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Abstract: Nose-to-brain delivery is a promising way to improve the treatment of central nervous
system disorders, as it allows the bypassing of the blood–brain barrier. However, it is still largely
unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used
3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical
features. Then, for each anatomy and using the Design of Experiments methodology, we characterised
the amount of a powder deposited in the olfactory region of the replica as a function of multiple
parameters (choice of the nostril, device, orientation angle, and the presence or not of a concomitant
inspiration flow). We found that, for each anatomy, the maximum amount of powder that can be
deposited in the olfactory region is directly proportional to the total area of this region. More precisely,
the results show that, whatever the instillation strategy, if the total area of the olfactory region is
below 1500 mm2, no more than 25% of an instilled powder can reach this region. On the other hand,
if the total area of the olfactory region is above 3000 mm2, the deposition efficiency reaches 50% with
the optimal choice of parameters, whatever the other anatomical characteristics of the nasal cavity.
Finally, if the relative difference between the areas of the two sides of the internal nasal valve is larger
than 20%, it becomes important to carefully choose the side of instillation. This work, by predicting
the amount of powder reaching the olfactory region, provides a tool to evaluate the adequacy of
nose-to-brain treatment for a given patient. While the conclusions should be confirmed via in vivo
studies, it is a first step towards personalised treatment of neurological pathologies.

Keywords: 3D printing; nasal cast; nose-to-brain; clustering; olfactory region; instillation;
blood–brain barrier; neurological diseases

1. Introduction

The interest in the nasal cavity as a systemic or targeted administration route has
grown over the last few years. The common goal of each recent nasal spray for this purpose
is the rapidity of action, see, for instance, ZavzpretTM [1] and Trudhesa® [2] for the migraine
crisis and Opvee® [3] and Narcan® [4] as rescue medicine for opioid overdose. Notably, the
nasal route allows reaching the brain directly, bypassing the blood–brain barrier (BBB) via
the olfactory nerves (Figure 1), the trigeminal nerves [5] or the nasal lymphatic pathway [6].
This is commonly referred to as nose-to-brain delivery (N2B) [5,7,8]. Another substantial
point is that the nasal cavity is highly vascularised, which increases drug absorption [9–11].
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Figure 1. Principle of N2B delivery: (1) drug formulation; (2) instillation; (3a,3b) transport in the 
nasal cavity and impaction of the mucosa; (4a–4d) transport in the olfactory mucosa: adhesion, dis-
solution, mucociliary clearance and diffusion; and (5) transport through the epithelium and along 
the olfactory nerve. Adapted with permission from [12] Copyright 2021 Elsevier. 

Unfortunately, there are many shortcomings in the guidance for nasal products. Spe-
cific international regulations for nasal medication products do not exist [13]. The Euro-
pean Medicines Agency (EMA) proposes a guideline on the pharmaceutical quality of in-
halation and nasal products (EMEA/CHMP/QWP/49313/2005 [14]). However, it only con-
tains recommendations about particle or droplet size distribution analysis via dynamic 
light scattering (DLS). Concerning the other quality guidance (e.g., dose uniformity, phys-
ical characteristics and delivered dose uniformity), the EMA refers to the oral inhalation 
products guidance. For inhalation powder products, the guidance recommends using a 
multistage impactor to determine the particle size distribution. This size distribution can 
then be linked to the powder proportion in each part of the lungs [15]. Since such a stand-
ard tool does not exist for the nose, there is a need for a new tool for in vitro testing of 
nasal products: the so-called nasal cast, a 3D-printed reproduction of a nasal cavity. 

Three-dimensional printing is a great tool to study in vitro an organ before in vivo 
studies. The 3D-printed replicate of an organ provides more information than a simple 3D 
visualisation. For instance, Sulaiman et al. reproduced precisely the internal and the ex-
ternal anatomy of an aortic aneurysm by using 3D-printed technology after three-dimen-
sional magnetic resonance angiography on a real patient. This replicate mimics the elastic 
properties of vessels and constitutes an in vitro model of an aortic arch aneurysm for 
endovascular procedure simulation [16]. 

In this work, we used 3D-printing technology to replicate specific nasal anatomies 
derived from real patients. Despite the difference from a real nasal cavity due to the ab-
sence of the mucociliary clearance and enzymatic degradation, a 3D-printed nasal cast is 
a great tool for an in vitro study. Indeed, such a patient-specific nasal cast can be used to 
generate a deposition cartography that could be interesting for comparing generics or 
helping to choose pharmaceutical forms, administration devices, or personalised admin-
istration procedures for aiming the zone of interest in the nasal cavity. 

