera and processed using the Leica Application Suite 2.7.0.R1
software (Leica).

3.3.9. Molecular Dynamics Simulations

The complex of compound 20 and the FimH lectin domain (a.a. 1-158) with the best
score using induced fit was used as the starting configuration for the molecular dynamics
(MD) simulations. The complex was solvated and the structural waters were added using
the same structural information as in the docking (PDB code: 4AUY) [66] and the ionic
concentration was set to 0.15 M NaCl. In accordance with propKa [67] the standard
protonation state at pH 7 was used for all protonatable groups of FimH. The generated
molecular system comprised about 45,000 atoms including around 15,000 water molecules.
The CHARMM36 force field with CMAP corrections was used to describe protein, water,
and ion atoms [68–70]. Missing force field parameters for compound 20 were initially
generated with CGenFF [68] with standard parameters and afterwards adapted. The
integrity of the compound was verified in a 50-ns long MD simulation of the compound
alone in water using the adapted force field.

Two independent simulations of the so generated system were performed. In each of
them a three-step equilibration was applied: first, a 2.5 ns long equilibration of the water
and ions molecules, second a 2.5 ns long equilibration in which only the protein backbone
was fixed, and third unrestrained simulations was carried out for 2.5 ns. This was followed
by a 30-ns long production run.

All MD calculations were performed in the isothermal-isobaric ensemble at 300 K with
the program NAMD2.9 [48]. Long-range electrostatic interactions were calculated using
the particle-mesh Ewald method [49]. A smoothing function was applied to truncate short-
range electrostatic interactions. The Verlet-I/r-RESPA multiple time-step propagator [51]
was used to integrate the equation of motions using a time step of 2 and 4 fs for short- and
long-range forces, respectively. All bonds involving hydrogen atoms were constrained
using the Rattle algorithm [50].

4. Conclusions

In this study, the design, synthesis, and function of a small library of C-mannose
inhibitors containing heteroaryl moieties were reported. Their relative binding affinity was
measured using a competitive inhibition assay against the binding of FimH with mannosy-
lated BSA conjugate. Among them, the best results were obtained with compounds 20 and
11, respectively. Although compound 20 had a higher inhibitory potency (IC50 0.82 ± 0.4)
against isolated FimH lectin binding domain, ligand 11 (IC50 3.17 ± 2.3) showed better
potency in inhibiting bacterial adhesion to bladder HTB-9 cell monolayers without adverse
side effects. The crystal structure of the FimH lectin-binding domain co-crystallized with
inhibitor 11 was obtained at a resolution of 3 Å. It also confirmed the expected 4C1 chair
conformation of antagonist 11 bound into the active site of the tyrosine gate. Interestingly,
the inter-molecular π-π stacking of two quinolines residues of 11 triggered the interlacing
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of two FimH lectins, providing a “bidentate” complex. Furthermore, in the mannose-
binding site between FimH and ligand 11, Tyr48 was shown to be p-stacked in parallel
to the quinoline moiety, while its Tyr137 appeared to form T-aromatic stacking. On the
other hand, molecular dynamics (MD) simulations were done for the best antagonist 20,
which unfortunately failed to provide co-crystals with FimH. The results indicated that
the lowest potential energy was obtained with the FimH in its half-open conformation. The
docking of compound 20 to this conformer helped raising the hypothesis that its high
affinity may originate from a p-stacking of the first phenyl ring with Tyr48, as well as from
the interaction of the ortho-pyridyl moiety with Tyr137 through a potential hydrogen bond.

In addition, the synthetic C-linked mannopyranoside inhibitors discussed herein nei-
ther affected bacterial growth or cell viability, nor interfered with antibiotic activity. The lat-
ter aspect is particularly important because antibiotics still represent the standard treatment
for UTIs. However, literature data evidenced the increase of the number of cleared infec-
tions when antibiotics were administrated in combination with D-mannose [71]. Moreover,
the preventive use of D-mannose showed a reduced number of UTIs in patients suffering
from rUTIs. Hence, the reported mannoside derivatives, and in particular molecules 11 and
20, represent good candidates to be analyzed in clinical trials to definitively accelerate the
inclusion of mannoside-based FimH inhibitors in the clinical guidelines for the treatment
of UTIs.
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Figure S5: ES. HRMS of compound 2, Figures S6–S37: related to 1HNMR, 13CNMR, and ES. HRMS
of compound 3 to 20, S38: Co-crystal structure of FimH with the ligand 11. Table S1: X-ray data
collection and refinement statistics.; and Figure S39: a perform serial dilution of FimH with ligands.
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