<

pharmaceutics

Article

Identification of Prognostic and Predictive Biomarkers and
Druggable Targets among 205 Antioxidant Genes in 21
Different Tumor Types via Data-Mining

Nadire Ozenver 1'2 and Thomas Efferth 1-*

check for
updates

Citation: Ozenver, N.; Efferth, T.
Identification of Prognostic and
Predictive Biomarkers and Druggable
Targets among 205 Antioxidant
Genes in 21 Different Tumor Types
via Data-Mining. Pharmaceutics 2023,
15,427. https://doi.org/

10.3390/ pharmaceutics15020427

Academic Editor: Murali

Mohan Yallapu

Received: 14 December 2022
Revised: 8 January 2023
Accepted: 20 January 2023
Published: 28 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences,
Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany

Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
*  Correspondence: efferth@uni-mainz.de; Tel.: +49-6131-3925751; Fax: +49-6131-3923752

Abstract: (1) Background: Oxidative stress is crucial in carcinogenesis and the response of tumors
to treatment. Antioxidant genes are important determinants of resistance to chemotherapy and
radiotherapy. We hypothesized that genes involved in the oxidative stress response may be valuable
as prognostic biomarkers for the survival of cancer patients and as druggable targets. (2) Methods: We
mined the KM Plotter and TCGA Timer2.0 Cistrome databases and investigated 205 antioxidant genes
in 21 different tumor types within the context of this investigation. (3) Results: Of 4347 calculations
with Kaplan-Meier statistics, 84 revealed statistically significant correlations between high gene
expression and worse overall survival (p < 0.05; false discovery rate < 5%). The tumor types for which
antioxidant gene expression was most frequently correlated with worse overall survival were renal
clear cell carcinoma, renal papillary cell carcinoma, and hepatocellular carcinoma. Seventeen genes
were clearly overexpressed in tumors compared to their corresponding normal tissues (p < 0.001),
possibly qualifying them as druggable targets (i.e., ALOX5, ALOX5AP, EPHX4, G6PD, GLRX3,
GSS, PDIA4, PDIA6, PRDX1, SELENOH, SELENON, STIP1, TXNDC9, TXNDC12, TXNL1, TXNL4A,
and TXNRD1). (4) Conclusions: We concluded that a sub-set of antioxidant genes might serve as
prognostic biomarkers for overall survival and as druggable targets. Renal and liver tumors may be
the most suitable entities for this approach.

Keywords: drug resistance; Kaplan—-Meier analysis; oxidative stress; prognostic value; survival
analysis; the cancer genome atlas

1. Introduction

Oxidative stress is widely recognized to be involved in many aging and disease pro-
cesses, e.g., cancer, neurodegenerative diseases, chronic obstructive pulmonary disease,
chronic kidney disease, etc. [1]. Reactive oxygen (ROS) and reactive nitrogen species (RNS)
are involved in this process. ROS and RNS can damage cells through lesions in DNA, RNA,
and proteins, as well as lipid peroxidation [2]. ROS-induced DNA damage contributes to
carcinogenesis [3]. The human body has multiple antioxidant mechanisms and DNA repair
mechanisms [4,5]. Despite the effectiveness of these defense mechanisms, persistent DNA
damage occurs as the initial events of carcinogenesis. Antioxidant agents, including zinc,
selenium, vitamins A, C, and E, and polyphenolic plant compounds are, therefore, con-
sidered promising for cancer prevention [6-8]. During carcinogenesis, the expression and
activity of antioxidant proteins may be upregulated [9-11]. This carcinogenic deregulation
does not lead to the protection of the body from ROS-induced damage; on the contrary,
it leads to the protection of the tumor from ROS-inducing anticancer agents and the de-
velopment of drug resistance [12-15]. A recently established therapeutic strategy aims to
target and specifically inhibit cancer-related proteins, thereby effectively killing the tumor
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while sparing the normal tissue. Examples of clinically established targeted therapeutics
are tyrosine kinase inhibitors [16-18] and therapeutic monoclonal antibodies [19-21].