A crucial point regarding the nose is that each person has their own anatomy and 
thus an individual optimal nasal deposition for a given product. The shape of the nostrils 

Figure 1. Principle of N2B delivery: (1) drug formulation; (2) instillation; (3a,3b) transport in the nasal
cavity and impaction of the mucosa; (4a–4d) transport in the olfactory mucosa: adhesion, dissolution,
mucociliary clearance and diffusion; and (5) transport through the epithelium and along the olfactory
nerve. Adapted with permission from [12] Copyright 2021 Elsevier.

Unfortunately, there are many shortcomings in the guidance for nasal products. Spe-
cific international regulations for nasal medication products do not exist [13]. The European
Medicines Agency (EMA) proposes a guideline on the pharmaceutical quality of inhalation
and nasal products (EMEA/CHMP/QWP/49313/2005 [14]). However, it only contains
recommendations about particle or droplet size distribution analysis via dynamic light
scattering (DLS). Concerning the other quality guidance (e.g., dose uniformity, physi-
cal characteristics and delivered dose uniformity), the EMA refers to the oral inhalation
products guidance. For inhalation powder products, the guidance recommends using
a multistage impactor to determine the particle size distribution. This size distribution
can then be linked to the powder proportion in each part of the lungs [15]. Since such a
standard tool does not exist for the nose, there is a need for a new tool for in vitro testing of
nasal products: the so-called nasal cast, a 3D-printed reproduction of a nasal cavity.

Three-dimensional printing is a great tool to study in vitro an organ before in vivo
studies. The 3D-printed replicate of an organ provides more information than a simple
3D visualisation. For instance, Sulaiman et al. reproduced precisely the internal and
the external anatomy of an aortic aneurysm by using 3D-printed technology after three-
dimensional magnetic resonance angiography on a real patient. This replicate mimics the
elastic properties of vessels and constitutes an in vitro model of an aortic arch aneurysm
for endovascular procedure simulation [16].

In this work, we used 3D-printing technology to replicate specific nasal anatomies
derived from real patients. Despite the difference from a real nasal cavity due to the absence
of the mucociliary clearance and enzymatic degradation, a 3D-printed nasal cast is a great
tool for an in vitro study. Indeed, such a patient-specific nasal cast can be used to generate
a deposition cartography that could be interesting for comparing generics or helping
to choose pharmaceutical forms, administration devices, or personalised administration
procedures for aiming the zone of interest in the nasal cavity.

A crucial point regarding the nose is that each person has their own anatomy and
thus an individual optimal nasal deposition for a given product. The shape of the nostrils
and the morphology of the airways are variations that give each person a distinct nose
anatomy [17,18]. For instance, a symmetric nasal cavity is extremely rare in the population,
and several nasal pathologies are frequent. For example, the principal causes of nasal
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airway obstruction are the deviation of the septum and the hypertrophy of the inferior
turbinates [19]. Nasal septal deviation (NSD) is an extremely common anatomical pathology
in the world’s population. Indeed, Mladina et al. studied a population of 2589 adults and
found an NSD for 89% of the subjects [20]. Clark et al. found a prevalence of 72% for
septal deviation in the studied patients with nasal airway obstruction [19]. Trocino et al.
analysed the digital panoramic radiographs of 516 patients to determine the alterations and
pathologies prevalence and found an incidence of 59% for nasal turbinate hypertrophy [21].
We can also highlight that septum perforation has a prevalence of around 1% [22,23]. In
addition to these pathologies, we can mention that the sinonasal anatomy of children differs
significantly from the one of adults. Ertekin et al. studied the development of the nasal
cavity and turbinates according to age and sex. They demonstrated that the morphology of
the nasal cavity evolves in both sexes until 15 years old [24].

Despite these variations in the morphology of the nose, no study has discussed the
difference between patients. Indeed, most of the studies have implied only one anatomy
and have varied only the administration parameters [25–27]. On the other hand, studies
including multiple anatomies do not explain the origin of the differences in the results. For
instance, Warnken et al. determined the individual optimal angle for a series of patients [28]
but did not relate each angle to an anatomical characteristic.

The general objective of this in vitro work is to study the influence of the anatomy
of the nasal cavity on the deposition of a powder in the olfactory zone. Indeed, the N2B
delivery is based on the targeting of the olfactory region, which corresponds to around
10% [29,30] of the entire nasal cavity and is difficult to reach due to the tortuous shape of
the passages. Failure to provide a sufficient dose of a drug to this region prevents effective
N2B treatment.

