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Abstract: Immunotherapy is crucial in fighting cancer and achieving successful remission. Many
novel strategies have recently developed, but there are still some obstacles to overcome before we
can effectively attack the cancer cells and decimate the cancer environment by inducing a cascade of
immune responses. To successfully demonstrate antitumor activity, immune cells must be delivered
to cancer cells and exposed to the immune system. Such cutting-edge technology necessitates
meticulously designed delivery methods with no loss or superior homing onto cancer environments,
as well as high therapeutic efficacy and fewer adverse events. In this paper, we discuss recent
advances in cancer immunotherapy delivery techniques, as well as their future prospects.
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1. Introduction

Many strategies for inducing an antitumor response against cancers have been devel-
oped. Conventional treatment modalities include surgery, radiotherapy, and chemotherapy,
each of which has had advantages and disadvantages with limited success in improving
clinical outcomes. A thorough understanding of how tumors interact with the host immune
system will aid in development of cancer therapeutics [1]. The tumor microenvironment is
a complex and dynamic network of cellular and non-cellular matrix, a complex cluster of
malignant cells, tumor stromal cells, extracellular matrices, blood vessels, immune cells,
and signaling molecules, which influences the response to antitumor activity. They interact
within TMEs in conjunction with some signaling molecules, cytokines, and chemokines in
a sophisticated manner for the growth and metastasis of cells. Tumor cells construct an im-
munosuppressive environment to promote tumor growth and immune evasion mechanism
through mechanisms such as inhibiting the Th1 cells, which in turn induces cytotoxic T cell
differentiation and Th2 antagonistic response. Designing a cancer immunotherapy with
appropriate delivery modalities will overcome the drawbacks associated with cancer [2].

Cancer employs a variety of strategies to evade the immune system, including delaying
or even stopping antitumor activities. These immune-evading mechanisms overpower the
natural immune system’s antitumor activity, and promote tumor formation, and metastasis.
These mechanisms continue to evolve as cancer progresses, becoming more diverse and
complex in late-stage malignancies. Various host factors that make up the immune system
influence treatment outcomes, which can lead to disease progression or regression. Blocking
these immune evasion strategies had led to the discovery of new strategies for strengthening
the immune response against cancer [3]. Recent advances in cancer biology and anticancer
immunity, most notably the identification of numerous key immunosuppressive pathways,
have greatly aided this immunotherapeutic revolution. The 2018 Nobel Prize in Physiology
or Medicine was awarded to James Allison and Tasuku Honjo for their “discovery of cancer
therapy through inhibition of negative immune regulation.” Specifically, the Nobel Prize
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was awarded for the identification of immune checkpoints (i.e., cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4) and programmed death/ligand 1 (PD-1/PD-L1)), which led
to the development of antibodies targeting these checkpoints for anticancer treatment [4].
Cancer immunotherapy has revolutionized cancer treatment. In contrast to chemotherapies
and other treatments that directly destroy cancer cells, these medications aim to boost
antitumor immune responses with fewer side effects [4].

Various strategies are employed by tumors to evade the immune system, such as
downregulating antigen processing or presenting machinery (MHCI, proteosome subunit
latent membrane protein 2 (LMP 2) and LMP 7, transport associated with antigen processing
(TAP) protein and tapasin) as to not be recognized by T cells, which is the triggering point of
recognizing and attacking tumor. Another strategy employed by tumors is to downregulate
IFN signaling. which may evade antigen presentation and subsequently result in evasion
from the immune system. Cancer cells also cause T cell exhaustion by increasing the PD-1
and PD-L1 expression by various inflammatory and oncogenic signals leading to immune
evasion. Other immune suppressive modulators such as TGF-γ, IL-8, IL-10, VEGF can be
secreted into the TME by tumor cells, which in turn suppress dendritic cell maturation and
T cell functions. Tumor cells may suppress T cell function by manipulating the metabolic
composition in the TME to wither its activity effectively [5].

The cancer–immunity cycle is a schematic representation of the principles of cancer
immunotherapy. This cycle begins with the release of tumor antigens, which are taken
up, processed, and presented to naive T cells (APCs). As a result, cytotoxic T cells are
produced that can specifically recognize and kill cancer cells. Lysed cancer cells then release
antigens and costimulatory signals, triggering another round of the immune response
cascade. Tumors can disrupt critical elements of the cancer–immunity cycle via a variety of
negative feedback immune regulatory pathways, which are increasingly becoming cancer
immunotherapy targets [6]. These treatments aim to boost antitumor immune responses
while having fewer side effects than chemotherapies and other drugs that directly destroy
cancer cells. Therapeutic agents aiming to stimulate or increase the naturally ability of
immune system to kill cancer cells, which often diminishes as the disease progresses, are
used in cancer immunotherapy (Figure 1) [4]. Immunotherapy, which attempts to use the
host’s adaptive and innate immune responses to achieve long-term eradication of diseased
cells, can be broadly classified as passive or active [7].

Figure 1. Schematic illustration showing the cancer immune response, interventional therapies and
its delivery modalities.
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The relationship between intestinal microbes and the immune system is mutual in
developing tolerance against symbiotic bacteria and antigens present in the food. This
makes the immune system prepare innate and acquired immunity against invading mi-
croorganism. There needs to be a balance between recognizing gut microbiota and invading
pathogenic microbes. The metabolites produced by the microorganism in the gut can alter
the balance of inflammatory cytokines in the body and disrupt the production of T cell
subsets [8]. Recent research studies elucidate the relationship between gut microbiota and
their function in cancer immunotherapy. In one of the studies with an immune checkpoint
blockade targeting CTLA-4 and PD-1 using a mouse model, they showed that the gut bac-
teria have influence in the response tp cancer immunotherapy [9,10]. In another study, the
ingestion of the bacteria Bacteroides fragilis with Bacteroides thetaiotaomicron or Burkholderia
cepacian increased Th1 response and DC maturation, subsequently enhancing the efficacy
of anti-CTLA-4 therapy [9]. Similar experiments conducted with immunotherapy using
anti-PD-1 or anti-PD-L1 treatments showed the involvement of gut bacteria in modulating
treatment outcomes [11–13]. In patients receiving PD-1 medication, the diversity of gut bac-
teria such as Clostidiales, Ruminococcacease, and Faecalibacterium are increased. Studies have
found that the correlation between gut microbiota with respect to immunological profiling
in the tumor microenvironment has demonstrated that cytotoxic T cell marker expression
was augmented with antigen presentation and processing in patients having favorable gut
microorganisms when compared to patients with unfavorable gut microbes [14]. Finding
out the gut microbiota which have positive correlations with anti-cancer therapy can boost
the efficacy and help patients to benefit from these therapies.