Following the paradigm of targeted therapy, strategies can be developed to specif-
ically address the upregulation of antioxidant proteins. The goal of inhibiting antioxidant
genes and proteins in tumors should be to resensitize tumors to standard chemotherapy
again. To approach this goal, however, we first need to know which genes and proteins
are upregulated in tumors and are of prognostic importance for the survival of patients.
Furthermore, it is necessary to analyze which tumor types are particularly suitable for such
an approach using targeted antioxidant inhibitors. The aim of the present study was a
systematic analysis of antioxidant genes that are overexpressed in tumors and are associated
with an unfavorable survival prognosis. To this end, we chose the following strategy:

(1) Mining the literature, we identified 205 genes that are involved in antioxidant
response. (2) Using the Kaplan—-Meier plotter (https://kmplot.com/analysis/; accessed
on 19 October 2022) [22,23], overall survival curves demonstrating the worse survival
prognoses of these genes in 21 different tumor entities were identified. (3) Next, we
compared the expression of these genes in tumors and corresponding normal tissues by
using the Timer2.0 Cistrome tool of The Cancer Genome Atlas (https:/timer.cistrome.org) to
identify genes that are significantly highly expressed in tumors, with the aim of delineating
genes that may serve as druggable targets for targeted therapy in the future.

2. Materials and Methods
2.1. Kaplan—Meier Survival Analysis

Kaplan-Meier statistics are a well-established standard tool to calculate the probability
of death based on diagnostic and molecular biomarkers (e.g., gene expression) or clinico-
pathological parameters (e.g., treatment, stage, and grade). In this investigation, we used
the KM Plotter online tool (https://kmplot.com/analysis/) [22,23]. The KM Plotter is an
online repository with data regarding mRNA, miRNA, protein expression, and DNA data
based on diverse “-omics” technologies (RNA-Seq, proteomic data, etc.) from more than
30,000 samples of 21 tumor types. This database enables the identification of biomarkers
for the survival of cancer patients. To cope with type I errors of multiple comparisons,
we applied false discovery rate (FDR) corrections [24]. We included only Kaplan-Meier
statistics with FDR rates < 5%, indicating that not more than 5% of “declared” positive
results were truly negative.

2.2. Comparative mRNA Expression in Tumor and Normal Samples

The Cancer Genome Atlas (TCGA) is a program driven by the National Cancer Insti-
tute, USA, that investigated more than 20,000 cancers and matched normal tissues from
33 cancer types for gene expressions, gene mutations, markers of genetic instability (rear-
rangements, deletions, and amplifications), and protein expressions. The Timer2.0 Cistrome
tool compared the mRNA expression of genes in tumors and their matched normal tis-
sues (https://timer.cistrome.org). In this investigation, we examined the cancerous and
normal expression of genes that have been previously identified as candidate genes using
Kaplan—-Meier analyses.

3. Results
3.1. Assembling a List of Antioxidant Genes

As a first step, we mined the scientific literature for genes and proteins that are in-
volved in antioxidant stress response. Based on a previous publication [25], we further
screened the PubMed literature database to obtain an updated list of antioxidant genes. If
identified genes belonged to a gene family with several other members, the other gene fam-
ily members were also included in our list. A total of 205 genes/proteins were assembled.
Their names, gene symbols, and functions are shown in Supplementary Table S1.
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3.2. Correlation of mRNA Expression of Antioxidant Genes with Survival Prognosis of Patients

Using Kaplan—Meier statistics, the mRNA expressions of these 205 genes were cor-
related with the overall survival times of patients. For this purpose, we took advantage
of the KM Plotter database (https://kmplot.com/analysis/) that contains the mRNA se-
quencing data of 7489 individual tumors derived from 21 tumor types. We performed 4347
Kaplan-Meier calculations. Only 3 of 21 tumor types did not show statistically significant
Kaplan—Meier statistics with any of the 205 genes (esophageal squamous cell carcinoma,
lung squamous cell carcinoma, and thyroid carcinoma). In 17 tumor types, we obtained
845 calculations with a statistical significance of p < 0.05. Figure 1 shows representative
examples of overall survival curves based on Kaplan-Meier statistics of each of these
17 tumor types.
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Figure 1. Kaplan—-Meier statistics of overall survival for 17 tumor types.

