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Abstract: Berberine is a plant-origin quaternary isoquinoline alkaloid with a vast array of biological
activities, including antioxidant and blood-glucose- and blood-lipid-lowering effects. However,
its therapeutic potential is largely limited by its poor oral bioavailability. The aim of this study
was to investigate the in vitro solubility and Caco-2 cell permeability followed by pharmacoki-
netic profiling in healthy volunteers of a new food-grade berberine delivery system (i.e., Berberine
LipoMicel®). X-ray diffractometry (XRD), in vitro solubility, and Caco-2 cell permeability indicated
higher bioavailability of LipoMicel Berberine (LMB) compared to the standard formulation. In-
creased aqueous solubility (up to 1.4-fold), as well as improved Caco-2 cell permeability of LMB
(7.18 × 10−5 ± 7.89 × 10−6 cm/s), were observed when compared to standard/unformulated berber-
ine (4.93 × 10−6 ± 4.28 × 10−7 cm/s). Demonstrating better uptake, LMB achieved significant in-
creases in AUC0–24 and Cmax compared to the standard formulation (AUC: 78.2 ± 14.4 ng h/mL
vs. 13.4 ± 1.97 ng h/mL, respectively; p < 0.05; Cmax: 15.8 ± 2.6 ng/mL vs. 1.67 ± 0.41 ng/mL) in
a pilot study of healthy volunteers (n = 10). No adverse reactions were reported during the study
period. In conclusion, LMB presents a highly bioavailable formula with superior absorption (up
to six-fold) compared to standard berberine formulation and may, therefore, have the potential to
improve the therapeutic efficacy of berberine. The study has been registered on ClinicalTrials.gov
with Identifier NCT05370261.

Keywords: berberine; bioavailability; Caco-2 cell permeability; food-grade delivery system; LipoMicel;
pharmacokinetics; solubility

1. Introduction

Berberine (2,3-methylenedioxy-9,10-dimethoxy-protoberberine) is a quaternary ben-
zylisoquinoline alkaloid (C20H18NO4

+; Figure 1) belonging to the class of protoberberine
alkaloids. The alkaloid is extracted from different parts (e.g., root, rhizome, stem bark)
of several plant species such as Berberis vulgaris (barberry), Coptis chinensis (Coptis or
goldthread), and Hydrastis canadensis (goldenseal) [1].

In traditional Chinese and Indian medicines, berberine is commonly used to treat
bacterial infections and inflammatory diseases [2], but it can also be effective in treating
vascular and metabolic diseases such as atherosclerosis, hypertension, or diabetes [3].

In both experimental and clinical studies, berberine had beneficial effects on en-
dothelial functions and improved glucose and lipid profiles [4]. Numerous studies have
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suggested berberine as a promising therapeutic agent to treat hyperlipidemia (e.g., in
statin-intolerant patients [5,6]) and type 2 diabetes because it is effective at reducing blood
lipid and glucose [7–11]. It also has a high tolerability profile [5,12] compared to con-
ventional pharmaceutical drugs [13,14]. The lipid-lowering effects are primarily linked
to the upregulation of hepatic LDL receptors (LDLRs) [8], the inhibition of proprotein
convertase substilisin/kexin type 9 (PCSK9) [15], as well as the activation of AMP kinase
(AMPK) [16]. The hypoglycemic effects of berberine—such as reducing fasting blood glu-
cose and enhancing glucose uptake through stimulating insulin signaling pathways—are
mainly associated with (a metformin-like) AMPK activation [17]. AMPK activation can also
promote GLUT4 translocation, which indirectly accelerates the uptake of glucose and free
fatty acids to the mitochondria by increasing ACC phosphorylation, both of which lead
to a reduction in glucose and lipids [18]. Yin et al. reported that the hypoglycemic effect
of berberine is similar to that of metformin at an equivalent dose of 1500 mg/day over a
3-month period, and cholesterol and triglycerides were lowered as well [7]. A systematic
review and meta-analysis by Dong et al. concluded that the treatment of berberine together
with other oral hypoglycemics significantly improved clinical outcomes related to fasting
plasma glucose, glycosylated hemoglobin levels, fasting insulin levels, and triglyceride
levels [19].
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One major limitation of berberine’s clinical application is its low bioavailability. Orally
administered berberine undergoes extensive metabolism (approx. 43.5% is metabolized in
the enterocytes) due to p-glycoprotein (P-gp)-mediated efflux and self-aggregation, which
greatly hinders its absorption [1].

The predominant form of berberine is the chloride (BCl) characterized by poor sol-
ubility in water (approximately 1.3 mg/mL [20]; classified as a class III molecule in the
Biopharmaceutical Classification System), limited absorption rate, and extensive metabolic
degradation within tissues, all of which present substantial obstacles in achieving effective
delivery to specific target tissue sites [1,20–22].

In animal studies, the absolute bioavailability of berberine was found to be <1%
(0.36% [23] and 0.68% [24]) after oral administration in rats due to its low absorption rate
in the gut (approx. 33.6%) [25]. Tan et al. found considerably higher concentrations in
the organs, such as the liver (e.g., 10-fold higher AUC) than in the plasma after orally
administered berberine (200 mg/kg) [26]. In human pharmacokinetic studies, 5% or less of
orally administered berberine was reported to enter the systemic circulation [2,27,28].

In both humans and rats, the compound is rapidly distributed and filtered out of
the circulation by the liver, resulting in low systemic circulation levels of berberine [2];
it undergoes extensive hepatic metabolism involving phase I demethylation processes,
followed by conjugation with sulfuric acid or glucuronic acid to produce phase II metabo-
lites [29]. The higher accumulating concentrations of berberine in the tissues (i.e., liver,
kidneys, muscle, lungs, brain, heart, pancreas) may explain its potent pharmacological
effects observed in clinical studies (e.g., cholesterol and blood glucose reduction) at doses
of 1000–1500 mg/day despite the low plasma concentrations after absorption [26,30–32].