Immunotherapy is fundamentally changing the clinical cancer treatment landscape.
It outperformed standard-of-care therapy in several cancer types, including malignant
melanoma and lung cancer, resulting in a number of cases with remarkable outcomes, such
as total regression of advanced-stage (metastasized) tumors and prolonged disease-free
survival [15]. In addition to immune checkpoint inhibitors, which are primarily used for
solid tumors, effective cancer immunotherapy has also been achieved through the use of
chimeric antigen receptor (CAR) T cell therapies, which have thus far been primarily used to
treat hematological malignancies [16]. In the last decade, the US FDA has approved several
immunotherapy modalities for treatment, including five immune check point inhibitors,
six CAR-T cell therapies, and one oncolytic virus therapy (Table 1).

Table 1. Cancer Immunotherapy Products on the Market Approved by the US FDA [17].

Product Name Therapy Type Cancers Approved Approved Year

Roferon-A Recombinant
IFNα2a Cytokine Hairy cell leukemia, follicular

lymphoma, melanoma, Kaposi sarcoma 1986

Intron-A Recombinant
IFNα2b Cytokine Hairy cell leukemia, follicular

lymphoma, melanoma, Kaposi sarcoma 1986

Aldesleukin Recombinant IL-2 Cytokine Melanoma and kidney cancer 1992

Sipuleucel-T

Autologous PBMCs
activated with
Recombinant

human
PAP–GM-CSF

Cell-Based Cancer Vaccine Prostate cancer 2010

Ipilimumab CTL A4 mAb ICI Melanoma 2011

Nivolumab Anti PD-L1 (PD-L1
mAb) ICI

Melanoma, lung cancer, malignant
pleural mesothelioma, renal cell

carcinoma, Hodgkin lymphoma, head
and neck cancer, urothelial carcinoma,

colon cancer, esophageal squamous cell
carcinoma, liver cancer, gastric cancer,
and esophageal or gastroesophageal

junction cancer

2014
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Table 1. Cont.

Product Name Therapy Type Cancers Approved Approved Year

Pembrolizumab Anti PD-L1 (PD-L1
mAb) ICI

Melanoma, lung cancer, head and neck
cancer, Hodgkin lymphoma, stomach

cancer, cervical cancer, and certain types
of breast cancer.

2014

T-Vec (Talimogene
laherparepvec)

GE Oncolytic HSV1
with GM-CSF Oncolytic Virus Melanoma 2015

Atezolizumab Anti PD-L1 (PD-L1
mAb) ICI

Urothelial carcinoma, non-small cell lung
cancer (NSCLC), triple-negative breast

cancer, small cell lung cancer,
hepatocellular carcinoma, and alveolar

soft part sarcoma.

2016

Tisagenlecleucel CD19-specific
CAR-T cells Adoptive cell therapy

B cell acute lymphocytic leukemia and
non- Hodgkin

lymphoma
2017

Axicabtagene ciloleucel CD19-specific
CAR-T cells Adoptive cell therapy Large B cell lymphoma 2017

Brexucabtagene autoleucel CD19-specific
CAR-T cells Adoptive cell therapy Mantle cell lymphoma (MCL) and acute

lymphoblastic leukemia (ALL) 2020

Lisocabtagene maraleucel CD19-specific
CAR-T cells Adoptive cell therapy B cell non-Hodgkin lymphoma 2021

Idecabtagene vicleucel B cell Maturation
antigen (BCMA) Adoptive cell therapy Multiple myeloma 2021

Ciltacabtagene autoleucel BCMA Adoptive cell therapy Multiple myeloma 2022

Opdualag PD1 blocking and
Anti-LAG-3 ICI Melanoma 2022

2. Cancer Immunotherapy Types
2.1. Checkpoint Inhibitors

Check point inhibitors are the most extensively studied cancer immunotherapy modal-
ities. CTLA4 inhibition and PD-1/PD-L1 blockade are the two most commonly used check
point inhibitors. Check point inhibitors regulate the immune response to abnormal cells
while protecting healthy tissues from immune attack [18]. T cells are activated to express
PD-1 in response to inflammation in TME, which in turn make it possible to detect cancer
cells [19]. Cancerous cells expressing PD-L1 render the T cells inactive by binding to them to
avoid an immune response. Using checkpoint inhibitory monoclonal antibodies targeting
PD-1 or PD-L1 to manipulate this phenomenon, T cells can be effectively used to counter
cancerous cells [20,21]. CTLA4, a co-inhibitory molecule that regulates the T cell activation,
has another check point inhibitor mechanism. The co-stimulatory molecule CD28 and its
ligands CD80 and CD86 are important for the activation, proliferation, and survival of
T cells. CTLA-4 blocks CD28 signaling by binding to its ligand CD80 or CD86 and thus
inhibits proper T cell response. Thus, antibody against CTLA-4 is used as checkpoint
inhibitor to activate T cells’ immune response [22]. The impact of PD-1, PD-L1, or CTLA4
checkpoint inhibitors has been regarded as one of the more efficient antitumor strategies
than chemotherapeutics [23].

