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Abstract: Background: The treatment of cancer during pregnancy remains challenging with knowl-
edge gaps in drug dosage, safety, and efficacy due to the under-representation of this population
in clinical trials. Our aim was to investigate physiological changes reported in both pregnancy and
cancer populations into a PBPK modeling framework that allows for a more accurate estimation of
PK changes in pregnant patients with cancer. Methods: Paclitaxel and docetaxel were selected to
validate a population model using clinical data from pregnant patients with cancer. The validated
population model was subsequently used to predict the PK of acalabrutinib in pregnant patients with
cancer. Results: The Simcyp pregnancy population model reasonably predicted the PK of docetaxel
in pregnant patients with cancer, while a modified model that included a 2.5-fold increase in CYP2C8
abundance, consistent with the increased expression during pregnancy, was needed to reasonably
predict the PK of paclitaxel in pregnant patients with cancer. Changes in protein binding levels of
patients with cancer had a minimal impact on the predicted clearance of paclitaxel and docetaxel.
PBPK modeling predicted approximately 60% lower AUC and Cmax for acalabrutinib in pregnant
versus non-pregnant patients with cancer. Conclusions: Our results suggest that PBPK modeling is a
promising approach to investigate the effects of pregnancy and cancer on the PK of oncology drugs
and potentially inform dosing for pregnant patients with cancer. Further evaluation and refinement
of the population model are needed for pregnant patients with cancer with additional compounds
and clinical PK data.

Keywords: physiologically based pharmacokinetic (PBPK); model-informed pharmacokinetics; preg-
nancy; cancer; paclitaxel; docetaxel; acalabrutinib

1. Introduction

Multiple population-based studies conducted in Australia, Europe, Canada, and the
United States have reported a notable rise in cancer cases during pregnancy. The estimated
incidence rates range from 89 to 191 per 100,000 pregnancies [1–4]. Cancers reported in
pregnancy include breast cancer, melanoma, thyroid cancer, cervical cancer, lymphomas,
and leukemias, in the order of decreasing frequency [5]. This increase in reported cancer
cases associated with pregnancy can potentially be attributed to delayed maternal age,
advancements in diagnostic technologies, and increased healthcare encounters during
pregnancy [1].

Cancers presenting during pregnancy pose a growing public health concern, posing
a significant challenge in terms of medical management. Patients with their health care
providers face challenges in assessing the benefits vs. risks to the mother and fetus of use
and timing of cancer treatment during various stages of pregnancy. These considerations
may differ for an individual based on their cancer, stage of pregnancy, and available
treatments. Many healthcare providers exhibit hesitancy in utilizing chemotherapy due to
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uncertainties about the exposure effect of cytotoxic drugs on the developing fetus. Moreover,
there is a lack of information to guide healthcare providers regarding the appropriate
dosages for molecularly targeted oncology drugs during pregnancy. These knowledge gaps
regarding the safety and efficacy of oncology drugs during pregnancy are partially due to
the initial exclusion of pregnant patients from cancer clinical trials and practical obstacles
such as inadequate enrollment numbers, challenges in sample collection, and difficulties in
follow-up procedures, etc.

Due to the limited availability of clinical pharmacokinetics (PK) data in pregnant
patients with cancer, there is a growing interest in utilizing physiologically based phar-
macokinetics (PBPK) modeling as a potential approach to predict PK changes for these
drugs within this unique population [6]. It is widely recognized that the physiological
changes occurring during pregnancy can significantly influence the absorption, distribu-
tion, metabolism, excretion (ADME), and PK of drugs [7], and these changes have been
incorporated into pregnancy PBPK models [8–11]. However, physiological changes have
also been reported in patients with various cancer types that would need to be consid-
ered in modeling efforts related to cancer treatment in pregnancy. For example, multiple
studies have consistently reported a lower level of plasma albumin and an increased level
of alpha-1-acid glycoprotein (AGP) in various cancer types [12–15]. In addition, there
is growing evidence suggesting alterations in the expression of cytochrome P450 (CYP)
enzymes in patients with cancer [12,16,17]. Moreover, renal function tends to decrease in
patients with cancer [18]. In contrast to the changes reported in patients with cancer, both
plasma albumin and AGP levels tend to decrease throughout pregnancy [8,9,19,20]. Studies
have reported a large variation of increased activity of CYP3A4 during pregnancy [8,21],
and in vitro studies demonstrated that pregnancy-related hormones (PRH) significantly
induce CYP2C8 protein levels [22,23]. Lastly, a meta-analysis showed an approximately
35% increase in glomerular filtration rate (GFR) throughout pregnancy [8]. An overview
of the key studies and their findings regarding the physiological changes in pregnant and
cancer populations compared to healthy subjects is listed in Table 1.

Table 1. Summary of key physiological changes reported in pregnant and cancer populations
compared with healthy subjects.