Low oral bioavailability is commonly associated with the physicochemical properties
(e.g., aqueous solubility, permeability, and stability in the GI tract) and the formulation of a
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compound (e.g., drug dispersion degree and dissolution), as well as certain physiological
factors (e.g., efflux and extensive metabolism in the gut and liver) [23,33–35]. Therefore,
several studies have explored different methods to improve the absorption of berberine
in the body. One is the modifications of the chemical structure of berberine, such as long-
chain alkylation (C5–C9) and 9-O-benzylation, that can lead to enhanced lipophilicity and
bioavailability, as well as improved pharmacological efficacy [36,37]. Dihydroberberine,
a derivative/metabolite of berberine, was found to produce significantly higher plasma
concentrations of berberine than standard berberine [34]. Furthermore, numerous formula-
tion techniques have been proposed to improve the uptake of berberine, which include,
for example, nanostructured lipid carriers (NLCs) [38]; microspheres containing absorp-
tion enhancer (sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) [39]; as well
as nano-formulations, including micelles [33,40,41] and liposomes [42,43]. Micro- or nano
formulations are of special interest (e.g., polymeric-based, magnetic mesoporous silica-
based, lipid-based, dendrimer-based, graphene-based, or silver and gold nanoparticles)
that encapsulate a compound and provide a carrier for enhancing the intestinal uptake
of molecules like berberine with low aqueous solubility [42,44–46]. Lipid-based delivery
systems consisting of micro- or nanoparticles are characterized by their small particle size
and high surface area-to-volume ratios [47], and have long been used in the pharmaceutical
industry but recently also become prominent in the food and nutraceutical field [48].

This study investigated a new micellar lipid-based delivery system of berberine,
namely LipoMicel® Berberine (LMB), that disperses berberine into small microparticles
together with food-grade ingredients to create a natural emulsion. Micelles are useful
oral drug delivery systems for hydrophobic compounds due to their unique amphiphilic
colloidal structure consisting of a hydrophobic inner core and a hydrophilic outer shell
(core–shell) [49]. The key attributes of the current LipoMicel formulation are the small parti-
cle size (in the micrometer range), the lamellar micelle structure, lipid composition, entrap-
ment efficiency and X-ray diffractometry (XRD) pattern, as well as the use of natural “food
grade” ingredients. Compared to other studies using micellar formulations [33,40,50–52],
LipoMicel contains natural and generally recognized as safe (GRAS) food ingredients
without the use of synthetic detergents such as tweens/polysorbates, polyethylene gly-
cols (PEGs), or poloxamers (e.g., pluronic F127). Although these chemicals are widely
used in medical, pharmaceutical, cosmetic, industrial, and food products and are gener-
ally considered to be “safe” or “low toxic”, they have been associated with an increased
prevalence of inflammatory bowel and metabolic diseases [53], and potentially can cause
cross-reactivity with active compounds, leading to hypersensitivities or allergic reactions
in rare cases [54–57].

The hypothesis of the current study was to determine whether berberine microencap-
sulated in a food-grade, lipid-based lipomicel formulation when compared to standard
berberine treatment, would result in improved aqueous solubility and Caco-2 cell per-
meability in vitro, as well as improved pharmacokinetics (such as AUC0–24 and Cmax) in
human volunteers, thereby increasing the oral bioavailability of berberine.

2. Materials and Methods
2.1. Participants

Fourteen healthy adults were initially recruited for this study. Ten healthy adults of
both sexes (5 men; 5 women; average age 34 years with a mean BMI of 22.3 ± 2.2 kg/m2 and
mean weight of 63.3 ± 9.5 kg) completed the entire trial and were included in the analysis
(Figure 2). Healthy participants who were ≥21 years old, of good physical condition—non-
smokers, not taking any prescribed medication—were included in the trial.

All participants provided their written informed consent before participating in this
study. Forty-eight hours before each treatment and during the treatment period, partic-
ipants were instructed to refrain from taking supplements containing berberine and to
maintain a normal, balanced diet.
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Figure 2. Study flow diagram.

The inclusion criteria included a signed written informed consent form and a will-
ingness to avoid the consumption of any herbal supplements that contain berberine (48 h
before each treatment and during the respective treatment periods). As exclusion criteria,
participants must not have any of the following diseases and/or health conditions: serious
acute or chronic diseases—such as liver, kidney, or gastrointestinal diseases—which may
affect absorption, metabolism, and/or elimination of the treatment, as well as any kind
of contraindication and/or allergy to berberine. Female participants must not have been
pregnant, planning to get pregnant, or be breast-feeding. Participants had to complete an
online health questionnaire on their medical history upon study enrolment.

2.2. Treatments

In this study, different formulations of berberine were purchased from commercial
sources and investigated (Table 1). Each product in this study was administered (one or
two capsules) as a single dose containing a total dose of 500 mg of berberine:

- Standard berberine formulation (WellBetX®; WBX) was purchased from Natural
Factors, BC, Canada. One hard-gelatin capsule contained 500 mg of berberine hy-
drochloride from Berberis vulgaris root.

- A new food-grade berberine delivery system (LipoMicel® Berberine; LMB) was
provided by Natural Factors, BC, Canada. One soft-gel capsule contained 250 mg
of berberine from Berberis vulgaris root with medium-chain triglycerides and food-
grade components of the micellular membrane with food-grade excipients (patent
pending—LipoMicel® Matrix).

2.3. Safety and Tolerability

Potential adverse events associated with the study treatments were evaluated through
the collection of health questionnaires.