Cancer immunotherapy clinical trials are being planned in conjunction with check
point inhibitors and chemotherapies or other agents [24]. Still, checkpoint inhibitors are
not obsolete, and there are some limitations to them, such as severe side effects to certain
organs when checkpoint inhibitors are systemically administered [25,26]. Still, clinical
research studies are being conducted to determine the underlying mechanism of checkpoint
inhibitors and their limitations in dealing tumor mechanisms [27].
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2.2. Cytokines

Recombinant IFN was the first cytokine to be approved for immunotherapy in 1986.
Since then, interferons, interleukins, and granulocyte macrophage colony-stimulating
factor (GM-CSF) have been studied clinically for their immunotherapy potential [28].
Interferons are produced in response to microbial pathogen-induced immune activation,
which results in the activation of macrophages, natural killer (NK) cells, dendritic cells, and
lymphocytes. Interferon activates immune cells in the tumor microenvironment, inhibiting
angiogenesis [29]. Interleukins stimulate the activity and growth of T cells, specifically
CD4+ and CD8+ cells. There is a number of interleukins that have pro and antitumor activity
(IL-4) depending on the tumor type, stage and location and type of cells which produce
them. IL-2 is important for T cell proliferation, whereas IL-10 inhibits T cells activation [30].
GM-CSF stimulates the immune system through two mechanisms: it promotes T cell
homeostasis and dendritic cell differentiation, which results in the production of tumor-
specific antigens. GM-CSF can also help granulocytes’ recovery after chemotherapy [31].
Currently, extensive research is being conducted to reduce the adverse effects of individual
therapies by combining checkpoint inhibitors with cytokines or chemotherapies [32].

2.3. Vaccinations

Tumor cell lysate, dendritic cells, and nucleic acids are examples of cancer vaccines [33–35].
Dendritic vaccines are the most extensively researched cell-based vaccines [36]. Autologous
dendritic cells are collected from patients and engineered so that they express tumor-associated
antigens, activating T cells to attack the tumor [37]. Sipuleucel-T is one of the approved dendritic
cell vaccines for the treatment of prostate cancer that was approved in 2010 for its ability to
successfully prolong patient survival [38]. Manipulating dendritic cells to express targeted
antigens and induce T cells against tumor can improve the efficacy and potency of dendritic
vaccines [39].

Nucleic acid therapeutics such as DNA- or RNA-based vaccines are emerging as
alternatives to conventional vaccines [40]. Nucleic acid vaccines must be delivered intracel-
lularly to the target cells, where they are translated to induce antigen expression. These
antigens are presented to T cells in order to activate them against cancer cells. Recently,
mRNA vaccines have gained attention because they have more advantages than DNA
vaccines, such as the ability to extend the half-life of mRNA with minor modifications.
However, mRNA is prone to degradation by nucleases, so it requires a transfection reagent
or delivery technologies for intracellular delivery [41].

Vaccines are based on neoantigens that can boost the immune response against cancer
cells [42,43]. Because of genetic instability, gene mutations occur in the coding region
during carcinogenesis, resulting in the formation of proteins that are not present in normal
cells. By activating the immune system, these proteins can be targeted specifically against
cancer cells. Delivery methods must be designed in such a way that they increase the
stability and protection against cancer [44].

2.4. Antibodies That Are Agonistic

Agonistic antibodies are specifically designed to bind to T cell receptors and activate
intracellular signaling pathways in order to effectively combat cancer cells. Monoclonal
antibodies (mAbs) targeting immune checkpoints such as CTLA-4 and PD1/PD-L1 have
recently been developed for antitumor activity [45]. Agonist mAbs developed against
the CD40 immune receptor can increase the tumor-infiltrating T cells (TILs), which can
effectively eliminate cancer cells [46].When CD40 interacts with CD40 ligand in dendritic
cells, it activates specific T cells, triggering a cascade of antitumor responses [47]. Agonist
antibody-based clinical trials are currently being conducted against various receptors,
targeting 4-1BB, OX40, and CD 27, but due to their toxicity, alternate delivery methods are
required to mask their toxicity potential without compromising antitumor activity [48–51].



Pharmaceutics 2023, 15, 504 6 of 24

2.5. T Cells with Alternations

Following successful clinical trials and FDA approval, T cell engineering has recently
gained attention. Autologous T cells were collected from cancer patients’ blood and
genetically engineered to express chimeric antigen receptors found on tumor cells but not
on healthy cells in the CAR-T cell approach. CAR-T cells recognize the target antigen on
tumors and induce tumor cell death when re-engineered T cells are infused back into the
patient [52,53]. The advantage of CAR-T cell therapy is that it is a single infusion therapy
that can provide protection for up to a decade after injection [54]. CAR-T therapy has
its own drawbacks, such as the fact that it is technically complex, time-consuming, and
expensive to produce, which has been a concern in the implementation of CAR-T-based
therapies [55]. CAR-T cells were unable to penetrate and interact with antigen receptors in
certain solid tumors and complex TME, necessitating the use of combination therapies to
improve the efficacy of CAR-T cell therapy [56,57].

Since 2017, the US FDA has approved six CAR-T therapies for blood cancers such as
lymphoma, certain leukemias, and, most recently, multiple myeloma. CD-19 is a target
antigen for B cell acute lymphoblastic leukemia (ALL), B cell non-Hodgkin lymphoma,
follicular lymphoma, mantle cell lymphoma (MCL), and B cell maturation antigen (BCMA)
targeting against multiple myeloma [58]. T cell receptor (TCR) T cells are T cells isolated
from patients and genetically engineered to express specific peptides and human leukocyte
antigens (HLA), resulting in TCR-T cells that are recognized by tumor-associated antigens
and effectively kill tumor cells [59]. TCR-T cells, unlike CAR-T cells, are MHC-dependent,
so they must be matched with the patient after genetic engineering, which is critical in
TCR-T cell cases [60]. Both CAR-T cells and TCR-T cells require further development to
improve their applicability with solid tumors while minimizing the associated side effects
and toxicity.

2.6. Virotherapy with Oncolytic Agents

Oncolytic viruses have shown promise in the treatment of cancer. Specific viruses
that can replicate in the cancer cells induce antitumor immune attacks in the tumor [61,62].
Viruses have been genetically modified to attack and destroy tumor cells while leaving
normal cells alone [63–65]. Oncolytic viruses used against cancer immunotherapies include
adenovirus, vaccinia virus, herpes simplex virus, measles virus, Reo virus, Newcastle
disease virus, Coxsackie virus, vesicular stomatitis virus, and Pseudovirus [66]. Antitumor
enhancement is achieved in oncolytic adenovirus CG0070 by expressing GM-CSF against
bladder cancer [67]. David Ruano et al. showed that the combined treatment of oncolytic
adenovirus ICOVIR-5 with mesenchymal stem cells resulted in disease stabilization in
neuroblastoma patients, according to a first-in-human and child study [68]. Kim et al.
studied several genetically modified vaccinia viruses. In a liver and lung model, deletion
of thymidine kinase and expression of GM-CSF prevented metastases [69]. Yoo et al.
demonstrated that a vaccinia virus lacking thymidine kinase effectively suppressed stem
cell-like colon cancer cells [70]. In addition, they demonstrated that the engineered vaccinia
virus can effectively eradicate metastatic liver cancer cells in another study [71]. T-VEC, an
oncolytic herpes simplex virus engineered to secrete GM-CSF, was recently approved by
the US Food and Drug Administration to treat advanced melanoma [72].