Healthy Subjects Cancer Pregnancy

Albumin (g/L) 40–50 [12] 35–41 [12–14] 38.5 (30 GW),
37.6 (34 GW) [8]

Alpha-1-acid glycoprotein (AGP) (g/L) 0.5–1 [15] 1.34–1.38 [12–14] 0.6 (30–35 GW) [8]

CYP3A4 expression/activity -- 10–33% decrease [12,16,17],
No change [13,24]

60% increase throughout [25],
75% increase (27 GW), 130%

increase (at term) [11],
50–100% increase [21]

CYP2C8
expression/activity -- No change to minimum reduction [16,17] 150% increase [22,23]

GFR (mL/min/1.73 m2) 90–120 [26] Reduced, less than 90 [18] 160 (26 GW),
156 (36 GW) [8]

GW: gestational age in weeks.

To the best of our knowledge, PBPK modeling efforts have primarily focused on
gathering and refining anatomical and physiological parameters to construct separate
virtual populations representing pregnancy [8,9,11] or cancer conditions [13] but not both
populations combined. While these efforts provide a valuable foundation, we specifically
investigated the combined impact of pregnancy and cancer on the PK of oncology drugs.

Therefore, our research aims to investigate physiological changes reported in both
pregnancy and cancer populations into a PBPK modeling framework that allows for a more
accurate estimation of PK changes in pregnant patients with cancer.
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2. Materials and Methods
2.1. Compound Selection and Clinical Data Extraction

Paclitaxel and docetaxel were chosen as probe compounds for our study due to the
availability of clinical PK data in pregnant patients with cancer. These compounds were
used to assess the impact of physiological changes associated with pregnancy on the
PK of pregnant patients with cancer. Additionally, acalabrutinib was chosen for PBPK
model application, given that one of the animal preclinical studies indicated no embryo-
fetal toxicity or mortality and that it has an approved indication for cancers common in
pregnancy [27].

Relevant data, including dosing regimens, demographic information, pertinent PK
parameters, and drug concentration–time profiles, were obtained for paclitaxel, docetaxel,
and acalabrutinib. Detailed descriptions of model development and verification for each
drug and associated datasets are provided in the Supplemental Materials. The general
workflow of the PBPK modeling strategy is described in detail below and represented in
Figure 1.
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Figure 1. Workflow for the PBPK modeling strategy.

2.2. PBPK Model Development and Application

The overall PBPK modeling strategy consisted of two primary steps: the development
and verification of individual drug models, and the establishment of a population model
representing pregnant patients with cancer.

In the first step, PBPK drug models for paclitaxel, docetaxel, and acalabrutinib were
developed and verified using multiple sets of clinical PK data obtained from healthy
subjects and/or non-pregnant patients with cancer.

In the second step, a population model representing a healthy subject was modified by
incorporating the physiological changes induced by pregnancy. The resulting pregnancy
population model was then verified against relevant clinical PK data of paclitaxel and
docetaxel obtained from pregnant patients with cancer, using the previously validated
paclitaxel and docetaxel drug models. The effect of physiological changes associated
with cancer was then evaluated to determine if including these changes in the PBPK
model would improve the prediction compared to the pregnancy model. The aim of this
verification was to demonstrate that the model adequately predicts the reported PK of
docetaxel and paclitaxel in pregnant patients with cancer.

A verified population model representing pregnant patients with cancer was then
applied to predict the PK for acalabrutinib.
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2.3. Drug Model Development and Verification

The PBPK model of paclitaxel and acalabrutinib was adopted by Mendes et al. [28]
and Zhou et al. [29]. New models were developed for docetaxel. The key ADME char-
acteristics of each drug are listed below. The physicochemical properties and in vitro
and clinical data used to build the models can be found in the Supplemental Materials
(Supplemental Tables S1, S4, and S7).

Briefly, paclitaxel is primarily metabolized by CYP2C8 and CYP3A4 (80% of total
clearance), with minor contributions of renal elimination and biliary excretion mediated by
P-glycoprotein (P-gp). Paclitaxel is significantly bound to plasma protein (mainly albumin),
with a fraction unbound in plasma (fu) of approximately 0.05. It exhibits non-linear PK
over the dose range of 60–200 mg/m2, with dose-dependent effects on paclitaxel plasma
protein binding, volume of distribution, and drug clearance [28].

Docetaxel is significantly bound to plasma proteins (albumin, AGP, and lipoprotein)
with a fu of approximately 0.06 in cancer patients. The PK appears to be linear for doses
between 50 and 200 mg/m2. Metabolism by CYP3A4/5 accounts for around 80% of the
total clearance of docetaxel, with minor contributions of renal and biliary clearances [30,31].

Acalabrutinib is significantly bound to plasma protein with a fu of 0.03 and exhibits
almost linear PK across the dose range of 75 to 250 mg [32]. It is predominantly metabolized
by CYP3A4 (around 80% of total clearance), with a lesser contribution from glutathione
conjugation and amide hydrolysis [29].