For this purpose, we used 3D printing to produce nasal casts from 11 different CT
scans presenting various anatomical features. Then, for each anatomy and using the Design
of Experiments methodology, we characterised the amount of powder deposited in the
olfactory region of the cast as a function of multiple parameters (choice of the nostril, device,
orientation angle, and the presence or not of a concomitant inspiration flow).

We focused on the powder form due to its numerous advantages intended for N2B
delivery in comparison to the liquid form. It can increase the drug bioavailability by
increasing the residence time and decreasing the mucociliary clearance, which are the
two most important barriers to nasal delivery. Moreover, it is easier to control the size
of the particles of a powder, which is an important factor in reaching the olfactory re-
gion. Finally, the powder form shows greater stability during storage and avoids adding
preservatives [31–33].

Finally, our goal is to analyse the results to generate a classification that depends on
the anatomical characteristics of the patients. This clustering could predict the outcome
of nose-to-brain treatment for each patient. So, it would also be a tool to choose patient-
specific treatment, whether via an appropriate instillation procedure or via a complete
change of the administration method.

2. Materials and Methods
2.1. Nasal Cast
2.1.1. Choice of the Patients

For this study, we selected eleven patients with various anatomical properties in terms
of their nasal cavity. We choose one standard anatomy (C1), three normal anatomies (C2,
C3 and C4), one anatomy showing septum perforation (C5), two paediatric anatomies
(C6 and C7), two anatomies showing septum deviation (C8 and C9), and two anatomies
showing hypertrophy of the turbinates (C10 and C11). Table 1 summarises the different
anatomies and their characteristics (age and sex). All these anatomies derive from CT scans
of patients at the Erasme Hospital (Brussels, Belgium), except for the standard anatomy
(C1). This anatomy was created by Liu et al. based on the CT scans of 30 healthy patients
to generate a median nasal geometry [34]. The type of nasal pathology was attested by
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ear, nose, and throat (ENT) specialists at the Erasme Hospital. The coronal slice of each
anatomy used in this study is provided in Section S2 of the Supplementary Material.

Table 1. Summary of the different anatomies. * males (M) and females (F).

Anatomy Sex (M/F) * Age (Years) Cast

Standard - - C1
Normal F - C2
Normal F 92 C3
Normal M 56 C4
Septum perforation F - C5
Paediatric F 7 C6
Paediatric F 11 C7
Septum deviation M 44 C8
Septum deviation M 21 C9
Turbinate hypertrophy F 23 C10
Turbinate hypertrophy F 79 C11

2.1.2. Creation of 3D-Printed Nasal Casts from the CT Scans

We used the procedure described by Rigaut et al. to generate a 3D-printed nasal cast
from each of the 11 CT scans [35]. The software used for this procedure were InVesalius
(v. 3.1.1; Centro de Tecnologia da Informação Renato Archer, Campinas, Brazil), Meshlab
(v. 2022.02; Istituto di Scienza e Tecnologie dell Informazione, Pisa, Italy), and FreeCAD
(v. 0.21.1). We cut the final 3D geometry of the nose into six different parts (i.e., the
nostrils, the olfactory region, the middle turbinate region, the lower turbinate region, the
nasopharynx, and the postnasal fraction). We printed each part with a Form3 printer
(Formlabs, Somerville, MA, USA) using Formlabs’ Black Resin. Each part was printed with
a resolution of 50 microns. Figure 2 shows the nasal cast C3.
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Figure 2. 3D-printed nasal cast C3: (A) nostril, (B) olfactory region, (C) middle turbinate region, (D)
lower turbinate region, (E) nasopharynx, and (F) post-nasal region.

2.2. Methods
2.2.1. Design of Experiments

We constructed a Design of Experiments (DoE) for each nasal cast based on four
parameters (Table 2) [36]. The first parameter was the instillation device. We used three
devices: two unidirectional devices (Aptar UDS and Miat insufflator, see Figure 3a,c) and
one bidirectional device (IPMed TriVairTM, see Figure 3b). The second parameter was
the instillation angle. We chose two strategies: an instillation angle directly aiming at
the olfactory region (i.e., a direct line between the exit of the device and the centre of the
olfactory region) and another one aiming at the centre of the nasal valve. Third, we varied
the instillation side: left nostril or right nostril. Finally, we considered a possible inspiratory
flow concomitant to the instillation. Three situations were defined: without inspiratory flow
(0 L/min), normal inspiratory flow (15 L/min), and sniff condition (60 L/min). The DoE for
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each anatomy was performed with the Design-Expert® software (Version 13, Stat-Ease Inc.,
Minneapolis, MN, USA). The number of runs varied between 15 and 30, depending on the
number of interactions. The criterion chosen for determining the run number was to obtain
a power of at least 80% for each DoE. The selected design was the factorial randomised
optimal design. We interpreted the results of each DoE by fitting a linear model using the
four parameters as the input and the ratio of the mass of powder deposited in the olfactory
region to the mass of powder injected in the cast as the output. This model is hereafter
referred to as the “predictive deposition model”. We kept only the parameters with a
significant effect on the olfactory deposition when using analysis of variance (ANOVA). A
p-value < 0.05 was considered statically significant.