To cope with the type I error problem of multiple significance calculations, we used a
false discovery rate (FDR) of 5% as a threshold. As shown in Figure 2, 117 Kaplan—Meier
calculations fulfilled this criterion. Out of all 205 genes investigated, only 84 displayed
at least one significant survival statistic in one of the 17 tumor types. Of these, 55 were
associated with patient survival of one tumor type, 22 with two tumor types, and 7 with
three tumor types.
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Figure 2. Color-coded plot of Kaplan—-Meier statistics of 84 genes for 17 tumor types. Yellow indicates significant correlations between high gene expression in
tumors and worse overall survival of patients. Blue indicates irrelevant outcomes.
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We wanted to see in which tumor types antioxidant gene expression was most fre-
quently correlated with worse overall survival. The three most frequently appearing tumor
entities were renal clear cell carcinoma (KIRC), renal papillary cell carcinoma (KIRP), and
hepatocellular carcinoma (LIHC), followed by lung adenocarcinoma (LUAD), breast cancer
(BRCA), and pancreatic ductal adenocarcinoma (PAAD) (Figure 3).

KIRC: Kidney renal clear cell carcinoma
KIRP: Kidney renal papillary cell carcinoma
LIHC: Liver hepatocellular carcinoma
LUAD: Lung adenocarcinoma

PAAD: Pancreatic adenocarcinoma

BRCA: Breast invasive carcinoma

HNSC: Head and neck carcinoma

ESCA: Esophageal carcinoma

STAD: Stomach adenocarcinoma

CESC: Cervical and endocervical carcinoma

BLCA: Bladder urothelial carcinoma

0 5 10 15 20
Number of significant Kaplan-Meier correlations

Figure 3. Number of significant Kaplan—-Meier calculations for 11 tumor types.

After evaluating 7489 individual tumors, we focused on 84 genes and 6 tumor types
(KIRC, KIRP, LIHC, LUAD, BRCA, and PAAD).

3.3. mRNA Expression of Antioxidant Genes in Tumor and Normal Tissues

Next, we compared the mRNA expression of these 84 genes not only in tumors, but
also in the corresponding normal tissues to see whether or not the gene expression was
tumor specific, i.e., more expressed in tumors than in normal tissues. For this reason, we
mined the Timer2.0 Cistrome database of The Cancer Genome Atlas. We only included
pairs of tumor and normal tissues where the corresponding expression values of nor-
mal tissues were deposited in the database; we excluded ovarian carcinoma, thymoma,
testicular germ cell carcinoma, and uterine endometrial squamous cell carcinoma from
further analysis. Thereby, the number of genes was narrowed down from 84 to 71. In
88 Kaplan—Meier statistical calculations from 71 genes, 43 (=49.9%), showed a statistically
significant overexpression of the gene of interest compared to the corresponding normal
tissue (Figure 4). In 21 calculations (=23.9%), the mRNA expression was not statistically
different in tumor and normal tissues; in 24 (=27.3%), the mRNA expression in normal
tissues was even higher than that of tumor tissues. Figure 4 shows three statistical levels
(p < 0.05, <0.01, or < 0.001). Even if we focused only on those cases where the statistical
level was p < 0.001, visual inspection revealed that in only 17 cases a clear distinction
between mRNA expression was apparent (i.e., ALOX5, ALOX5AP, EPHX4, G6PD, GLRX3,
GSS, PDIA4 (in HNSC), PDIA6, PRDX1, SELENOH, SELENON, STIP1 (in LIHC), TXNDC9,
TXNDC12, TXNL1, TXNL4A, and TXNRD1).
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Figure 4. Comparative expression of 71 genes in tumors and corresponding normal tissues (part 1).

Comparative expression of 71 genes in tumors and corresponding normal tissues (part 2).

In summary, we further downscaled the number of genes of interest to 17.

1scussion

4.D

The basic concept of this investigation was to identify biomarkers and druggable

targets from a large panel of oxidative stress response genes. In the past few years, a

paradigm shift took place in cancer therapy from cytotoxic to targeted therapy [26-29]. This
concept can be applied to cancer prevention as well as to cancer therapy. Although there is

a plethora of compounds that have been described to act in a cancer-preventive manner

because of their antioxidant characteristics [30,31], systematic searches for target-specific
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inhibitors of antioxidant proteins are rare. As antioxidant genes play an important role
in the resistance of tumors to standard chemotherapy [14,32,33], inhibitors of antioxidant
proteins may resensitize tumors to chemotherapeutic drugs.