Clinical PK data from healthy subjects, patients with cancer, and drug–drug interactions
were utilized to develop and verify each drug model. PBPK simulations were performed
using virtual subjects aiming to closely match the age and sex characteristics of the patients in
the corresponding clinical studies. Detailed information regarding trial simulation design is
provided in the Supplemental Materials (Supplemental Tables S2, S5, and S8).

2.4. Physiological Changes Implemented in Cancer and Pregnancy Population Models

The physiological changes associated with cancer and pregnancy can lead to modifica-
tions in the ADME processes of drugs. In this study, we focused on evaluating the impact
of cancer and pregnancy-associated changes on the levels of albumin and AGP, CYP3A4
and CYP2C8 expression and renal function, and effects on the PK of paclitaxel, docetaxel,
and acalabrutinib (Table 2).

Table 2. Physiological changes implemented in each cancer, pregnancy, and modified pregnancy
population model relative to a non-pregnant healthy subject.

Physiological
Parameter

Cancer
(SimCYP V21)

Pregnancy (32 GW)
(SimCYP V21) Modified Pregnancy

Albumin 15% decrease 25% decrease 25% decrease

Alpha-1-acid
glycoprotein (AGP) 100% increase 30% decrease 30% decrease

CYP3A4 abundance No change 100% increase 100% increase

CYP2C8 abundance No change No change 150% increase #

GFR (mL/min/1.73 m2) 30–40% decrease 25% increase 25% increase

Values are approximate estimates of the percent change of each physiological parameter value incorporated in
the cancer population or pregnant population (at 32 gestational weeks) models relative to baseline values in the
healthy volunteer population model (Simcyp® V21). # A single modification on the abundance of hepatic CY2C8
activity (150% increase in the default value of 24 pmol CYP2C8 per mg microsomal protein) throughout pregnancy
was made in the Simcyp® pregnancy population model.

2.4.1. Cancer Population Model

In the cancer population model (Simcyp V21), a 15% decrease in plasma albumin
level and a 100% increase in AGP levels compared to healthy subjects is incorporated [13].
Regarding expression or activity of CYP enzymes in patients with cancer, the cancer model
does not incorporate any changes in the expression of gut or liver CYP enzymes relative to
a healthy subject. Likewise, abundance of the efflux transporter P-gp is similar between
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healthy subjects and patients with cancer. In addition, patients with cancer may present
renal dysfunction/insufficiency with a lower GFR, which is represented by 30–40% decrease
in GFR compared to healthy subjects in the cancer population model [33].

2.4.2. Pregnancy Population Model

In the pregnancy model (Simcyp V21), plasma levels of albumin and AGP tend to
decrease throughout the pregnancy, with around 25% and 30% less at 32 gestational weeks
compared to pre-pregnancy levels, respectively [8]. In addition, a 25% increase in GFR
throughout pregnancy is added to this model [8]. Further, the expression of CYP3A4
increases up to 130% of the pre-pregnancy level at the end of the third trimester [11], while
no alteration of CYP2C8 expression is implemented [8]. We further explored an alternative
CYP2C8 expression during pregnancy based on in vitro data [22,23]. Khatri et al. [23]
reported a significant (150%) induction of CYP2C8 protein by PRH (such as progesterone
and 17-β-estradiol) in vitro. This observation was consistent with a previous in vitro
study [22] reporting that progesterone enhanced CYP2C8 mRNA levels by a magnitude
comparable to the one observed with CYP3A4. A modified pregnancy model with an
alternative CYP2C8 expression (150% increase) was evaluated in our PBPK analysis.

Simulations were also conducted using this modified pregnancy model with an alter-
native CYP2C8 expression, and results were compared with the clinical PK data in pregnant
patients with cancer.

2.5. Development and Application of a Population Model for Pregnant Patients with Cancer

PBPK analysis and clinical PK data in non-pregnant or pregnant patients with cancer,
treated with paclitaxel or docetaxel, were used to evaluate the impact of physiological
changes of pregnancy and cancer on drug PK. The overall workflow for the development
of a population model for pregnant patients with cancer is illustrated in Figure 2.
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Figure 2. Workflow of the development process of a population model for pregnant patients
with cancer.

To begin, the predictive performance of both healthy subject and cancer population
models was evaluated via comparison of predicted versus observed PK profiles of non-
pregnant patients with cancer. This analysis sought to determine which population model
better predicted the PK of pregnant patients with cancer and to identify any key physiolog-
ical changes associated with cancer that should be incorporated into a population model
representing pregnant patients with cancer.
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Sensitivity analysis was also conducted to evaluate the impact on PK of key factors
such as CYP abundance, binding proteins, and other clearance pathways. This analysis
aimed to quantify the influence of these factors and their contribution to changes in drug
PK during pregnancy and cancer.

Following this decision tree (Figure 2), the relevant pregnancy population model was
then used to predict the PK in pregnant patients with cancer administered acalabrutinib.
The virtual trial design was set to 10 trials of 10 patients with age range from 18 to 45 years
at 32 gestational weeks. Dose and schedule of acalabrutinib reflect the current approved
recommended dosage in non-pregnant patients with cancer. The simulated exposures were
compared between non-pregnant patients with cancer and pregnant patients with cancer
to assess any differences in drug exposure between these two populations.