3. Administration Mode

The route of administration (ROA) of a drug can affect its therapeutic efficiency
during the delivery process [73–75] ROA is an important consideration when developing
the delivery immunotherapy delivery methods for a specific tumor treatment. When
compared to non-target routes of administration such as systemic administration, directly
injecting drugs into tumors (intratumoral) can elucidate better efficacy in terms of antitumor
effect [76]. Intratumoral injection directly into the tumor is possible for accessible tumors,
but for tumors that are not easily accessible, other modes of administration must be used to
effectively deliver drugs to the tumors (Table 2) [77]. The therapeutic efficacy is proportional
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to the control-release mechanism, which affects how the payload drug is transported in the
appropriate medium to comprehend the microenvironment. Understanding the tumor’s
microenvironment and the accessibility for the drugs in order to effectively deliver the
drugs is a challenge that must be considered. Innovative technologies for effectively
delivering drugs for cancer immunotherapy are being developed.

Table 2. Route of administration for cancer immunotherapy.

Route of Administration Advantages References

Oral Administration

• Simple and non-invasiveness
• Innovative strategies such as nanoionization, lipid-based

formulations, permeation enhancers and gastroretentive dosage
forms can be made available for effective delivery

• Applicable for multi cancer or metastatic treatments

[78–80]

Intravenous Administration

• High bioavailability
• Low inter/intra patient variability
• Ease of delivery with nanomedicine and

biomolecule-based formulations

[81–83]

Subcutaneous Administration

• Controlled release of drugs
• Ease of injectability
• Future implantation like microchips and controlled release

bioconjugates technologies are extensively researched

[84–86]

4. Cancer Immunotherapy Delivery Methods

Successful cancer immunotherapy necessitates efficient and effective delivery methods,
as well as drug efficacy that is specific and less toxic to host cells (Figure 2). The difficulties
in treating a cancer with a drug or biomaterial range from dosage, formulation, homing,
degradation, and delivery, all of which must be taken into account when designing a treat-
ment. When developing a drug and its delivery methods, biological and physiochemical
parameters should be taken into account. This section discusses the various methods for
delivering effective cancer immunotherapy treatments (Table 3).

Figure 2. Efficient and effective delivery methods specific and less toxic to host cells used in cancer
immunotherapy.
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Table 3. Delivery techniques for cancer immunotherapy.

Delivery Technology Types/Source Cargo Cancer Type Reference

Nanoparticles

Liposomes ErbB2/HER2 peptide Renal carcinoma [87]

OVA Thymoma [88]

ACT-cell-specific antibodies and
Interleukin-2 (IL-2) Melanoma [89]

Plasmid encoding
telomerase-specific oncolytic

adenovirus
Colorectal cancer [90]

Polymer OVA and Hydroxychloroquine Thymoma [91]

PLK1 inhibitor and PD-L1
antibody, NSCLC [92]

IR780 and PD-L1 antagonist Colorectal cancer [93]

Dendrimer PD-L1 siRNA and IL-2 encoding
plasmid DNA HCC [94]

Inorganic nanocarriers Vesicular stomatitis virus, Colorectal cancer [95]

Adenovirus Pancreatic cancer,
Colorectal cancer [96]

mRNA-encoding OVA and R848 Melanoma [97]

RNA/DNA
Technology

Anti-PD-1 antibody and CpG
oligodeoxynucleotides, Melanoma [98]

OVA Melanoma [99]

Exosomes Let-7a miRNA Breast cancer [100]

EGFR nanobodies Epidermal [101]

Cisplatin Ovarian cancer and
Hepatocarcinoma [102]

Nanovaccine Peptide neoantigen (Adpgk) and
R848 and CpG Colorectal cancer [103]

cyclic dimeric guanosine
monophosphate (CDG) melanoma [104]

Extracellular Vesicles

Dendritic cells VEGF siRNA Breast cancer [105]

Bone Marrow-Derived
MSC TRAIL lung Cancer [106]

A549 Lung Carcinoma
ells (Human) Doxorubicin Lung carcinoma [107]

B16-F10 melanoma
cells (Mouse) CpG DNA Melanoma [108]

H22 Hepatocarcinoma
cells (Mouse) Doxorubicin, 5-FU Hepatocarcinoma [109]

Implantable Scaffolds

Collagen and HA
cross-linking scaffold GEM, poly(I:C) Breast cancer [110]

PLG scaffold GM-CSF, CpG-ODNs Melanoma [111]

Hyaluronic acid
scaffold CAR-NK cells Breast cancer [112]
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Table 3. Cont.

Delivery Technology Types/Source Cargo Cancer Type Reference

Injectable Scaffolds

Alginate Hydrogel Celecoxib, PD-1 antibody Melanoma, Breast
cancer [113]

PEGylated
poly(L-valine) hydrogel TCL, poly(I:C) Melanoma [114]

ROS-degradable
hydrogel GEM, PD-L1 antibody Melanoma, Breast

cancer [115]

Cell-Based Delivery

Erythrocyte Curcumin Liver cancer [116]

Glucose oxidase, Tirapazamine Colon cancer [117]

DOX Lymphoma [118]

Cytotoxic T cells Taxol Gastric cancer [119]

NK cell TCPP Breast cancer [120]

Car-T Cells

Glioblastoma, hepatic
colorectal metastases,

peritoneal
carcinomatosis, pleural

mesothelioma,
mesothelioma

[121]

4.1. Nanoparticles

Nanomaterials are advantageous in several parameters, including surface-to-volume
ratio, photo dynamics, magnetic and electrical conductivity, optical absorption, and fluores-
cent behavior properties, which make them an effective additive in cancer immunother-
apy [122]. Recent technological aspects of nanoparticles have sparked interest in the use of
nanomedicine-based drug delivery systems because they can potentially cross biological
barriers, have biocompatibility, drug transport, and provide sustained drug release in
cancer immunotherapy approaches [123]. To overcome the barriers to drug deliver to
the tumor microenvironment, a powerful delivery platform that penetrates the complex
structure surrounding the tumor is required [124]. The use of nanoparticles in drug delivery
is one of the promising novel methods in the application of cancer immunotherapy [125].