We focused on genes with upregulated expressions and the worst survival prognoses.
To identify potential biomarkers and targets for treatment, the overlap of genes with upreg-
ulated expression and relationship to prognosis represented a precondition. We did not
consider the expression of genes without prognostic difference. To facilitate future drug
development, we require overexpressed genes that are linked to short patient survival. If
we inhibit such genes, the expectation is that, thereby, patient survival can be prolonged.
Our manuscript describes the identification of these genes as a first step in the concept
of individualized treatment with a combination of biomarker-driven diagnosis of antioxi-
dant genes and subsequent treatment with targeted drugs against these genes and their
encoded proteins.

This investigation represents a data-mining approach. Its first aim was to identify
genes whose expression in tumors are associated with a worse overall patient survival prog-
nosis. The second aim was to analyze these antioxidant genes for their potential suitability
as druggable targets. This analysis compared the mRNA expression in tumors and normal
tissues. Applying this approach identified 17 potential genes from the 205 genes analyzed.

Several thioredoxin-related genes appeared in our analysis (IXNDC9, TXNDC12,
TXNL1, TXNL4A, and TXNRD1). Thioredoxins are electron-transferring oxidoreductases
that counteract oxidative stress via thiol reduction and thereby contribute to redox home-
ostasis in cells [34-36]. The thioredoxin system is involved in tumors’ drug resistance [37].
It has been suggested that inhibitors may improve the response of tumors to anticancer
drugs [37,38]. Regarding genes in this analysis, TXNDC9 was reported to be upregulated
upon oxaliplatin treatment and may confer oxaliplatin resistance in colorectal adeno-
carcinoma cells [39]. TXNRD1 was a significant predictor of poor treatment outcome
in non-small cell lung cancer and was correlated with shorter disease-free survival [40].
TXNRD1 was proposed as a biomarker to monitor therapeutic efficacy for liver cancer [41].
Interestingly, TXNRD1 has been inhibited by numerous electrophilic compounds [42]. It can
be concluded that thioredoxin-related proteins may serve as treatment targets to improve
standard cancer chemotherapy.

Similar to thioredoxin, periredoxins (PRDX) are reactive oxygen species (ROS) scav-
engers that maintain redox homeostasis. Higher PRDX1 expression in tumors than in
corresponding normal tissues has been observed in cervical carcinoma and Burkitt lym-
phoma [43-45]. Hypermethylation silenced the PRDX1 promoter and sensitized brain
tumors to temozolomide and ionizing radiation [46] PRDX1 overexpression in glioma
cells enhanced resistance to bis-chloroethyl nitrosurea (BCNU) [47]. In ovarian carcinoma,
high PDRX1 expression was associated with poor response to chemotherapy and lower
5-year disease-free survival [48]. Interestingly, the naturally occurring small-molecular
peptidomimetic SK053 targeted PRDX1 and PRDX2, leading to cell cycle arrest and apop-
tosis in Burkitt lymphoma cells [44]. These data indicate that PRDX1 inhibition might be a
valuable strategy to reduce oxidative stress and increase chemosensitivity in cancer cells.

The expression of protein disulfide isomerase 4 (PDIA4) was correlated to docetaxel
resistance by inhibiting apoptosis and activating the Akt-signaling pathway [49]. Fur-
thermore, PDIA6 upregulation enhanced cisplatin resistance in gastric cancer cells [50].
Inhibitors of PDIA4 and PDIA6 deserve further investigation as chemosensitizers.

Stress-induced phosphoprotein 1 (STIP1) is a co-chaperone involved in the transfer of
damaged proteins to the heat shock proteins HSP70 and HSP90 [51]. In advanced bladder
carcinoma, high STIP1 expression significantly correlated with worse overall survival and
chemotherapeutic pretreatment with a cisplatin-based regimen [52]. Whether STIP1 has
potential as biomarker for survival and as predictive marker for drug resistance in other
tumor types warrants further investigation.