Pharmaceutics 2023, 15, 2567 5 of 20

Table 1. Study treatments.

Treatment WBX LMB

Dosage form Hard-gelatin capsules Soft-gelatin capsules
Berberine per capsule (mg) 500 250

Number of capsules per dose 1 2
Physical form of capsule content Powder Liquid

Non-medicinal ingredients

Carbohydrate gum [cellulose], purified
water), microcrystalline cellulose,

magnesium stearate (vegetable grade),
stearic acid, silica.

gelatin, glycerin, purified water, carob
powder, medium-chain triglycerides

(coconut), bergamot flavor, msm, xylitol,
stevia rebaudiana leaf extract,

phosphatidylcholine lecithin (sunflower).

WBX: WellBetX (standard berberine); LMB: LipoMicel Berberine (delivery system of berberine).

2.4. Pharmacokinetic Study in Healthy Volunteers

A diet-controlled, blinded, crossover pharmacokinetic study was performed with
commercial berberine formulations. The study was approved by the Canadian SHIELD
Ethics Review Board (OHRP Registration IORG0003491; FDA Registration IRB00004157;
Approval letter ID 2021-08-004, date of approval: 24 August 2021). The study has been
registered on ClinicalTrials.gov with Identifier NCT05370261 and conducted in accordance
with the ethical standards as set forth in the Helsinki Declaration of 1975.

On the day of the trials, capillary blood samples were taken after a 10 h overnight
fast to determine the initial berberine concentration (baseline: t = 0). Thereafter, each
participant received an oral dose of either 1 capsule of 500 mg WBX or 2 capsules of 250 mg
LMB and continued to fast for 4 h. While participants were aware that two different
formulations with different bioavailabilities were being tested, they did not know the name
or composition of the products.

Following the interventions, capillary whole-blood samples were collected at time
points 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 24 h after the single-dose administration of berberine.
Standardized lunch and dinner were served after 4 and 8 h of product administration,
respectively. Coffee- or tea-based beverages were allowed after a 2 h fasting. Water could
be consumed ad libitum during each study session.

At each blood sampling time point, capillary blood samples (50 µL) were drawn into
microcentrifuge tubes. The vials were closed immediately and kept frozen at −20 ◦C
until further processing and analysis. Processed samples were loaded into a refrigerated
autosampler to be analyzed by LC-HRMS within 24 h after processing. Each experimental
session was conducted at the lab facility of ISURA (Burnaby, BC, Canada).

The Interventions were conducted in a crossover fashion with a minimum washout of
7 days (Figure 2).

Blood Sample Preparation and Analytical Procedures

Sample preparation and analytical protocols were adapted from a previously pub-
lished method [58]. The collected whole-blood samples were first thawed at room tem-
perature, and then 50 µL of blood was treated with 100 µL of β-glucuronidase (from Helix
pomatia, ≥100,000 IU diluted to 330 IU; Millipore-Sigma, Burlington, MA, USA) in pH
5 buffer and incubated for one hour at 37 ◦C. Berberine chloride traceable to a certified
reference material (Millipore-Sigma, Burlington, MA, USA) was used for the stock solu-
tions for the calibration standards and quality controls. Benzanilide (Millipore-Sigma,
Burlington, MA, USA) was included as an internal standard before sample analysis, as
previously published [58,59]. In total, 400 µL of methanol (ACS grade, Fisher Chemical,
Toronto, ON, Canada) was added to extract the samples. Samples were sonicated for
15 min while maintained in a water bath at room temperature. After extraction, tubes
were centrifuged at 16,000× g for 5 min at 25 ◦C. The supernatant was transferred into a
microplate for LC-HRMS analysis. Processed samples were analyzed using a Vanquish
Ultra High-Performance Liquid Chromatography (UHPLC) system (Thermo Fisher Scien-
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tific Inc., Waltham, MA, USA) coupled to a Q ExactiveTM OrbitrapTM Mass Spectrometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA). Briefly, 20 µL of each sample was
injected into the instrument with a binary solvent gradient progressing from 30% B to 75%
B in 4 min and equilibrated for 5 min before the next injection. The mobile phases were
0.5% formic acid in water in A and methanol in B. An Acme Xceed C18, 100 mm × 2.1 mm,
1.9 µm UHPLC column (Phase Analytical Technology, State College, PA, USA) was used to
perform the separation at a flow rate of 400 µL/min.

The Orbitrap mass spectrometer was calibrated at 70,000 resolution with an accepted
range for mass deviation of +/−5.0 ppm using PierceTM LTQ Velos ESI Positive-Ion Cal-
ibration Solution (Thermo Fisher Scientific Inc., Waltham, MA, USA) and PierceTM ESI
Negative-Ion Calibration Solution (Thermo Fisher Scientific Inc., Waltham, MA, USA). To
reduce interference from the sample matrix, the mass spectrometer was operated in timed
Selected Ion Monitoring (tSIM) Mode with heated electrospray at a resolution of 70,000 and
a quadrupole isolation window of 3.0 m/z. Benzanilide (internal standard) was detected as
a hydrogen adduct with a mass of 198.0913. Berberine was detected as a hydrogen adduct
with a mass of 336.1230 and as berberine formate with a mass of 382.1285.

Data were collected using XcaliburTM 5.0 (Thermo Fisher Scientific Inc., Waltham, MA,
USA) and analyzed with TraceFinder 5.0 (Thermo Fisher Scientific Inc., Waltham, MA,
USA) software with the default mass tolerance set to 5.00 ppm. Concentrations of berberine
in capillary whole blood were determined based on internal standard calibration with a
6-point calibration curve using berberine hydrochloride as the chemical standard (Certified
Reference Material, secondary standard, Millipore Sigma, Burlington, MA, USA).