Nanoparticle-based approaches to drug delivery drugs to tumors have attracted the
interest of researchers because they are cancer cell target specific [126]. Nanoparticle-based
delivery that directly targets the tumors can improve drug biodistribution and localization
within the tumor [127]. Small molecules, proteins, peptides, antibodies, cytokines, and
monoclonal antibodies can be delivered by nanoparticles using a variety of platforms,
including liposomes, polymers, inorganic nanocarriers, dendrimers, and exosomes [128].
One of the most important properties for a nanoparticle in cancer immunotherapy is
enhanced permeability and retention (EPR), which determines the drug’s accumulation
time in the tumor microenvironment [129]. The use of tumor-associated antigens (TAA)
to direct the immune system against cancerous cells results in less antitumor activity.
Combining them with a nanodelivery system effectively protects them from degradation
and allows them to interact with antigen-presenting cells, resulting in the stimulation of
cytotoxic T lymphocytes with an effective antitumor mechanism [130].

Deng et al. used NK cell-masked nanoparticles, which can be activated by pho-
todynamic therapy to attack the cells and induce immunogenic cell death (ICD), re-
leasing damage-associated molecular patterns, as well as NK-coated cells targeting M1
macrophages, which eventually promotes antigen-presenting cells’ (APCs) maturation,
leading to T cell activation and elimination [120]. Cancer cells were eradicated using novel
photoimmunotherapy-based nanoparticles. By synthesizing an apoferritin nanoparticle
protein cage as a photosensitizer conjugated with fibroblast activation protein specific
antibody, Zhen et al. were able to effectively bind the fibroblasts in the tumor region,
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photoirradiation modulated the antitumor immune response [131]. Another strategy for
inducing immune system against cancer is to manipulate nanoscale bioconjugates. One
such strategy is the use of Halloysite nanotubes coated with polyethylene glycol, function-
alized with folate residues and loaded with doxorubicin, a chemotherapeutic drug against
4T1-bearing mice, which demonstrated 65% tumor growth inhibition compared to 35% for
doxorubicin alone [132].

Copolymer micelles have been shown to have EPR effects when used to target tumors.
Grafting polylactic acid onto carboxymethyl cellulose as a copolymer and functionalizing
with anti-EpCAM antibody can be used for doxorubicin chemotherapeutic drug delivery
against hepatic cells (HepG2). Doxorubicin drug release was in specifically at the tumor
site, and functionalized drug-loaded micelles exhibited antitumor effects in both in vitro
and in vivo conditions [133]. Chiang et al. demonstrated that a combination of anti-PDL1
checkpoint inhibitors and T cell activators conjugated to superparamagnetic iron oxide
nanoparticles and functionalized fucoidan–dextran forming IO@FuDex3 nanocomplexes
were capable of activating immune cells and neutralizing tumors in a 4T1 breast cancer
mouse model [134]. Badrinath et al. demonstrated antitumor efficacy by enhancing
apoptosis by combining an oncolytic vaccinia virus with poly lactic-co-lactic glycolic acid
nanofiber as a delivery method against colon carcinoma [135]. Another method for targeting
tumors is to use magnetic nanoparticles against tumors through various techniques such as
manipulating the tumor environment, activating APCs, macrophage polarization, T cell
stimulation, and NK cell delivery [136].

Nano vaccines are intended to contain tumor-specific antigens as well as TAA in order
to suppress the tumor. Nano vaccines target antigens or components found exclusively
in tumors or expressed in tumors. APCs such as macrophages and dendritic cells will
come into contact with vaccine antigens [137]. Cell-, virus-, peptide-, DNA-, and mRNA-
based vaccines have been shown to be effective in treating a variety of cancers. The main
advantage of using nanoparticles is that they can be designed to produce an effective
immune response against cancers based on the target cells [138].

Jin et al. demonstrated an in situ cancer vaccine-based approach; in their study, they
designed in situ vaccines by combining two synergetic approaches. First, ferrimagnetic
nano cubes were encapsulated into an amphiphilic polymer, which generates the antigens
by a magnetic field and destroys the primary tumor, and another polymeric nanoparticle
coated with adjuvant R848 (resiquimod) delivers the formed antigens to the lymph node,
activates the APCs and creates an antitumor immune response to distant tumors [139]. Li
et al. conducted another in situ based study. The formed TAAs were captured and delivered
to APCs by photodynamic therapy, effectively eliminating cancer cells synergistically with
checkpoint therapy [140].

In another study, fluoropolymer combined with antigen ovalbumin aided dendritic
cell maturation and antigen presentation, leading to tumor suppression. When these
fluoropolymers were combined with antigens from resected cell membranes from primary
tumors, it resulted in inhibition of tumor recurrence and metastasis [141]. Luo et al.
demonstrated the efficacy and abscopal effect of neoantigen-based immunotherapy against
colon carcinoma and melanoma where nano vaccines inhibited tumor growth and survival
rates in an in vivo model [142].

Organic and inorganic nanoparticles were combined in various ways to create effective
photothermal agents to debilitate cancer cells [143,144]. Because of their biocompatibility
and optical properties, gold nanoparticles were a candidate for nanoparticle synthesis,
but their poor photothermal therapy application prompted a modification in their surface
with silica; a silica-coated gold nanoparticle cluster was shown to displau effective pho-
tothermal transduction against prostate cancer cells in vitro and the tumors completely
disappeared after 15 days [145]. Another method of inducing an immune response against
cancer is to use nanometal organic frameworks (MOFs) loaded with anti-DEC205 anti-
body. Sonodynamic immunotherapy was used in this study, in which ultrasound-based
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deep-tissue-penetrating sonication functionalized the AMR-MOF@AuPt, resulting in large
amount of reactive oxygen species that eliminated cancer cells and distant metastases [146].