2.6. Predictive Performance

The predictive performance among different population models in describing a
drug PK profile was evaluated via visual comparison of predicted and observed plasma
concentration-time profiles. The model was determined to adequately describe the PK
profile when the observed data were within the 90% prediction interval (5th–95th percentile
range of the virtual population). In addition, model predictions were evaluated via com-
parison of predicted PK parameters to reported values. The predicted to observed ratios
of key pharmacokinetic parameters, such as maximum plasma concentration (Cmax), area
under the concentration-time curve (AUC), and clearance (CL), were estimated. The model
was acceptable when the predicted value fell within a two-fold range of the observed value,
as a commonly used metric assessing PBPK model performance [34].

2.7. Software

The population-based PBPK software Simcyp® (Version 21, Certara UK Limited, Sheffield,
UK) was used as the platform for PBPK analyses. Simulations were performed using the
Simcyp® default virtual population models representing healthy subjects (“Sim-Healthy
Volunteers” and “Sim-NEurCaucasian”), healthy pregnant subjects (“Sim-pregnancy”), and
patients with cancer (“Sim-Cancer”). A modified pregnancy population model was also
developed and used for simulations, as previously described.

In cases where clinical PK data were not directly reported in the reference, they were
extracted using the WebPlotDigitizer (version 4.6, https://apps.automeris.io/wpd/ (ac-
cessed on 2 March 2023). In addition, the pharmacokinetic parameters were calculated via
noncompartmental analysis using the Phoenix WinNonlin software (version 8.3, Pharsight
Corp., Mountain View, CA, USA).

3. Results
3.1. Model Evaluation
3.1.1. Predictive PK Performance of Drug Models in Non-Pregnant Population
Paclitaxel

The predictive PK performance of the paclitaxel drug model (Supplemental Materials
Section S1, Table S3a) was evaluated via comparison with PK data from three clinical studies
in non-pregnant patients with cancer, administered with paclitaxel 175 mg/m2 [24,35,36].
Overall, the model predictions were within ±30% of reported PK values in both stud-
ies (Table S3a). The model adequately described the PK profiles of paclitaxel at a dose
of 175 mg/m2 in the non-pregnant cancer population. Representative predicted versus
observed plasma concentration–time profiles after a single 3 h IV infusion of paclitaxel
175 mg/m2 are shown in Figure 3a.

https://apps.automeris.io/wpd/
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Docetaxel

The predictive PK performance of the docetaxel drug model (Supplemental Materials
Section S2, Table S6a) was evaluated via comparison with PK data from two clinical studies
of docetaxel at doses of 100 mg/m2 in non-pregnant patients with cancer [37,39]. The
model predictions for Cmax, AUC, and CL were around 20% of the reported values in both
studies (Table S6a). Representative predicted versus observed plasma concentration-time
profiles after a single 1 h IV infusion of docetaxel 100 mg/m2 are shown in Figure 3b.

Acalabrutinib

The predictive PK performance of acalabrutinib drug model (Supplemental Materials
Section S3, Table S9a) was evaluated by comparing the PK data from a clinical study in
non-pregnant patients with cancer administered acalabrutinib 100 mg once daily or twice
daily (BID), 175 mg once daily, and 250 mg once daily. The predicted AUC value was
around 7% of the observed value, while the Cmax was underestimated (32% of the observed
value). We noted that high variability was reported for the Cmax values in patients treated
with acalabrutinib 100 mg BID (CV% of 102) [38]. The underestimation of Cmax was not
predicted for the other acalabrutinib dosages besides 100 mg BID (Table S9a). The model
reasonably described the steady-state PK profiles of acalabrutinib for various dosages,
with the exception of Cmax of acalabrutinib 100 mg BID. Representative predicted versus
observed plasma concentration–time profile of acalabrutinib 100 mg BID is illustrated
in Figure 3c.
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3.1.2. Evaluating the Effect of Physiological Changes in Cancer on the PK of Paclitaxel
and Docetaxel

Using paclitaxel and docetaxel drug models, simulations were conducted utilizing the
“healthy subject” and cancer population models. By comparing the predicted PK profiles
in healthy subjects and cancer populations, we aimed to identify the key cancer-specific
physiological alterations that had an impact on ADME processes.