Table 2. Factors used in the DoE of each anatomy.

Factors Level (1) Level (2) Level (3)

A: Device UDS TriVair Miat
B: Angle Centre Direct -
C: Inspiratory flow (L/min) 0 15 30
D: Side Left Right -
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Figure 3. Schematic representation of each device: (a) unidirectional device, Unidose System (UDS),
Aptar, Le Vaudreuil, France; (b) bidirectional device, TriVairTM, IP Med Inc. Oceanside, NY, USA;
and (c) unidirectional device insufflator, MIAT.

2.2.2. Deposition Tests

We used a deposition test protocol described in our previous works [35,37]. For each
experiment, we first coated each part of the nasal cast with an artificial mucus (5% w/w of
Poloxamer® 407 and solution in Simulated Nasal Electrolyte Solution (SNES)). We used
Poloxamer® 407 to generate a thermosensitive gel (it is liquid under 10 ◦C and it swells at
around 18 ◦C) to obtain a thin adherent layer of mucus on the nasal cast.

Then, each part of the nasal cast was assembled before the powder instillation. In
the case where an inspiratory flow was needed, it was fixed by using a DFM3 flow meter
(Copley Scientific, Nottingham, UK) and was produced with two HCP5 air pumps (Copley
Scientific) connected in series to a TPK critical flow controller (Copley Scientific). We used a
steady flow to realise the experiments. For that, we turned on the pumps at least 5 s before
the instillation.

The mass of the powder introduced in the instillation device was fixed at 25 mg for
all the experiments, which is within the acceptable range for nasal delivery [33,38]. We
used caffeine as a model powder. The caffeine was sifted through a 0.123 mm sieve to
deagglomerate and obtain a particle diameter closer to the ideal size for N2B delivery
(around 12 µm [39]). A summary of the powder characteristics at the exit of each device is
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shown in Table 3. We weighted the device before and after the instillation to control the exact
mass of powder injected into the nasal cast. The experiment was repeated if less than 70%
of the powder was injected into the cast. The insertion angle of the device was controlled
using 3D-printed supports, ensuring the correct spray location and angle. Concerning the
unidirectional devices, the performance of the actuation is patient-independent. Thus, we
realised its actuation by hand. The actuation of the bidirectional device was accomplished
with a blower bulb to mimic an expiration (140 ± 23 L/min) [40].

Table 3. Summary of the powder characteristics at the exit of each device.

Device Dv50 (µm) Span Ejection
Velocity (m/s) Plume Angle (◦)

UDS 25.21 ± 1.45 1.76 ± 0.03 49.20 ± 5.97 16.83 ± 2.42
TriVair 69.79 ± 12.20 1.89 ± 0.27 5.93 ± 0.14 3.93 ± 0.29
MIAT 38.24 ± 8.84 1.82 ± 0.37 7.49 ± 4.02 3.1 ± 0.5

Finally, we disassembled the nasal cast and rinsed separately each of its parts with
ethanol absolute. For each part of the cast, the concentration of caffeine in the resulting solu-
tion was measured at 274 nm using UV spectrophotometry (Implen NanoPhotometer®) [35]
and converted into the mass of the instilled powder deposited in the part. All the exper-
imental results are available in Section S3 of the Supplementary Material. Hereafter, the
ratio of the mass of powder deposited in the olfactory region to the mass of powder injected
in the cast is referred to as the “olfactory deposition” (expressed in %).

2.3. Cast Classification
2.3.1. Geometrical Characterisation of the Anatomies

The first step taken to compare the anatomies between them was to measure the
anatomical elements that could impact the deposition of the powder in the olfactory region.
The two most prominent features are the olfactory zone and the nasal valve, which restrains
access to the turbinates. For each anatomy, we measured the area of each side of the internal
nasal valve (the “internal” is dropped hereafter) and its total area (i.e., the sum of the areas
of its two sides). For the olfactory region, we measured the length, width, depth, and
area of its two sides and its total area (i.e., the sum of the areas of its two sides). We also
measured the area and the volume of the whole nasal cavity, as well as the length, width,
and depth of its minimum bounding box, to ensure that we missed no valuable variable or
interaction.