This method was validated according to the European Medicines Agency’s ICH
Guideline M10 on bioanalytical method validation for selectivity, specificity, calibration
curve and range, accuracy and precision, and carryover. The calibration concentrations
were selected based on ICH M10 and ranged from 1 to 100 ng/mL. Quality controls were
evaluated at 4 concentrations (1, 3, 10, and 80 ng/mL) to determine accuracy and range.

Selective and specificity are demonstrated by the overlay chromatograms (Figure 3).
Calibration curve linearity has an average R2 value of 0.999. Average precision is 10%,
average accuracy is 5.1% of nominal value, and carryover is 0.76%.
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2.5. X-ray Diffraction

X-ray diffraction (XRD) patterns of berberine products were acquired with a Rigaku
MiniFlex 600 6G diffractometer using Cu Kα radiation (λ = 0.15418 nm) and a 2D HyPix
−400 MF detector operating in one-dimension mode (4D LABS, Simon Fraser University,
Burnaby, BC, Canada). Copper X-rays were generated from a copper target by electron
bombardment at 40 kV and 15 mA. The incident and receiving Soller slits were 5 degrees.
A 0.625-degree divergence slit was placed between the X-ray source and the sample. An
8 mm scatter slit and a Ni filter, to diminish Cu K-beta radiation, were placed between the
sample and the detector. Samples were mounted on a glass sample holder.

2.6. Particle Size Distribution

The Mastersizer 3000 particle size analyzer (Malvern Panalytical, Québec City, QC,
Canada) was used to determine the particle size distribution. Briefly, approximately 1 mL
or 1 g of the content of the capsules was added into a Hydro SM (Malvern Panalytical,
Québec City, QC, Canada) wet dispersion accessory filled with approximately 200 mL of
water. Data were collected over a period of 1 min once the dispersed mixture reached 10%
obscuration. Hydrodynamic volumes of the resulting particulates (powder-in-water and
micelle-in-water mixtures) were determined through laser diffraction data analyzed using
the Mastersizer software 3000 (Malvern Panalytical, Québec City, QC, Canada).

2.7. Cryo-SEM

Around 400 mg LMB soft-gel fill material was dispersed in deionized water to make
1.5 mL suspension in a 1.5 mL polypropylene microcentrifuge tube with snap cap. The
suspension was sonicated in a warm bath (30–40 ◦C) for 15 min and then allowed to settle
for 5 min. A few drops of light-colored top portion of the suspension were filled into wells
made on an aluminum cryo-SEM holder with a small amount of overfill. The cryo-SEM
holder with the sample was then submerged in a slushy liquid nitrogen for 10–20 s to
rapidly freeze the samples. After freezing, the sample was vacuum transferred into a
Quorum PP3010T cryochamber (Quorum Technologies, East Sussex, UK) to fracture the
overfill portion off in order to reveal the cross-section of the frozen sample. The fractured
sample was then further transferred in a Helios NanoLab 650 scanning electron microscope
(FEI Company, Hillsboro, OR, USA) for imaging. Cryo-SEM images were collected with
a current of 13 pA at 2 kV, with a working distance of 4 mm, at a scanning resolution of
3072 × 2207 or lower by averaging 128 low-dose scanning frames with drift correction. The
sample was kept at −140 ◦C when fracturing and imaging. The sample was also imaged
after sublimation at −80 ◦C for 15 min in a cryo-SEM chamber to remove some water.

2.8. Solubility

The berberine formulations used in this study were analyzed in terms of their solubility
in distilled water and simulated gastric and intestinal solutions. Simulated gastric and
intestinal solutions were prepared according to the method published by USP. An excess
amount of the berberine sample was added with 10 mL of liquid in a 15 mL centrifuge tube
to reach saturation.

Samples were vortexed briefly to suspend visible particles and then sonicated for
15 min at 37 ◦C to ensure saturation of the aqueous phase of the mixture. Next, par-
ticles and micelles were removed by filtering through 0.45 µm polytetrafluoroethylene
(PTFE) filters (Chromatographic Specialties, Brockville, ON, Canada), and particulate-free
filtrates were transferred into glass vials for the quantification of berberine using a high-
performance liquid chromatography (HPLC) system. Filtered samples contained only
particles smaller than 0.45 µm. Filtered samples were analyzed using a Ultimate 3000 RS
UHPLC system (Thermo Fisher Scientific Inc., Waltham, MA, USA) with a quaternary pump
delivering a binary gradient of 0.2% phosphoric acid (HPLC grade, VWR International,
Mississauga, ON, Canada) in HPLC-grade water (Fisher Scientific, Toronto, ON, Canada)
and HPLC-grade acetonitrile (Fisher Scientific, Toronto, ON, Canada) through a Poroshell
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EC-18 100 × 2.1 mm, 2.7 µm column (Agilent Technologies, Santa Clara, CA, USA) at
0.600 mL/min. Gradient was linearly increased from 12% acetonitrile to 95% acetonitrile
over a period of 12 min. The column was equilibrated with the starting conditions for
2 min before the next injection. The column oven was set to 40 ◦C, and data were collected
at 235 nm.