Many strategies have been employed in attacking the TME using nanoparticles; one
such strategy is to target the fibroblast cells associated within the tumor environment.
Cancer-associated fibroblasts (CAF) were targeted using various nanoparticle delivery
methods, and were able to be delivered into the deeper stroma reducing α-SMA (smooth
muscle actin) levels around the tumor tissue and subsequently destroying the cancer
cells [147–150]. Recently, studies have found that the macrophages are a double-edged
sword; one could polarize macrophage into a tumor-suppressing subtype (M1) by exposing
them to IFN-γ and lipopolysaccharides to produce IL-12, which arrests the tumor growth.
Regulating tumor-associated macrophages (TAM) using iron oxide nanoparticles could
polarize M2 macrophage into M1 macrophage [120,151–153]. One another strategy to
target TME is by modulating the tumor extracellular matrix (ECM), as it provides sup-
port and regulates cellular activities and can be a targeting source to hamper the tumor
growth using nanoparticles. Laminin in the ECM could be used as a target by designing
laminin-mimicking, self-assembling peptides to form a nanoparticle, which would prolong
retention time and accumulate at the tumor site and inhibit metastasis of cancer [154]. Other
studies focus on components prevailing in ECM such as collagen, hyaluronic acid, matrix
metalloproteinases, which are targeted using various nanoparticle techniques to suppress
tumor growth and metastasis [155–158]. Nanoparticle-based strategies are used against
vasculatures as they provide growth factors, nutrients and play an essential role in growth
of the tumor; nanoparticles carrying anti-angiogenic drugs effectively inhibit angiogenesis
and metastasis [159–162]. These nanoparticle-based strategies open new insights for cancer
immunotherapy and can translate into clinical treatment for personalized therapy.

4.2. Vesicles Extracellular

Extracellular vesicles are small membrane vesicles formed by fusion of the plasma
membrane and endosomes that are secreted by cells [163]. As everyday research reveals
their potential in delivering drugs to cancer cells, EVs are emerging as a drug delivery tech-
nology [164,165]. EVs are complex membrane vesicles that travel through tight junctions to
selectively enter cells [166]. Zitvogel et al. discovered the exosomes can be derived from
dendritic cells with functional MHCs and tumor antigens on the surface, leading to tumor
neutralization by cytotoxic T lymphocytes (CTL) [167].

Dendritic cell-derived exosomes increased NK cell antitumor activity in a clinical trial
against non-small cell lung cancer (NSCLC) as maintenance immunotherapy for patients
undergoing chemotherapy [168,169]. Wang et al. used exosomes to deliver drugs to a
tumor in a liver mouse model. PTX, which has a low therapeutic efficacy due to its poor
solubility, was packaged into exosomes to increase its potential and showed higher efficacy
in tumor retention and inhibition [170]. Curcumin-loaded exosomes were used in another
in vivo mouse model study to successfully cross the blood–brain barrier and deliver the
drug against malignant glioma in the brain [171].

4.3. Biomaterials

Implantable functional scaffolds are frequently used in cancer immunotherapy to
reprogram the biological responses by delivering bioactive chemicals or cells in a con-
trolled manner [172]. Biomaterial-based delivery systems have properties such as minimal
invasiveness, targeted delivery, controlled release, high efficacy, immune cell activation,
and low toxicity, making them a potential cancer immunotherapy technique [135,173].
Nanomaterials and scaffold-based biomaterials are commonly used as implantable and
injectable biomaterials to elicit immune responses and thus antitumor activity [174].

Long-term stimulation of APCs was achieved by constructing a 3D microporous
alginate-reduced graphene oxide (rGO) scaffold loaded with GM-CSF, ovalbumin, and
cytosine–phosphate–guanine oligonucleotides. The rGO component of the implantable
scaffold’s large surface area and hydrophobic surface allow for significant loading and
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a very gradual release of a loaded antigen. In a B16 melanoma tumor model in mice,
the scaffold recruited dendritic cells, which then activated T cells, effectively suppressing
the tumor [175]. Another study found that loading a blood clot scaffold with liposomal
nanoparticles containing both vaccine and siRNA can effectively induce DCs, leading to T
cell activation and tumor suppression in various tumor and mouse models [176].

A cancer vaccine composed of whole tumor lysate-based antigens and nanoadjuvants
expressing Toll-like receptor (TLR) 3 agonists, as well as gemcitabine as an MDSC-depleting
agent, was shown to improve antitumor immunity by lowering immune suppression in
the tumor microenvironment [110]. Similarly, Ren et al. used a degradable and regulatable
macroporous implantable scaffold using methacrylate hyaluronic acid loaded with three
different compounds, the chemotherapeutic medication PTX, APCs activator TLR7 agonist
(R837), and immune checkpoint blockade molecules, which was then implanted in a
4T1 breast tumor mouse model, and showed depletion of myeloid-derived suppressor
cells (MDSC) and M2 macrophages, enhancement of APCs, and increased antitumor
immunity [177]. Ahn et al. created a 3D-engineered hyaluronic acid scaffold that increased
mRNA expression, cytokine release, and tumor lysis, resulting in improved antitumor
efficacy for a resected breast cancer model [112].

Because each type of biomaterial has distinct advantages in certain contexts, the
choice of biomaterial design, whether injectable or implantable, is fundamentally driven
by application requirements. Injecting implantable materials directly into the organs or
tissues is a much less invasive procedure than surgical implantation, and it reduces the risk
of tissue damage and the inflammatory response associated with wounds [172]. To make
injectable biomaterials, hydrogels, cryogels, and self-assembling systems can be made from
a variety of natural and synthetic ingredients [178]. Liu et. al, created a supramolecular
hydrogel for locoregional delivery that functions as both an ICD and immune checkpoint
inhibitor therapeutic [179].

In another study, they created an intelligent drug delivery system with controlled and
sustained drug release. They created in an injectable nanofiber hydrogel by combining
betamethasone phosphate and calcium ion with anti-programmed cell death protein ligand
1 antibody (αPDL1), which results in cross-linking filamentous assemblies. By blocking
the NF-B signaling pathway, the anti-inflammatory steroid betamethasone phosphate has
been incorporated into an injectable nanofiber hydrogel to reprogram the protumoral
immunosuppressive TME, and the sustained release of PDL1 from the hydrogel stimulates
the T cells to synergistically increase the immunological response of tumor cells [180].
Another strategy is co-delivery, which combines a hydrogel with a tumor vaccine and
immune checkpoint inhibitors to improve the therapeutic efficiency against melanoma and
4T tumors [181].