2.3.2. Correlation between Anatomy and Deposition

We then combined the anatomical measurements and the results of the deposition tests
to expose the link between the anatomy and the deposition. This link is essential to switch
from individual to general observations. For this, we plotted a correlation matrix [41] be-
tween the anatomical measurements and the parameters of the predictive deposition model
(i.e., the linear model fitting the deposition results, with the administration parameters
as input and the expected olfactory deposition as output). The correlation matrix is a 2D
representation of the Pearson correlation coefficient between the variables on the vertical
axis and the variables on the horizontal axis. In this way, the relations between the variables
are easier to spot and can be used to predict, for instance, the olfactory deposition given a
set of anatomical measurements.

2.3.3. Anatomy Clustering

To confirm mathematically the relationships highlighted by the correlation matrix,
we represented each anatomy by its predictive deposition model obtained in Section 2.2.1,
and we used exploratory factor analysis to identify the variables influencing the olfactory
deposition. If a parameter was not statistically significant for an anatomy, its value was
set to 0 in the analysis. We used the elbow of the scree plot to determine the trade-off



Pharmaceutics 2023, 15, 2661 7 of 16

between a small number of factors and a good data representation. We then linked the
anatomies with hierarchical clustering using Ward’s method. We determined the final
number of clusters via the elbow method applied to the Euclidian distance between the
newly grouped points in the factorial space. We finally applied k-means clustering, with
the number of clusters defined via the hierarchical method. The resulting points of the
hierarchical clusters were used as seeds for k-means algorithm initialisation to ensure the
stability of the clustering. A detailed explanation of the techniques used can be found in
Section S1 of the Supplementary Material.

3. Results and Discussion
3.1. Individual Optimisation of the Delivery in the Olfactory Region

As mentioned previously, after the statistical analysis of the DoE, the Design-Expert®

software (Version 13) can generate, for each cast, a predictive model (the so-called predictive
deposition model), which notably allows us to determine the values of the parameters
allowing us to maximise the olfactory deposition (yielding what we call the “maximal
olfactory deposition”) or to determine the mean value of the olfactory deposition for the
whole set of parameter values. The robustness of this predictive model was validated in
a previous study [35]. The values of the parameters allowing us to obtain the maximal
olfactory deposition for a given cast are referred to hereafter as the “optimal parameters”
for this cast. Figure 4 illustrates the difference between the mean and the maximal olfac-
tory deposition obtained with the predictive deposition model constructed for each nasal
cast. The results show that each nasal cast has a significantly better olfactory deposition
when using the optimal parameters than the mean olfactory deposition, although use of
another method to optimise this olfactory deposition would be interesting. Indeed, the
experimental work to construct the different predictive deposition models is laborious and
time-consuming.
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Figure 4. Mean and maximal olfactory deposition for each anatomy. The data are expressed as the
mean ± standard error of the model.

3.2. Classification by Anatomical Trait

The nasal cavities can be referred to by several anatomical traits, such as septal
deviation, septal perforation, hypertrophy of the inferior turbinates or age (child versus
adult). As said earlier, the principal causes of nasal obstruction are septal deviation and
hypertrophy of the inferior turbinates. Consequently, these anatomical traits could have an
influence on drug deposition in the nasal cavity due to the obstruction they cause [20,42,43].
Indeed, several studies in the literature highlight the influence of these anatomical traits on
the olfactory deposition. A study by Frank et al. concluded an approximately four times
less post-nasal-valve deposition on the obstructed size [44]. Another study by Hosseini
et al. analysed the regional nasal deposition of MAD NasalTM in nasal replicas of an adult, a
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child, and a toddler. They showed a significant difference in the deposition pattern between
the adult and the child replicas but no significant difference between the child and the
toddler replicas [45].

Thus, we could expect to be able to classify the nasal casts by their anatomical trait
and thus to obtain a correlation with the olfactory deposition. But, as illustrated in Figure 5,
the results show no correlation between the anatomical trait and the maximal olfactory de-
position. Indeed, we see first that the difference between the maximal olfactory depositions
of the two paediatric casts is 37%. Moreover, the three normal anatomies have significantly
different maximal olfactory depositions (36, 48, and 22%) and the two anatomies with a
septal deviation show a difference of 10% in the maximal olfactory deposition.
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Figure 5. Maximal olfactory deposition for each cast, grouped by their anatomical trait (septum
deviation, septum perforation, standard cast, heathy nose, paediatric cavity, and hypertrophy of the
inferior turbinates).