2.9. In Vitro Caco-2 Cell Permeability Studies

Caco-2 cells (Cedarlane Laboratories, Burlington, ON, Canada) were cultured in a T-25
flask (Thermo Fisher Scientific Inc., Waltham, MA, USA) in a HERACELL VIOS 160i CO2
incubator (Thermo Fisher Scientific Inc., Waltham, MA, USA) set to 37 ◦C and 5.0% CO2. The
composition of the cell culture media was as follows: Dulbecco’s modified Eagle’s medium
(DMEM) (Sigma-Aldrich, Burlington, MO, USA), 10% heat-inactivated fetal bovine serum
(FBS) (Thermo Fisher Scientific Inc., Waltham, MA, USA), penicillin (100 units/mL), and
streptomycin (100 units/mL) (Sigma-Aldrich, Burlington, MO, USA). For the permeability
study, cells were resuspended with 5% trypsin (Thermo Fisher Scientific Inc., Waltham, MA,
USA) and seeded on a 24-well culturing plate with a format polycarbonate semipermeable
membrane insert (6.5 mm diameter, 0.4 µm pore size; VWR International, ON, Canada).
The seeding density was 1 × 10−4 cells/cm2. Seeded cells were incubated with the culture
media for a total of 21 days before the permeability assay. The culture media were refreshed
every 48 h during the first 14 days, and then every 24 h prior to the test. An EVOM2
instrument (World Precision Instruments, Sarasota, FL, USA) was used to measure the
transepithelial electrical resistance (TEER) values of the cells. Only Caco-2 monolayers with
TEER values between 250 and 500 Ωcm2 were selected for use in permeability experiments.

On the day of measurement, Caco-2 cells were washed twice with Hanks’ balanced
salt solution (HBSS) (Sigma-Aldrich, Burlington, MO, USA) and then allowed to equilibrate
for 30 min in the incubator at 37 ◦C. Next, Berberine formulations were diluted 1 in 10
in culture media, centrifuged at 10,000× g for 3 min to remove particulates, and then the
supernatants were added separately as donor solutions to the apical side of the monolayer,
and 500 µL of HBSS solution was added to the basal side. Four hours after the treatment,
the basal solution was collected for LCMS analysis. All treatments were performed in
triplicate. A control sample consisting of only LMB excipients was also tested, and no
significant changes in TEER values were observed.

The apparent permeability coefficient (Papp) can be calculated from the permeation
rate and compound concentration at t = 4 h (see formula below). In this formula, dQ/dt is
the amount of product present in the basal compartment as a function of time (nmol/s), A
is the area of transwell (cm2), and C0 is the initial concentration of product applied in the
apical compartment (µM).

Papp =
dQ
dt

· 1
A · C0

2.10. Data Analysis

The following pharmacokinetic (PK) parameters were evaluated: the time to reach
peak blood concentration (Tmax), maximum total berberine blood concentration (Cmax), the
elimination rate constant (Kel), and the area under the total berberine blood concentration
curve from 0hr (administration time) to 24 h (AUC0–24). A noncompartmental pharmacoki-
netic analysis (NCA) was conducted to calculate the PK parameters using sampling times
by means of the software PCModFit V.6.7 (add-on for Microsoft Excel).

As for statistical analysis, comparison of the different pharmacokinetic parameters
between the two treatment groups was performed using ANOVA (Mixed Model) repeated
measures with the Šidák multiple comparisons test. Differences in solubility and caco-2
cell permeability between the two treatments were evaluated using unpaired t-tests.

Prior to the statistical tests, normality was assessed using the Shapiro–Wilk test.
Data were considered significant at p < 0.05. GraphPad Prism software ver. 10.0.3
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(GraphPad Software Inc., La Jolla, MA, USA) was used for the statistical analyses and
graphical presentation.

3. Results
3.1. Pharmacokinetics of Different Berberine Formulations

The absorption of two different berberine products was monitored over a 24 h period in
10 healthy participants following the oral administration of 500 mg berberine per treatment.
Blood concentrations of berberine are presented in Figure 4 and Table 2.
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Table 2. Pharmacokinetics of berberine formulations.

Product AUC0–24
(ng h/mL)

Cmax
(ng/mL)

Tmax
(h)

Kel
(h−1)

Initial
Concentration

(ng/mL)

WBX 13.4 ± 1.97 1.67 ± 0.41 5.60 ± 0.94 0.31 ± 0.1 0.58 ± 0.14
LMB 78.2 ± 14.4 15.8 ± 2.6 1.06 ± 0.21 0.09 ± 0.03 2.68 ± 1.72

p-value 0.0053 0.0041 0.0223 0.3783 0.8815
LMB: LipoMicel Berberine; WBX: WellBetX (standard berberine); AUC: the area under the blood concentration
curve from the time of administration to 24 h; Cmax: maximum blood concentration; Tmax: time to reach Cmax; Kel:
elimination rate constant; n = 10; results are expressed as mean ± S.E.M.; p < 0.05 (ANOVA).

LMB achieved significantly higher absorption when compared to unformulated/standard
berberine (AUC: 78.2 ± 14.4 ng h/mL vs. 13.4 ± 1.97 ng h/mL; p < 0.05, respectively).
Furthermore, LMB attained up to 10-fold higher peak concentrations (Cmax) during the
24 h period (Cmax = 15.8 ± 2.6 ng/mL) than WBX (1.67 ± 0.41 ng/mL). The time to reach
maximum/peak concentrations was approx. five times shorter with LMB compared to
WBX (Tmax: 1.06 ± 0.21 h vs. 5.60 ± 0.94 h), indicating the faster absorption of LMB.
Although not significant, LMB showed a lower elimination rate constant (Kel) compared to
standard berberine treatment, indicating a slower elimination of LMB, resulting in higher
blood concentrations. A previous study on standard berberine reported a similar elim-
ination half-life of 2.94 ± 0.14 h, which is equivalent to an elimination rate constant of
0.236 h−1. [60]

Figure 5 and Table 3 demonstrate the gender differences in berberine absorption in
female (n = 5) and male (n = 5) participants within the individual treatment groups (LMB
and WBX). The results revealed no significant differences in AUC berberine in male vs.
female participants (WBX: p > 0.9999 and LMB: p = 0.9080; Figure 5), as well as in Cmax and
Tmax (Table 3).
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Figure 5. Berberine absorption of individual treatments in female (n = 5) vs. male participants (n = 5).
Data are sub-grouped by gender; blood concentrations for each gender are compared over time
for (a) WBX: WellbetX (standard berberine) and (b) LMB: LipoMicel with no significant differences
observed between genders (p > 0.05; ANOVA). (c) Comparison of AUC0–24 values between genders
for the two treatments (WBX: green and LMB: red).