4.4. T Cell Therapy Delivery Methods

The advancement of clinical grade bench-to-bedside technology for isolating, genet-
ically engineering, and ex vivo expansion of T cells from one’s own patient blood has
brought T cell-based therapies to the forefront of cancer immunotherapy [55]. Tumor-
infiltrating lymphocytes (TILs) and T cell receptor manipulation results in expressing
specific antigens and HLA to effectively eliminate tumor cells [182].

Adoptive cell therapy is one such T cell therapy that is effective in treating blood
cancers. Chimeric antigen receptor-T cells (CAR-T) are one such therapy that has recently
received several FDA approvals, and products in the US, for which patient blood is collected
and T cells are engineered to treat a variety of B-cell malignancies. Although this technology
is effective for blood cancers, its limited effectiveness against solid tumors due to poor
infiltration against the complex tumor microenvironment has prompted researchers to
look for a delivery system that will allow CAR-T cells easier access to cancerous cells [183].
Using injectable or implantable bio scaffolds for locoregional delivery has been successful,
and codelivery of CAR-T cells with immunostimulatory molecules has improved long-term
delivery into the tumor microenvironment. For instance, Grosskopf AK et al., in a mouse
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model, used a polymer-nanoparticle hydrogel (PNP) to deliver CAR-T cells with IL-15, both
proximal and distal to tumors, potentially accessing solid tumors and curing them [184].

Combination therapy in one or more modalities can have a synergistic effect on the
treatment of solid tumors. Hu et al. carried out one such study where they used CAR-T
cells in combination with immune checkpoint inhibitors in a melanoma mouse model.
Biodegradable hydrogel encapsulates CAR-T cells, targeting human chondroitin sulfate
proteoglycan 4 (CSPG4.CAR) with nanoparticle-coated IL-15 and anti-PDL1 conjugated
with human platelets in combination, allowing IL-15 to activate and proliferate CAR-T cells
while blocking the PD1/PDL1 pathway to eradicate tumor cells [185]. Various delivery
modalities have been used to effectively deliver and improve the access of CAR-T cells
to solid tumors. Biomedically designed polymeric devices can provide effective access to
incompletely resected or inoperable tumors, and the conjunction of soluble biomolecules
and T-cell activation antibody ligands can achieve the multi-faceted promotion of antitumor
activity against cancerous cells. 3D bio scaffolds such as polymerized alginate-collagen
mimetic peptide matrices aided T cell migration to the tumor site, as did combining porous
silica microparticles into matrices capable of encapsulating and releasing biomolecules for
extended periods of time [186].

With new delivery technologies emerging for cancer immunotherapy, one has to
carefully choose the appropriate method by which drug efficiency can be improved. Some
of the delivery technologies are listed below with their advantages and disadvantages for
cancer immunotherapy (Table 4).

Table 4. Advantages and disadvantages of delivery techniques in cancer immunotherapy.

Delivery Modalities Immunotherapy Classes Advantages Disadvantages

Nanoparticles

• Immune Checkpoint
Inhibitors

• Cytokines
• Agonistic antibodies
• Engineered T cells

• Surface functionalization
with targeting agents

• Delivery to specific localities
• Cargo protection

• Stability
• Off-target Drug Release
• Nanoparticle Toxicity

Extracellular Vesicles
• Vaccines
• Cytokines
• Engineered T cells

• Low Immunogenicity
• High Biodistribution rate
• Versatile drug carrier

• Limited knowledge in
mechanism of action

• Difficult to mass produce

Implantable Scaffolds
• Vaccines
• Cytokines
• Engineered T Cells

• Delivery of dendritic cells
attractants and activation

• Controlled release agents
• Cargo protection
• Structural cues for cell

• Requires surgery
• Probable rejection of

loaded adjuvant

Injectable Scaffolds

• Immune Checkpoint
Inhibitors

• Cytokines
• Neoantigens

• Minimal invasiveness
• Controlled Release
• Direct delivery to the tumor
• Controlled release of agents

• Still under Research and
Development

• Need more characterization
• Use of higher gauge needles

Cell-Based Delivery
• Engineered T cells
• Adoptive T cell Therapy

• High Affinity Binding
• High cell numbers
• Repetitive Killing possible

• Individual manipulation of
T cells

• Loss of reactivity during
expansion

• Cross reactivity &
“off-target” activation

5. Clinical Trails and Patents

Clinical trials are conducted using new delivery systems for cancers. To analyze,
clinically translate and market personalized medication, rigorous research is required.
Some of the clinical trials that have been studied to determine their effectiveness and safety
are shown in below in Table 5.
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Table 5. Current clinical trials for cancer immunotherapy by various delivery technologies.

Clinical Trial
Identifier Phase Treatment Therapy Delivery

Modalities References

NCT00466960 II

Sargramostim and Paclitaxel
Albumin-Stabilized Nanoparticle
Formulation in Treating Patients With
Advanced Ovarian Cancer, Fallopian
Tube Cancer, or Primary Peritoneal
Cancer That Did Not Respond to
Previous Chemotherapy

Combined
Therapy

(Chemotherapy
and Cytokine)

Nanoparticle [187]

NCT02410733 I

Evaluation of the Safety and
Tolerability of i.v. Administration of a
Cancer Vaccine in Patients with
Advanced Melanoma (Lipo-MERIT)

Vaccine Liposome [188]

NCT01753089 I Dendritic Cell Activating Scaffold
in Melanoma Cell Therapy Scaffold [189]

NCT00103506 III

Study of DOXIL/CAELYX (Pegylated
Liposomal Doxorubicin) and
VELCADE (Bortezomib) or
VELCADE Monotherapy for the
Treatment of Relapsed
Multiple Myeloma

Chemotherapy Liposome [190]

NCT02379845 II/III

NBTXR3 Crystalline Nanoparticles
and Radiation Therapy in Treating
Randomized Patients in Two Arms
with Soft Tissue Sarcoma of the
Extremity and Trunk Wall

Radiotherapy Nanoparticle [191]

NCT01052142 I Safety Study of a Liposomal Vaccine
to Treat Malignant Melanoma Vaccine Liposome [192]