As a conclusion, the results obtained for the olfactory deposition in the different
anatomies do not seem to have a connection with the anatomical traits. It is thus necessary
to identify the key parameters responsible for these differences in olfactory deposition.

3.3. Correlation between the Anatomy and the Predictive Deposition Model

Figure 6 is a correlation matrix representing, on the horizontal axis, the coefficients
of the predictive deposition model, the maximal olfactory deposition predicted by this
model (opt) and the absolute difference between the maximal olfactory deposition obtained
with an instillation by the right nostril and the one obtained with an instillation by the left
nostril (dopt, also predicted by the model) and, on the vertical axis, the different anatomical
measurements. A summary of the anatomical measurements for each anatomy is given in
Table 4. In Figure 6, the lighter the colour is, the lower the correlation is. A green colour
indicates a positive correlation, and a pink colour indicates a negative correlation. From
this figure, we can see that the total area of the nasal valve and the overall dimensions of the
nasal cavity do not play a significant role in the efficiency of the olfactory deposition, given
their low correlations with the coefficients of the predictive deposition model. On the other
hand, we see in Figure 6 that the total area of the olfactory region (olf) correlates positively
with parameters I and A1 and with the maximal olfactory deposition (opt). I is the intercept
of the deposition model. In other words, it is linked to the mean deposition in the olfactory
region when confounding all the levels for all the parameters. Thus, a higher proportion of
the spray deposits in the olfactory region of the anatomy if I is high. The other coefficient
correlating with the total area of the olfactory region, A1, represents the difference between
the UDS and the TriVairTM; A2 being the difference between the TriVairTM and the Miat
insufflator. So, these coefficients reveal how much the olfactory deposition can be improved
by using the most appropriate delivery device. The link between the maximal olfactory
deposition and the coefficients A1 and I can be understood as follows: an anatomy having
a high mean performance (high I) that can be further improved using the UDS (high A1)
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logically has a high maximal olfactory deposition. The total area of the olfactory region
is thus an indicator of the maximal deposit achievable in each anatomy. This conclusion
was already outlined as a hypothesis of our previous work [35] based on only two patients,
although the current study confirms it with a broader sample.
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Figure 6. Correlation matrix between, on the horizontal axis, the predictive deposition model
coefficients (I, A1, A2, B, C, D, A1B, A2B, A1C, A2C, A1D, A2D, BC, BD, CD), the maximal olfactory
deposition predicted by this model (opt), and the absolute difference between the maximal olfactory
deposition obtained with an instillation by the right nostril and the one obtained with an instillation
by the left nostril (dopt, also predicted by the model) and, on the vertical axis, the anatomical
measurements. “olf” is the total area of the olfactory region, “valve” is the total area of the nasal
valve, “d_olf” is the relative difference between the areas of the left and right sides of the olfactory
region, “d_valve” is the relative difference between the areas of the left and right sides of the nasal
valve, “volume” is the overall volume of the nasal cavity, “area” is the overall area of the nasal cavity,
“width” is the width of the bounding box, “length” is the length of the bounding box, and “height” is
the height of the bounding box.

Table 4. Summary of the anatomical measurements for each nasal cast.

Cast

Total Area
of the

Olfactory
Region
(mm2)

Total Area
of the
Nasal
Valve
(mm2)

Relative
Difference

between Left and
Right Olfactory

Areas (%)

Relative
Difference

between Left and
Right Valve Areas

(%)

Overall
Volume of
the Cavity

(mm3)

Overall
Area of the

Cavity
(mm2)

Width
(mm)

Length
(mm)

Height
(mm)

C1 1334 84 - - 17,226 10,220 15 125 48
C2 2200 213 7.76 33.96 56,637 26,331 49 108 69
C3 2274 123 3.88 45.41 57,949 27,395 50 104 67
C4 1082 226 9.44 4.31 84,385 31,109 55 114 40
C5 2200 213 7.76 33.96 56,637 26,331 49 108 69
C6 2158 98 43.63 18.73 19,063 16,854 32 94 36
C7 685 140 14.89 11.17 69,317 27,015 46 106 69
C8 1938 203 10.86 16.06 81,948 42,188 44 121 63
C9 3367 104 10.85 42.29 118,140 39,080 55 114 56
C10 1024 192 2.56 22.82 71,002 32,523 54 121 58
C11 723 149 8.62 21.56 38,852 27,378 55 107 44

We see also in Figure 6 that the relative difference between the areas of the left and
right sides of the nasal valve correlates strongly with the absolute difference in the maximal
olfactory deposition between the two sides (dopt), D and its interaction with the other
factors. On the other hand, we can see in Figure 6 that the total area of the nasal valve itself
does not play a role in the maximal olfactory deposition. It is probably linked to the narrow
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plume angle of all our devices, as already exposed in our previous study [35]. However,
if one side of the nasal valve is too narrow, it becomes an obstacle for the powder and
generates asymmetry in the olfactory deposition.