Paclitaxel is primarily bound to albumin, with an average unbound fraction in plasma
of 0.06. A 15% decrease in plasma albumin levels, as reported in cancer populations, has
been implemented in the default cancer population model (Table 2). This reduction in
albumin levels led to an estimated 17% increase in the unbound fraction of paclitaxel
in plasma (Table S10). However, simulations indicated that this change had a minor
impact on the predicted clearance of paclitaxel (Figure 4a,b). Since paclitaxel is primarily
metabolized by CYP3A4 and CYP2C8 with a moderate hepatic extraction ratio, minor
changes in its plasma unbound fraction would have a minimal effect on clearance compared
to hepatic blood flow. Similarly, the decreased renal function in the cancer population
(30–40% decrease in GFR) did not significantly affect the total clearance of paclitaxel, as
only around 10% of the drug is eliminated via the renal route. Figure 4a,b shows the
comparison of observed versus predicted clearance of paclitaxel using both healthy and
cancer population models.
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Figure 4. Comparison of observed clearance versus PBPK predictions using the default healthy
volunteers or cancer population models. (a) Paclitaxel observed clearance (Villalona-Calero et al.
1999) [35] after single administration of 175 mg/m2 over 3 h. (b) Paclitaxel observed clearance
(Kendra et al. 2015) [24] after single administration of 175 mg/m2 over 3 h. (c) Docetaxel observed
clearance (Brunsvig et al. 2007) [37] after single administration of 100 mg/m2 over 1 h. (d) Docetaxel
observed clearance (Rosing et al. 2000) [39] after single administration of 100 mg/m2 over 1 h.

In the case of docetaxel, it binds to multiple plasma proteins such as albumin, AGP,
and lipoproteins with an average unbound fraction of approximately 0.06. To account for
the altered physiology observed in patients with cancer, the default cancer population
model included a 2-fold increase in the AGP levels and a 15% decrease in the albumin levels,
while no change was observed in lipoproteins. These changes in binding protein levels led
to a 15% decrease in the unbound fraction of docetaxel in patients with cancer (fu = 0.06)
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compared to healthy subjects (fu = 0.07). However, this difference in unbound fraction had
a minor impact (<15% change) on the predicted clearance of docetaxel between the healthy
and cancer population models (Figure 4c,d, Table S11). This implies that alterations in the
binding of docetaxel to AGP did not significantly affect its overall clearance. Similar to
paclitaxel, the decreased renal function in the cancer population did not significantly affect
docetaxel clearance since the renal route only contributes to around 5% of total elimination
(Table S11).

Based on the analysis of those two drug examples, changes in binding protein levels
and decreased renal function in cancer patients had minimal impact on the predicted clear-
ance of paclitaxel and docetaxel. Therefore, those changes were not considered necessary to
be accounted for in the pregnancy population model. Further, the cancer population model
assumes a similar CYP expression as in the healthy population model. Our analysis seems
to support this assumption as the predicted clearance of paclitaxel (a CYP3A4 and CYP2C8
substrate) and docetaxel (a CYP3A substrate) was not significantly different between these
population models. Thus, the next step was predicting paclitaxel and docetaxel exposure
using the software’s pregnancy population model.

3.2. Evaluating the Effect of Physiological Changes in Pregnancy on the PK of Paclitaxel
and Docetaxel

The pregnancy population model used in this PBPK study included pregnancy-
induced time-dependent changes in both albumin and AGP levels, CYP3A4 expression,
and renal function, while no change in the expression of CYP2C8 (Table 2).

In two clinical studies of pregnant patients with cancer who received paclitaxel
(175 mg/m2 over 3 h) [40,41], paclitaxel exposure, in terms of AUC and Cmax, appeared
to be around 45% lower in the second and third trimesters [35]. Using the pregnancy
population model, PBPK predictions overestimate paclitaxel exposure during the sec-
ond and third trimesters of pregnancy. The predicted mean Cmax, AUC, and CL were
2.6 µg/mL, 11.8 µg/mL·h, and 27.7 L/h, respectively, and the respective digitized values
were Cmax of 2.2 µg/mL, AUC of 8.7 µg/mL·h, and CL of 35.7 L/h, from the van Hasselt
et al. (2014) study in pregnant patients with cancer (n = 5, median gestational age in
weeks (GW) = 23) [40] (Table S12). Likewise, in the second study conducted by Janssen
et al. (2021), in pregnant patients with cancer (n = 20, median GW = 31), the predicted
mean Cmax, AUC and CL were 2.5 µg/mL, 11 µg/mL·h and 30.3 L/h, respectively, and
the respective digitized values were Cmax of 3.3 µg/mL, AUC of 8 µg/mL·h, and CL of
39.2 L/h [41] (Table S12).