NCT00157209 IIb

Phase 2b Randomized Controlled
Study of Tecemotide (L-BLP25) for
Immunotherapy of NSCLC
(Non-Small Cell Lung Cancer)

Vaccine Liposome [193]

NCT00924326 I/II CAR T Cell Receptor Immunotherapy
for Patients With B-cell Lymphoma CAR-T [194]

NCT01454596 I/II

CAR T Cell Receptor Immunotherapy
Targeting EGFRvIII for Patients with
Malignant Gliomas Expressing
EGFRvIII

CAR-T [195]

NCT01865617 I/II

Laboratory Treated T Cells in
Treating Patients with Relapsed or
Refractory Chronic Lymphocytic
Leukemia, Non-Hodgkin Lymphoma,
or Acute Lymphoblastic Leukemia

CAR-T [196]

Cancer drugs require novel delivery systems to make them effective and safe therapies.
Recent anti-tumor therapies are designed in such a way they are efficacious in dealing
complex tumor environment. Listed below in Table 6 are some of the innovative discoveries
to combat cancer using various delivery techniques.
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Table 6. Novel patents for cancer immunotherapy by various delivery technologies.

Patent Number Inventors Title

US20090010948A1 Fang Ping Huang, Yu Xiao Chen, Kwan Man Anti-tumor vaccines delivered by dendritic cells
devoid of interleukin-10

US20040156846A1
Wolfgang Daum, Gerald DeNardo, Diane
Ellis-Busby, Alan Foreman, Douglas Gwost, Erik
Handy, Robert Ivkov

Therapy via targeted delivery of nanoscale
particles using L6 antibodies

WO2017151727A1 Zhen GU, Chao Wang, Yanqi YE Enhanced cancer immunotherapy by microneedle
patch-assisted delivery

US20160361268A1
Chih-Peng Liu, Ya-Chin Lo, Ming-Cheng Wei,
Maggie LU, Shuen-Hsiang CHOU, Shih-Ta Chen,
Hsiang-Wen TSENG

Intralymphatic delivery of hyaluronan
nanoparticle for cancer metastasis

WO2011097384A2 Dapeng Zhou, Li Chun, Patrick Hwu Tumor targeted delivery of immunomodulators by
nanoplymers

US8785371B2 Rameshwar Patil, Eggehard Holler, Keith L. Black,
Julia Y. Ljubimova

Drug delivery of temozolomide for systemic based
treatment of cancer

US20160346204A1 Wenbin Lin, Chunbai He, Demin Liu
Nanoscale carriers for the delivery or co-delivery
of chemotherapeutics, nucleic acids
and photosensitizers

US9610250B2 Tarek M. Fahmy, Eric STERN, Richard A. Flavell,
Jason Park, Alyssa Siefert, Stephen H. Wrzesinski

Nanolipogel vehicles for controlled delivery of
different pharmaceutical agents

US20080044484A1 Boris Minev Use of polymeric nanoparticles for
vaccine delivery

US20040038406A1 Gretchen Unger, Beverly Lundell Nanoparticle delivery systems and methods of
use thereof

6. Challenges and Future Progress

New developments in understanding the cancer prognosis and novel therapeutic
approaches have called for innovative delivery methods in administering anticancer drugs.
Immunotherapy-based drugs are currently studied in various types of cancers; their effect
on solid tumors is meager because the low infiltration of immune cells makes lower tu-
mor immunogenicity, leading to an immunosuppressive tumor environment. Developing
unique and novel drug delivery systems in combination with multiple cancer therapies
would allow the treatment of solid tumors. The key issues such as the controlled release of
drugs at the specific site, techniques to assess these delivery mechanisms and their effect on
the cellular or molecular level are some of the constraints in developing a robust delivery
system. In the past thirty years, cancer nanomedicines-based approaches have achieved
progress in tackling the tumor microenvironment by understanding the enhanced perme-
ability and retention, but still certain hurdles in clinically driven transition in developing
and approving are needed to be addressed [197].

Many cancer nano formulations have certain drawbacks like off-target accumulation,
stability, in vitro to in vivo correlation and fulfilling regulatory norms in bringing clinical
translation is of some major issues [198]. Major challenges in developing drug delivery
systems using nanoparticle include physiochemical characterization, large-scale produc-
tion, developing low-toxicity nanoparticles and fulfilling the regulations in their successful
release into the market [199]. CAR-T cell therapy has gained interest after breakthrough
approvals recently, but still various clinical applications need to be resolved, with bet-
ter cell engineering and genome-editing technologies to improve the efficacy and safety
against various types of cancers. Despite promising results with delivery methods using
extracellular vesicles, nanoparticles, scaffolds and cellular-based vehicles to deliver drugs
against cancers, more insights into the mechanism of TME to effectively infiltrate and
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the evade immune system are needed for these treatments to reach their full potential in
countering cancers.

A multicentric approach in developing oncological therapeutic research using novel
drugs and delivery systems has gained popularity with the advancement of 3D-printing
and personalized delivery digital devices. In the future, there will be significant progress
in the development of nanorobots or implantable microchips that can deliver drugs and
control tumor progress. The future onco-medicine developments require intelligent and
robust multi-disciplinary approaches, where computer-based artificial intelligence and
biotechnology should go hand in hand in developing intelligent nanorobotic-based drug
carriers for delivering nanomedicines [200]. One has to carefully iterate their potential to
impact on animals and environment, which needs to be considered before their approval
for treatment.

7. Conclusions

Immunotherapy was developed in response to the ever-increasing research on cancer
and understanding and the use of technologies to find an effective treatment for cancer.
Because cancer is a complex disease, smart and intelligent delivery technologies must
be developed to overcome the challenges of controlling its growth and elimination. To
achieve successful cancer remission, novel strategies and therapy regimens will be tested
in preclinical and clinical research. In this review, we discuss the various cancer treatment
approaches that use drugs and biomaterials to exploit the immunological cascades against
the tumor microenvironment. Despite limitations and challenges in developing technolo-
gies to increase drug delivery or efficacious results, combining one or more therapies with
improved delivery technologies can result in an effective clinical translation. Precision
targeting approaches with immunologically effective, low-toxicity technologies in can-
cer immunotherapy and delivery should translate to clinical implications and eventually
benefit patients.
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