3.4. Deposition Efficiency Prediction

Once the correlations have been drawn, we can try to predict the deposition in the
olfactory zone on the sole basis of the anatomical measurements made previously. For
this, we first represent the maximal olfactory deposition (i.e., the deposition given by the
predictive deposition model using the optimal parameters) versus the total area of the
olfactory region (Figure 7a). A linear trend can be seen, confirming the correlation between
the two values.
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Similarly, we can represent the absolute difference between the maximal olfactory
deposition obtained with an instillation by the right nostril and the one obtained with an



Pharmaceutics 2023, 15, 2661 11 of 16

instillation by the left nostril (dopt) versus the relative difference between the areas of the
left and right sides of the nasal valve (Figure 7b). We see here a piecewise linear trend,
with dopt close to zero if the relative difference between the areas of the left and right
sides of the nasal valve is lower than 20%, and then a linear increase in dopt with this
relative difference if it is above 20%. We see also that the two casts presenting the biggest
asymmetry in deposition are the two most asymmetrical casts (C3 and C9, as shown in
Table 4).

While an exact olfactory deposition prediction is beyond the scope of these graphs, they
still provide handy information about the outcome of a potential nose-to-brain treatment.
Indeed, they show that, whatever the instillation strategy (notably the choice of the device),
if the total area of the olfactory region is below 1450 mm2, no more than 25% of an instilled
powder can reach this region. On the other hand, if the total area of the olfactory region
is above 3000 mm2, the deposition efficiency reaches 50% with the optimal choice of the
parameters, whatever the other anatomical characteristics of the nasal cavity. Moreover,
if the relative difference between the areas of the two sides of the nasal valve is less than
20%, it turns out that there is little interest in the choice of the nostril since the expected
absolute difference in the maximal olfactory deposition between left and right nostrils is
negligible. On the other hand, the more pronounced the relative difference between these
two areas is, the more critical it is to choose the nostril (with dopt larger than 25% if the
relative difference between the areas of the two sides of the nasal valve is larger than 41%).

3.5. Exploratory Factor Analysis and Clustering

To confirm these conclusions and ensure no substantial latent variable has been missed,
we performed an exploratory factor analysis of all the anatomies, based only on their
associated predictive deposition model. The results of this analysis show that the variance
explained by the first two factors is 39% and 22% of the total variance, respectively, while
the third factor explains only 12%. In other words, the first two factors explain more than
60% of the variability between the casts, and adding a third factor improves this by only
10%. It supports thus the result obtained previously: there are only two main anatomical
measurements influencing the olfactory deposition: the total area of the olfactory region
and the relative difference between the areas of the two sides of the nasal valve.

Table 5 presents the mean and maximal deposition for each cast, along with the
parameters for reaching this optimal deposition. Figure 8 shows the results of this analysis
with two factors and the subsequent clustering. A clear trend appears where the first
factor (horizontal) separates casts C3 and C9 from the others. These two casts are the most
asymmetrical ones, with a relative difference between the areas of the two sides of the nasal
valve of 45% for C3 and of 42% for C9 (see Table 4). This leads to an absolute difference
between the maximal olfactory deposition obtained with an instillation by the right nostril
and the one obtained with an instillation by the left nostril of 31% and 35%, respectively
(see Figure 7b). While other casts (C5, C10 and C11) also present an asymmetry (see Table 4),
the maximal difference between the optimal deposition in the two nostrils for these casts is
16% (cast C5, see Figure 7b).
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Table 5. Maximal olfactory deposition and optimal parameters for each nasal cast. Angle are referred
as “Direct aim” when the centre of the olfactory region and “Centre” when aiming at the centre of
the internal nasal valve. Devices used are Aptar Unidose System (UDS), IPMed TriVair, and MIAT
insufflator.