Paclitaxel (175 mg/m2) is primarily eliminated via CYP3A4 and CYP2C8 metabolism
(similar contribution) and to a minor extent via renal elimination. While the pregnancy
model, implemented approximately a 100% increase in CYP3A4 expression and a 25%
increase in renal function at 32 gestational weeks (Table 2), both simulation results showed
that the pregnancy model overestimated paclitaxel exposure (around 40% higher) in preg-
nant patients with cancer (Table S12). Therefore, other physiological parameters that could
affect paclitaxel clearance, such as CYP2C8 expression during pregnancy, were investigated.
Based on in vitro data indicating an increase in CYP2C8 expression mediated by PRH, a
2.5-fold increase in CYP2C8 abundance at 32 weeks gestation was evaluated [23]. This
modification in the pregnancy population model improved the prediction accuracy of the
elimination phase of paclitaxel, resulting in the predicted AUC and CL values within ±25%
of the observed values (Figure 5, Table S12). Using the pregnancy model with altered
CYP2C8 expression, the predicted mean AUC and CL of paclitaxel were 9.8 µg/mL·h and
33.2 L/h, respectively, at 32 gestational weeks.
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Figure 5. Comparison of observed paclitaxel PK versus PBPK predictions using the default or
modified pregnancy population models. (a) Ratios are expressed as model-predicted values of PK pa-
rameters over observed values from van Hasselt et al. [40] and Janssen et al. [41] studies, for Cmax (red
circle), AUC (blue square), and CL (green diamond). The solid symbols represent the results using the
default pregnancy population model, while the open symbols represent the results using a modified
pregnancy model with a 2.5-fold increase in CYP2C8 abundance at 32 gestational weeks. Grey rectan-
gle indicated ±25% prediction error; (b) PBPK predicted versus observed plasma concentration–time
profiles of paclitaxel in pregnant patients with cancer after 3 h infusion of 175 mg/m2, using the de-
fault and modified pregnancy model. Red circles represent observations, red and grey lines represent
the mean and 5th–95th percentiles of the predicted PK profile using the modified pregnancy model;
the black line represents the predicted mean PK profile using the default pregnancy model.

In two clinical studies, in which pregnant patients with cancer received docetaxel
100 mg/m2 over 1 h [7,42], docetaxel exposure, in terms of both AUC and Cmax, was slightly
lower (around 30%) in pregnant compared to non-pregnant patients with cancer [41]. The
pregnancy population model accurately predicted the reported PK of docetaxel during the
third trimester of pregnancy (predictions were within ±25% of observed values) (Figure 6).
The predicted mean Cmax, AUC, and CL were 1.9 µg/mL, 2.8 µg/mL·h, and 65 L/h, re-
spectively, compared to the respective digitized values of Cmax of 1.7 µg/mL, AUC of
2.4 µg/mL·h, and CL of 75L/h, in pregnant patients with cancer (n = 3, median GW = 32)
from the study conducted by van Hasselt et al. [40] (Table S13). Likewise, the predicted
mean Cmax, AUC, and CL were 1.9 µg/mL, 2.8 µg/mL·h, and 65L/h, respectively, com-
pared to the respective digitized values of Cmax of 1.7 µg/mL, AUC of 2.3 µg/mL·h, and
CL of 79L/h, in pregnant cancer patients (n = 9, median GW = 32) from the study conducted
by Janssen et al. [41] (Table S13). The pregnancy model accounted for pregnancy-induced
changes in CYP3A4 abundance, which plays a major role in docetaxel elimination (80% of
total clearance).

The model-predicted exposure of paclitaxel and docetaxel in the pregnant cancer
population was compared between patients with cancer and pregnant patients. In the
case of paclitaxel, simulation revealed a 38% lower Cmax (2.3 mg/L vs. 3.8 mg/L) and
a 45% lower AUC (9.8 mg·h/L vs. 17.5 mg·h/L) in pregnant patients compared with
non-pregnant patients with cancer, which is in good alignment with the observed data
(45% lower Cmax and 46% lower AUC). For docetaxel, the simulations showed that the
exposure in pregnant patients was around 25% lower in terms of both Cmax (1.9 mg/L vs.
2.5 mg/L) and AUC (2.8 mg·h/L vs. 3.5 mg·h/L) compared to the non-pregnant cancer
population. These findings were consistent with the observed data, which demonstrated a
34% lower Cmax and a 27% lower AUC in pregnant patients with cancer (Table S14).
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Figure 6. Comparison of observed docetaxel PK versus PBPK predictions using the default pregnancy
population model. (a) Ratios are expressed as model-predicted values of PK parameters over observed
values from van Hasselt et al. [40] and Janssen et al. [41] studies, for Cmax (red circle), AUC (blue
square), and CL (green diamond). The solid symbols represent the results using the default pregnancy
population model. Grey rectangle indicated ±25% prediction error; (b) PBPK predicted versus
observed plasma concentration-time profiles of docetaxel in pregnant cancer patients after 1 h
infusion of 100 mg/m2, using the default pregnancy model. Red circles represent observations, black
and grey lines represent the population and 5th–95th percentiles of the predicted mean PK profile.

3.3. Model Application

In previous sections, we demonstrated that both healthy and cancer population models
had similar PK predictive performance for paclitaxel and docetaxel in patients with cancer,
indicating that physiological changes implemented in the cancer model had minimal impact
on the prediction of the PK of these CYP3A4 substrates.

Likewise, the PK of acalabrutinib in non-pregnant patients with cancer, at an approved
dose of 100 mg BID, was similarly predicted by both healthy and cancer population models
(Table 3). Following our proposed decision tree (Figure 2), the default pregnancy model
could then be used to predict the PK of acalabrutinib in pregnant patients with cancer.