Table 3. Pharmacokinetics of female and male participants within the individual treatments.

Male Female

Product AUC0–24
(ng h/mL)

Cmax
(ng/mL)

Tmax
(h)

Kel
(h−1)

AUC0–24
(ng h/mL)

Cmax
(ng/mL)

Tmax
(h)

Kel
(h−1)

WBX 13.38 ± 2.80 a 1.23 ± 0.27 a 3.60 ± 1.50 a 0.19 ± 0.1 a 13.20 ± 3.25 a 2.10 ± 0.76 a 7.20 ± 1.20 a 0.42 ± 0.16 a

LMB 75.19 ± 16.9 b 13.27 ± 4.17 b 1.00 ± 0.35 a 0.1 ± 0.04 a 56.00 ± 9.73 b 16.75 ± 0.82 b 1.12 ± 0.32 b 0.09 ± 0.03 a

p-value 0.0397 0.0072 0.1120 0.7965 0.0227 0.0028 0.0018 0.0936

AUC: the area under the blood concentration curve from the time of administration to 24 h; Cmax: maximum blood
concentration; Tmax: time to reach Cmax; Kel: elimination rate constant; n = 5 (male); n = 5 (female); significant
differences between pairwise comparisons between males and females indicated by different superscript letters “a,
b” (p < 0.05, ANOVA); significantly different AUC0–24 was observed between the two treatments (LMB: LipoMicel
Berberine; WBX: WellBetX (standard berberine)) for both genders; no significance was observed between the
two genders.

No side effects/adverse events during the study period were reported, indicating that
the treatments were well tolerated.

3.2. Solubility of Different Berberine Formulations

The results of the in vitro solubility studies performed with different formulations of
berberine are summarized in Table 4. LMB had up to 1.4-fold better solubility in water
as well as significantly higher solubility in simulated gastric solution compared to WBX.
However, when tested in simulated intestinal media at pH 6.8, both formulations had
similar solubility.

Table 4. Solubility of berberine in different pH conditions.

Product Water
(mg/mL)

Simulated Intestinal
Solution (mg/mL)

Simulated Gastric Solution
(mg/mL)

LMB 2.34 ± 0.23 4.04 ± 0.28 0.44 ± 0.01
WBX 1.65 ± 0.01 5.42 ± 0.37 0.02 ± 0.01

p-value 0.0349 0.0210 0.0005
LMB: LipoMicel Berberine; WBX: WellBetX (standard berberine). Solubility evaluated in distilled water at pH 7.0;
simulated intestinal solution at pH 6.8 and simulated gastric solution at pH 1.2; p < 0.05 and p < 0.001 (unpaired
t-test).

3.3. Permeability of LMB vs. WBX in Caco-2 Cells

The apparent permeability coefficient (Papp) of the compounds is a measure of the
rate at which a compound can cross an area of the cell monolayer [61]. The results of
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the Caco-2 cell permeability studies performed with LMB and WBX indicated a signifi-
cantly higher cell permeability of LMB (7.18 × 10−5 ± 7.89 × 10−6) compared to WBX
(4.93 × 10−6 ± 4.28 × 10−7 cm/s), as summarized in Figure 6 and Table 5. These findings
are consistent with the aqueous solubility results, highlighting greater permeability of LMB
in human intestinal epithelial (Caco-2) cells. This is also confirmed by the significantly
higher pharmacokinetics of LMB in study participants.
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Figure 6. Caco-2 monolayer permeability with LMB: LipoMicel Berberine and WBX: WellBetX
(standard berberine); n = 8; * p < 0.001 (unpaired t-test).

Table 5. Apparent permeability coefficient (Papp) values of berberine formulations.

Product Papp (cm/s) (±SEM)

LMB 7.18 × 10−5 ± 7.89 × 10−6

WBX 4.93 × 10−6 ± 4.28 × 10−7

p-value <0.0001
LMB: LipoMicel Berberine; WBX: WellBetX (standard berberine); n = 8; p < 0.001 (unpaired t-test).

3.4. Cryo-SEM of LMB

Cryo-SEM reveals that the berberine present inside the micelles of LMB is amorphous,
minute, and irregular. This is in sharp contrast with WBX powder (Figure 7) which reveals
large, smooth, flat surfaces characteristic of crystalline structures.

3.5. X-ray Diffraction of the Berberine Products

X-ray diffraction plots present the relative degree of crystallinity in the different
berberine products (Figure 8). X-ray diffraction has been recognized as a reliable technique
to study the mechanical properties and surface structure of crystals while providing insight
into their bioavailability potentials [62]. When a beam of X-rays is directed at a crystalline
material, the atoms in the crystal scatter the X-rays in all directions. However, because
the atoms in a crystal are arranged in a regular, periodic pattern, the diffracted X-rays will
also have a regular, periodic pattern. Sharper diffraction peaks indicate a higher degree of
crystallinity, whereas diffraction peaks with less intensity are indicative of amorphous and
less crystalline (semi-crystalline) materials [62,63]. As shown in Figure 8, the LMB (red)
exhibits a nearly flat curve with small peaks. This is consistent with an amorphous phase
and suggests better solubility along with the higher bioavailability of berberine. In contrast,
the WBX product (green) presents diffraction patterns with a series of sharper peaks
associated with highly crystalline materials and suggests less bioavailability of berberine.