While glutathione and enzymes involved in the glutathione redox cycle have been
intensively discussed regarding their role in anticancer drug resistance [15,53,54], the role
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of glutathione synthetase (GSS) in chemoresistance is largely unknown. A single nucleotide
polymorphism study in 903 small cell lung cancer patients revealed that the rs725521 poly-
morphism in GSS was significantly correlated with response to platin-based chemother-
apy [55]. The relevance of GSS for drug resistance should be clarified in future studies.

The antioxidant and chemopreventive features of selenium have been widely investi-
gated for several diseases, including cancer [56-58]. Selenium compounds also induced
apoptosis and prevented the development of cisplatin resistance [59-61]. The role of SE-
LENOF and SELENOH genes, which appeared in this investigation as candidate biomarkers,
is unknown from the literature, but deserves further investigation.

Glucose 6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phos-
phate cycle. G6PD oxidizes glucose-6-phosphate and reduces NADP+. A deficiency in this
enzyme is associated with the most inherited diseases, affecting approximately 5% of the
world’s population. Patients suffering from G6PD deficiency are hypersensitive to oxida-
tive stress and susceptible to hemolytic anemias [62-65]. Leukocytes of G6PD-deficient
patients are more prone, in vitro, to induce apoptosis upon exposure to daunorubicin, dex-
amethasone, ionizing radiation, and UV radiation compared to healthy leukocytes [66-68].
Data for G6PD-deficient cancer patients are rare, either because patients are not routinely
tested for their G6PD status or because anticancer chemotherapy remains without negative
symptoms in these patients [69,70]. Therefore, the value of G6PD inhibitors to sensitize
G6PD-positive cancer patients to chemotherapy remains elusive.

There are contrary results regarding the role of arachidonate 5-lipoxygenase (ALOX5)
for drug resistance. ALOX5 overexpression in gastric cancer cells was associated with
reduced drug activity, and genetic or pharmacological ALOX5 inhibition increased drug
efficacy [71]. On the other hand, ALOX5 overexpression in acute myeloid leukemia in-
creased sensitivity to chemotherapy [72]. A conclusion regarding the feasibility of ALOX5
inhibitors as possible chemosensitizers cannot yet be drawn.

In addition to genes and proteins that may serve as prognostic and predictive biomark-
ers, it is important to clarify which tumor types are the most susceptible to inhibition of
antioxidant genes/proteins. We found that the overall survival of renal clear cells carci-
noma (KIRC), renal papillary cell carcinoma (KIRP), and hepatocellular carcinoma (LIHC)
was most frequently associated with high expression of antioxidant genes. This indicates
that these tumor entities may be more suitable for chemosensitization via inhibition of
antioxidant genes than the other tumor types investigated. Interestingly, these tumor types
are known to be rather chemoresistant [73-78]. Hence, chemosensitization strategies may
be attractive to improve treatment outcomes.

Renal clear cell carcinoma is not usually treated with cytotoxic chemotherapy because
of its ineffectiveness. Surgery, immunotherapy, and targeted therapy with tyrosine kinase
inhibitors are applied with modest success [73,74,79]. The situation in renal papillary cell
carcinoma is not fundamentally different [75,80]. Hepatocellular carcinoma can be treated
with monoclonal antibodies and tyrosine kinase inhibitors [76-78,81]. Chemotherapy with
doxorubicin and cisplatin can be applied with limited success. The 5-year overall survival
rates are between 20 and 50%. Therefore, investigating possibilities for chemosensitization
to treat these three tumor entities using inhibitors of antioxidant genes as discussed above
may be meritorious in light of their currently limited cure rates.

5. Conclusions

We identified a panel of antioxidant genes, using our transcriptome-wide RNA-
sequencing data-mining approach, as possible biomarkers with prognostic value for overall
survival and predictive value for poor response to chemotherapy. Additionally, these
genes/proteins may serve as druggable targets in the search for specific inhibitors of these
genes/proteins to resensitize tumors for standard chemotherapy. In future studies their
potential as biomarkers should be further validated and specific small molecule inhibitors
should be screened as chemosensitizers to overcome drug resistance. Researchers should
discuss and interpret their results from the perspective of previous studies and working
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hypotheses. The findings and the implications thereof should be discussed in the broadest
context possible. Future research directions may also be highlighted.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/pharmaceutics15020427/s1, Table S1: Symbols, names, and functions of genes involved in
antioxidant response.
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