Table 3. Comparison of PK parameters of acalabrutinib between non-pregnant and pregnant patients
with cancer.

Acalabrutinib 100 mg BID (Day 8) Cmax (ng/mL) AUC0–24h (ng/mL·h)

Observed: non-pregnant patients with cancer
(Byrd et al. (2016) [38]) 827 1850

Predicted: HV population 585 1702

Predicted: Cancer population 566 1719

Ratio HV/Cancer 1.03 0.99

Predicted: Pregnancy (32 GW) 251 662

Ratio Pregnancy/Cancer 0.44 0.39

Ratio Pregnancy/HV 0.43 0.39

Simulations representing healthy subjects, cancer, and pregnant populations were conducted using the “Sim-
NEurCaucasian”, “Sim-Cancer” and “Sim-Pregnancy” population models, respectively. Ratio of Cmax and AUC
values predicted using each population model.

Following the oral administration of acalabrutinib (100 mg BID), simulations showed
that the steady-state exposure in pregnant patients (32 GW) is expected to be around 60%
lower in terms of both Cmax (251 ng/mL vs. 566 ng/mL) and AUC0–24h (cumulative AUC
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over 2 dosing intervals, 662 ng·h/mL vs. 1719 ng·h/mL) compared with non-pregnant
patients with cancer (Table 3).

4. Discussion

There is a lack of information on appropriate dosages of molecularly targeted oncology
drugs during pregnancy with currently limited information on PK and pregnancy outcomes
in pregnant patients with cancer receiving molecularly targeted oncology drugs. Registry
studies may provide an additional source of data in the future [43]. PBPK is a model-
informed approach that is useful to understand both the effects of pregnancy and cancer
on drug PK to potentially inform the dosing of oncology drugs for pregnant patients
with cancer.

5. Clinical Implications

The results of our analysis show a reasonable prediction of the pregnancy-related
changes in the PK of paclitaxel and docetaxel in patients with cancer. The predicted decrease
in systemic exposure in pregnant patients, as determined using the PBPK approach, aligns
well with previous analyses conducted using population PK approaches [40,41]. It is
important to note that significant interpatient variability has been observed in clinical
studies on docetaxel and paclitaxel.

Based on a model-based meta-analysis of 29 monotherapy trials for paclitaxel dose–response
in different cancer types, paclitaxel efficacy (e.g., objective response rate, median overall survival,
and progression-free survival) is correlated with the average dose per week (mg/m2/week),
and safety (e.g., incidence of neutropenia) is correlated with dose per administration
(mg/m2) [44]. Lu et al. suggested that the paclitaxel dosage of 65–80 mg/m2 every
week has comparable to better efficacy and lower neutropenia incidence compared to
that of 175 mg/m2 every 3 weeks [44]. Collectively, the observed 46% lower paclitaxel
AUC in pregnant patients with cancer and known dose–response and exposure–response
relationships for the efficacy and safety of paclitaxel could be used to select a dosage
in pregnant patients with cancer based on exposure matching to the dosages commonly
administered to patients with cancer.

Based on a model-based meta-analysis of 46 monotherapy trials for docetaxel in
patients with advanced non-small cell lung cancer (NSCLC), there were dose–response
relationships for objective response rate and neutropenia [45]. In a randomized dose-finding
trial of docetaxel 60, 75, or 100 mg/m2 Q3W in patients with advanced breast cancer, higher
response rates and improved time to the progression along with higher incidences of
most hematologic (e.g., Grade 3–4 neutropenia, febrile neutropenia) and nonhematologic
toxicities were observed with increased doses; however, there was no statistically significant
relationship between docetaxel exposure (AUC) and objective response rate [46]. Together,
the observed 27% lower docetaxel AUC in pregnant patients with cancer and known dose–
response and exposure–response relationships for the efficacy and safety of docetaxel may
support selecting a dosage for pregnant patients with cancer.

It was reasonable to predict the exposure of acalabrutinib in pregnant patients with
cancer using the pregnancy population model based on the following rationale: (1) the
success of using the default pregnancy population model in predicting the exposure of
docetaxel reported in pregnant patients with cancer, (2) the indication that changes in
binding protein levels in cancer patients have minimal impact on the predicted clearance of
paclitaxel and docetaxel, and (3) the similarities in ADME properties between acalabrutinib,
paclitaxel, and docetaxel, especially pertaining to the major contribution of CYP3A enzyme
to drug clearance and plasma protein binding affinity.