Cast

Mean
Olfactory

Deposition
(%)

Maximal
Olfactory

Deposition
(%)

Optimal Parameters to Reach the Olfactory
Region

Maximal Deposition Predicted
with Each Device (%)

Side Device Angle
Inspiratory

Flow
(L/min)

UDS TriVair MIAT

C1 19 35 - UDS Centre 0 33 13 11

C2 16 40 No
influence UDS Direct aim 0 36 7 21

C3 12 43 Right UDS Centre 60 48 41 29
C4 7 29 Left UDS Direct aim 60 22 8 5
C5 17 48 Right UDS Direct aim 0 34 18 25

C6 29 59 No
influence UDS no

influence
No

influence 47 24 20

C7 4 12 No
influence MIAT Centre 0 9 6 11

C8 11 35 No
influence TriVair Direct aim 60 25 31 16

C9 12 43 Left UDS Direct aim 60 42 18 21

C10 3 12 Right UDS no
influence 60 17 15 12

C11 3 15 Left TriVair Direct aim 60 2 12 5
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When integrating the second factor, the maximisation of inter-cluster variance gives
rise to four clusters: one comprising the asymmetric casts (C3 and C9), for which the choice
of the instillation nostril is critical, and three “side-independent” clusters, for which the
nostril chosen for the spray is less crucial (dvalve < 41%, see Figure 7b). The three “side-
independent” clusters differentiate with the proportion of the instilled powder reaching
their olfactory region. First, C6 shows a very high performance, both for the mean and
maximal olfactory deposition (see Figure 4 and Table 5). Second, C7, C10 and C11 show
the poorest performance, which can be improved by changing the device, albeit without
reaching the performance of the other clusters (see Figure 4 and Table 5). Third, the last
cluster (e.g., C1, C2, C4, C5 and C8) gathers the casts with a medium olfactory deposition
that can still be improved by using the UDS device (see Figure 4 and Table 5). The mean
olfactory deposition, as calculated by the predictive deposition model at a fixed instillation
device, confirms this conjecture: for C6, it is equal to 47% with the UDS, 20% with the
Miat insufflator, and 24% with the TriVair; while for C10, it is equal to 15% with the UDS,
12% with the Miat, and 14% with the TriVair. In a nutshell, our analysis shows that the
anatomies grouped by their mean olfactory deposition also share the same improvement
potential. In other words, the three “side-independent” clusters define the suitability of
nose-to-brain delivery for each anatomy since a cast that has low mean olfactory deposition
has also a low maximal deposition (see Table 5).

4. Conclusions

We performed a broad study of powder spray deposition in 11 nasal casts presenting
various anatomical features, with a focus on the deposition in the olfactory region. We
found out that there are only two main anatomical measurements influencing the olfactory
deposition: the total area of the olfactory region and the relative difference between the
areas of the two sides of the internal nasal valve.

First, the total area of the olfactory region is proportional to the amount of powder
that can be deposited there. Less than 25% of the spray particles are expected to reach the
olfactory zone of patients with a total olfactory area of less than 1450 mm2. This indicates
an incompatibility of a patient with a small olfactory area and nose-to-brain delivery. On
the other hand, if the total area of the olfactory region is above 3000 mm2, the deposition
efficiency reaches 50% with the optimal choice of the parameters.

Second, the relative difference between the areas of the left and right sides of the
internal nasal valve is strongly linked to the deposition difference between the two sides of
the olfactory region. If the relative difference between the areas of the two sides of the nasal
valve is less than 20%, it turns out that there is little interest in the choice of the nostril since
the expected difference in maximal olfactory deposition between left and right nostrils
is negligible. On the other hand, if it is above 40%, the more critical it is to choose the
nostril, as the difference in deposition between both sides can be higher than 25% (absolute
deposition).

In this work, we used a powder spray instead of a liquid one. We can expect variations
in the deposition between these two forms because of the difference in the particle–wall
interaction. On the one hand, it is known that powder particles rebound off the walls [46],
which leads to a more posterior deposition. On the other hand, according to the spray–wall
model of Kolanjiyil et al., using water particles of 20 µm and a spray velocity between 5
and 20 m/s, the droplet would spread on the surface without rebounding [47]. This would
lead to a more anterior deposition and, so, seems less appropriate to reach the olfactory
region.

The present work highlights for the first time a correlation between anatomical mea-
surements and the powder deposition in the olfactory zone. As such, it allows for predicting
if N2B treatment would be appropriate for a given patient and if the choice of the nostril for
the administration is important. Given the differences between biological and nasal cavities
and 3D-printed replicas (such as the lack of mucociliary clearance), these conclusions
should be confirmed via in vivo studies.
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