3.6. Particle-Size Distribution by Laser Diffraction

Laser diffraction measurements are taken in triplicate for both formulations, and
Figure 9 presents the average of the three datasets. The data represent the hydrodynamic
volumes of the micelles in the case of LMB and the hydrodynamic volumes of the powder-
in-water particulates in the case of WBX. LMB generates a smaller distribution profile than
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WBX, with a particle size ranging from a few micrometers to larger than 50 micrometers.
This likely corresponds to its higher solubility in the tested media (i.e., water, the carrier
fluid used in the Malvern analyzer).
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4. Discussion

Previous studies on LipoMicel have highlighted its potential to improve the absorption
and physicochemical properties of natural compounds [64,65].

In this work, both the in vitro and in vivo absorption characteristics of a new mi-
celle formulation of berberine, named LipoMicel Berberine (LMB), have been evaluated.
Solubility studies revealed that berberine microencapsulated as a LipoMicel matrix (i.e.,
LMB) results in higher aqueous solubility compared to standard berberine (approx. 142%
of that of regular formulation (WBX)); this further corresponded to the XRD patterns
of LMB showing diffraction peaks with less intensity and sharpness compared to WBX,
which is indicative of an amorphous phase and a change in the crystalline nature of the
material [63]. Less crystalline or more amorphous compounds have better solubility and
greater Gibbs free energy [66], as well as enhanced dissolution rates compared to their
respective crystalline forms and are, therefore, more bioavailable. As shown in previous
studies, modifications in the crystalline nature, for example, through micro- or nano-sizing
or by creating an amorphous solid dispersion like LMB, may be among the most effective
approaches to enhance the solubility, dissolution, as well as the permeability of molecules,
and consequently their bioavailability [62,63,67,68].

Caco-2 cells have been used to predict the in vivo oral absorption of berberine as they
provide a model of the human intestinal epithelium, the first barrier to absorption and to
reach the systemic circulation. Therefore, the transport of LMB and WBX through the Caco-
2 cell monolayer was investigated to evaluate their ability to permeate the epithelium layer.
The permeability results showed the significantly higher permeability of LMB in Caco-2
cells compared to WBX; the apparent permeability coefficient (Papp) values reported in this
study are in accordance with the findings of other studies on berberine compounds [69].
The enhanced intestinal permeability in Caco-2 cells is likely the result of both the small
LipoMicel particles (size distribution in 5–100 micrometers range; Figure 9) and the natural
surfactants, which may prevent p-glycoprotein-mediated efflux, as previously suggested
by Kwon et al. [33].

In general, small particles such as micro- or nanoparticles are transported through
the cell by endocytotic mechanisms such as pinocytosis, macropinocytosis, or clathrin-
mediated endocytosis [70]. For instance, Qu et al. reported that the enhanced permeability
of paclitaxel-loaded mixed polymeric micelles in Caco-2 cells was associated with both
clathrin- and caveolae-mediated micropinocytosis mechanisms [71].
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As shown in a previous study, the different compositions of natural emulsifiers (e.g.,
phosphatidylcholine lecithin) and biosurfactants (e.g., medium-chain triglyceride (MCT))
in a LipoMicel formulation can help to significantly increase the intestinal permeability in
Caco-2 cells [65]. Park et al. reported that permeability-enhancing surfactants consisting
of medium-chain fatty acids may penetrate the lipid bilayer more easily because of their
proper lipid solubility [72]. Furthermore, natural low-molecular-weight surfactants, such
as saponins and lecithins, have been proven to be effective at forming and stabilizing
emulsions, thus improving the intestinal uptake [73].

To test if the improved aqueous solubility and Caco-2 cell permeability of LMB would
result in higher blood concentrations, a pilot crossover study on healthy human volunteers
was conducted. Artursson et al. demonstrated a clear correlation between the Papp of several
passively diffused drugs in the Caco-2 model and the absorbed fraction of these drugs after
oral administration in humans [36]. In this work, the higher Papp of LMB compared to WBX
(7.18 × 10−5 vs. 4.93 × 10−6) was reflected in significantly higher blood concentrations
(AUC 78.2 ± 14.4 vs. AUC 13.4 ± 1.97 ng h/mL; Cmax 15.8 ± 2.6 vs. 1.67 ± 0.41 ng/mL) in
the study participants. The time taken to reach the maximum plasma concentrations (Tmax)
was significantly shorter with LMB (Tmax: 1.06 h) compared to standard berberine WBX
(5.6 h). The discrepancy in Tmax is likely related to the differences in the physicochemical
and formulation factors of LMB and WBX (i.e., soft gel vs. hard gel), which can affect
the dissolution properties and bioavailability. Compared to a hard-gel capsule (a solid
dosage form), a soft-gel capsule contains a liquid, a suspension, or a semisolid material
filled in a one-piece hermetically sealed shell. Soft gel forms can offer several advantages
over traditional oral solid dosage forms [74]. For example, they can mask the unpleasant
taste and odor of compounds and are more comfortable to swallow due to their self-
lubricating nature when used with water [74]; they tend to have higher stability and protect
compounds against oxidation, degradation, and contamination [74] and can enhance the
bioavailability of poorly soluble compounds by using lipophilic vehicles as part of their fill
material [75,76].