The simulations using the pregnancy population model predicted approximately
60% lower AUC0–24h and Cmax of acalabrutinib. There is no statistically significant rela-
tionship between acalabrutinib exposure (AUC0–24h and Cmax) and efficacy (e.g., overall
response rate) in patients with mantle cell lymphoma; however, a positive relationship was
identified between the exposure (AUC0–24h) and the probability of ≥Grade 2 neutropenia.
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Increasing the dose from 100 mg to 200 mg twice daily would increase the probability of
Grade 2+ neutropenia from 7.5% (95% CI: 4.9%, 11.2%) to 13% (95% CI: 7.9%, 20.8%). In
addition, acalabrutinib at a dosage of 100 mg BID resulted in maximal target, Bruton tyro-
sine kinase (BTK), occupancy with the least inter-patient variability at steady-state trough
and increasing the dosage higher than 100 mg BID did not appear to further increase BTK
occupancy at steady-state trough and may result in off-target effects [32]. Similar exposure–
response relationships were observed with data from patients with chronic lymphocytic
leukemia (CLL) or small lymphocytic lymphoma (SLL) [42]. The simulated lower exposure
and known dose–response and exposure–response relationships for the efficacy, safety, and
pharmacodynamics of acalabrutinib may potentially inform the dosing of acalabrutinib for
pregnant patients with cancer.

6. Limitations

One limitation of a PBPK model representing the cancer population is the uncertainty
surrounding CYP enzyme expression in this population. The current (Simcyp© V21)
cancer population model assumes no alterations in CYP enzymes in patients with cancer
compared to healthy subjects. However, the clinical effect of cancer on CYP-mediated
drug clearance has not been established. For instance, CYP3A downregulation has been
reported in patients with cancer during an acute inflammatory response [12]. This alteration
(30% reduction in hepatic and intestinal CYP3A4 expression) has been investigated in a
PBPK study demonstrating a better prediction of exposure to sensitive CYP3A4 substrates
(namely, midazolam and simvastatin) in patients with cancer [16]. In contrast, Cheeti
et al. [13] suggested that CYP3A activity is not altered in patients with cancer based on
PBPK modeling of midazolam exposure. This finding is supported by Baker et al. [47], who
examined CYP3A activity in 134 patients with cancer and found no significant changes
related to age, sex, or body size. For CYP2C8, most studies reported minimum to no changes
in patients with cancer [16,17]. The reader is referred to published reviews for further
information on this topic [12,48]. While our analysis using the cancer population model
did not suggest alterations in CYP3A4 and CYP2C8 expressions in patients with cancer, it
is essential to consider the limited number of drugs evaluated and their ADME properties
(e.g., the contribution of CYP3A4 to overall clearance being equal or less than 80%) and
cancer type. Additional investigational data (e.g., in vitro, clinical, and model-based) are
needed to reach a consensus on the effect of cancer on CYP-mediated drug clearance.

While it is recognized that CYP3A4 expression increased during pregnancy, there are
knowledge gaps on the effect of pregnancy on other relevant enzymes, such as CYP2C8
which is involved in the metabolism of paclitaxel. The current (Simcyp© V21) pregnancy
population model assumes no changes in CYP2C8. Supported with the available in vitro
data [22,23], our PBPK analysis suggested a significant induction of CYP2C8 expression
during pregnancy based on the clinical PK data of paclitaxel in pregnant patients with
cancer. While further modeling analysis to verify the proposed hypothesis is warranted,
this evaluation may be limited by the availability of clinical PK data of sensitive CYP2C8
substrates from healthy pregnant populations.

Another limitation of our study is that the predictive performance of the Simcyp©

(V21) pregnancy population model and modified pregnancy population model were only
evaluated using paclitaxel and docetaxel. Therefore, the applicability of the PBPK model
to predict the exposure of molecularly targeted oncology drugs may be limited. It is
crucial to consider the similarity in ADME properties between the drugs of interest and
paclitaxel/docetaxel before making predictions using the model. Furthermore, to establish
a robust population model representing pregnant patients with cancer, more comprehensive
information is needed to fill the current knowledge gaps. This includes obtaining data
on pregnancy and/or cancer-dependent changes in the physiological parameters, such as
protein binding, enzyme activity, and renal function. Additional model evaluation with
other drugs with diverse ADME properties and information regarding protein binding,
CYP expression, and clinical PK data in this population is necessary to continually improve
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our understanding of the effect of intrinsic factors, such as pregnancy and cancer, on
drug PK.

7. Conclusions

PBPK modeling could be used to predict the PK changes in pregnant patients with
cancer given the limited availability of observed clinical PK data in this specific population.
The Simcyp pregnancy population model reasonably predicted the PK of docetaxel in
pregnant patients with cancer, while the modified pregnancy population model, including
a pregnancy-induced increase in CYP2C8 abundance, improved the prediction accuracy
of paclitaxel PK in pregnant patients with cancer. Considering the similarities in ADME
properties between acalabrutinib and docetaxel, it is possible, within reasonable error, to
predict the exposures of acalabrutinib in pregnant patients with cancer using the default
pregnancy population model. Further studies of acalabrutinib in pregnant patients with
cancer and clinical PK data are needed for the verification of the PBPK predictions.

Our results suggest that pregnancy PBPK modeling is a promising approach for
investigating both the effects of pregnancy and cancer on drug PK to potentially inform
the dosing of oncology drugs for pregnant patients with cancer. Further evaluation and
refinement of the population model for pregnant patients with cancer with additional
compounds and clinical PK data are needed.
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