Only a few studies have reported the pharmacokinetics of berberine in humans. In a
similar study, berberine Phytosome® (also a food-grade delivery system) achieved up to 4-
fold increases in total berberine concentrations (AUC 4952 ± 647 vs. 1217 ± 129 pg h/mL;
Cmax 76.70 ± 14.04 vs. 316.88 ± 26.60 pg/mL) compared to unformulated berberine
when tested at similar doses, as used in the current study [77]. Moon et al. found that
dihydroberberine (DHB), the reduced derivative of berberine, leads to considerably higher
berberine concentrations in their study participants than standard berberine at doses of
100 mg DHB vs. 500 mg berberine (AUC 284.4 ± 115.9 vs. 42.3 ± 17.6 ng h/mL; Cmax
3.76 ± 1.4 vs. 0.4 ± 0.17 ng/mL, respectively) within a 2 h period. However, the increased
bioavailability was not accompanied by better clinical efficacy since no significant changes
in glucose and insulin response were observed during the study period [34]. Hua et al.
reported a mean Cmax and AUC0–∞ of approx. 0.4 ng/mL and 9.2 ng h/mL, respectively,
in 20 study participants orally administered 400 mg of berberine [27]. Similar results were
reported after the administration of 500 mg of berberine in 10 volunteers with a Cmax value
of 0.07 nM [78].

Based on the existing literature, it can be suggested that LMB achieves higher ab-
sorption through the following mechanisms: reduced particle size and improved aqueous
solubility [42] and intestinal permeability through the endocytosis of encapsulated berber-
ine across the intestinal epithelia; reduced intestinal first-pass elimination, as well as
hepatobiliary re-excretion [23,79] and self-aggregation [80]; and reduced p-glycoprotein
efflux in the intestine and the liver [35,81,82]. Several studies using a Caco-2 cell monolayer
model have demonstrated that p-glycoprotein efflux considerably contributes to low con-
centrations of berberine in small intestinal epithelial cells [35,83]; thus, taking berberine
along with p-glycoprotein inhibitors such as silymarin from Milk Thistle or d-α-tocopheryl
polyethylene glycol 1000 succinate (TPGS) has been shown to increase absorption [24,84].
Since berberine is a known p-glycoprotein inhibitor [85], it is possible that LMB’s prop-
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erties, such as increased solubility and reduced particle size, led to reduced intestinal
p-glycoprotein efflux [86].

CYP1A2, CYP2D6, and CYP3A4 have been reported to be involved in the berberine
metabolism, as well as the intestinal microbiota [25,87]. In humans, berberine was found to
decrease CYP2D6, 2C9, and CYP3A4 activity [88], which may cause herb–drug interactions.
Therefore, novel formulations such as LMB that increase the blood concentrations of
berberine should be further investigated in terms of their effects on CYP activities, especially
since berberine appears to be a good candidate for the adjunctive treatment of diabetes and
patients with suboptimal glycemic control [89].

Interaction studies between the gut microbiota and orally administrated berberine are
another important field of research [90]. Variations in the gut microbiota may contribute
to inter-individual and intra-individual differences in drug metabolism [91]. For instance,
Alolga et al. reported significant pharmacokinetic differences in berberine between African
and Chinese study participants (AUC0–12: 0.96 ± 0.34 vs. 0.47 ± 0.13, respectively), likely
due to variations in gut microbiota [54]. Since different factors can affect drug absorption
(e.g., age, diet/microbiome, ethnicity, health status, sex differences, etc. [92]), in this study,
the pharmacokinetic differences between female and male participants were investigated;
however, no significant differences in AUC, as well as Cmax and Tmax, were observed.

In the current study, LMB demonstrated higher intestinal permeability through a
Caco-2 cell monolayer and higher absorption in human study participants. This is likely
the result of the micelle-microencapsulated, amorphous, and non-crystalline morphology
and the use of natural emulsifiers and surfactants in the LMB formulation.

LMB, a lipid-based micelle delivery system, not only reached peak blood concentra-
tions faster but could also sustain significantly higher berberine concentrations in partici-
pants over the study period (AUC0–24h) when using the same dosage of berberine. This
suggests that when berberine is micro-encapsulated in a LipoMicel, a lower therapeutic
dose can be employed, which may lead to fewer side effects (such as gastrointestinal ones
related to the ingestion of large quantities of alkaloids) and higher patient compliance [63].
The formulation used in this research appeared to be safe; no side effects were reported
throughout the study period. The strengths of this study include the presentation of in vitro
results (i.e., in Caco-2 cell cultures) alongside human clinical data from a crossover study.

Crossover designs have several advantages for bioavailability studies as they remove
inter-subject variability and have high power and statistical efficiency even with a smaller
number of subjects [93]. One limitation associated with crossover designs is the carry-over
effects. Therefore, in this study, a minimum washout period of 7 days has been included,
which is in accordance with previous pharmacokinetic studies on berberine [34,77]. Lim-
itations may include the small sample size of this pilot study (n = 10), as well as the
non-randomization design. Also, since pharmacokinetic analyses were performed using
a non-compartmental model, the data could not capture the complexities of berberine
distribution in tissues and its eventual elimination. Future studies using the compartmental
model could greatly improve our understanding of the underlying mechanisms that explain
the observed differences.

Furthermore, since berberine and its derivatives display several pharmacological
effects through various mechanisms, future clinical trials should evaluate possible mech-
anisms of actions of formulated products, in this case, LMB, which increase the blood
concentrations of the alkaloid. The relationship between enhanced bioavailability and
bio-efficacy (e.g., blood glucose- and lipid-lowering effects) could also be explored in
future studies.

5. Conclusions

This study presents the absorption characteristics of a new food-grade berberine
delivery system LMB (LipoMicel Berberine) in in vitro conditions, and a human pharma-
cokinetic study. The findings present that LMB has higher aqueous solubility and Caco-2
cell permeability compared to that of standard berberine, as well as up to six-fold greater
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absorption in our study participants over a 24 h period following the oral administration
of 500 mg berberine. LMB reached approx. 10 times higher peak blood concentrations of
berberine than the standard product and could sustain significantly greater blood uptake
in participants over the study period (AUC0–24h).

Having an earlier maximum absorption and sustained higher blood concentrations
could be meaningful for berberine supplementation in terms of its clinical efficacy. These
results need to be tested in a larger human clinical study over a longer duration.
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