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Abstract: The modalities for prescribing a psychotropic (dose and choice of molecule) are currently
unsatisfactory, which can lead to a lack of efficacy of the treatment associated with prolonged exposure
of the patient to the symptoms of his or her illness and the side effects of the molecule. In order to
improve the quality of treatment prescription, a part of the current biomedical research is dedicated
to the development of pharmacogenetic tools for individualized prescription. In this guideline, we
will present the genes of interest with level 1 clinical recommendations according to PharmGKB for
the two major families of psychotropics: antipsychotics and antidepressants. For antipsychotics, there
are CYP2D6 and CYP3A4, and for antidepressants, CYP2B6, CYP2D6, and CYP2C19. The study will
focus on describing the role of each gene, presenting the variants that cause functional changes, and
discussing the implications for prescriptions in clinical practice.

Keywords: pharmacogenetics; psychotropic; antidepressant; antipsychotics; prescription assistance;
cytochrome

1. Introduction

The prescription of antidepressants (ADs) and antipsychotics (APs) is currently unsat-
isfactory, often resulting in limited efficacy and an increased risk of side effects. For major
depressive disorder (MDD), only 33% of patients achieve remission after their first AD
treatment, and this number rises to 67% after trying four different treatments [1]. A study
involving 1432 patients on various APs found that 74% had discontinued their medication
within 18 months, primarily due to inefficacy or adverse reactions [2].

Beyond the lack of efficacy, potential side effects are also an important issue. Common
side effects of ADs include dizziness, nausea, cardiotoxicity, anticholinergic effects, sexual
dysfunction, fatigue, and in some cases, weight gain [3]. It is estimated that over 25% of
patients on ADs experience these side effects [4]. AP’s adverse events have been widely
studied due to their significant impact on patients’ physical health and observance. The
main side effects include metabolic syndrome, hyperprolactinemia, QT prolongation, and
extrapyramidal symptoms [5].
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These adverse effects, coupled with the treatments’ limited efficacy, contribute to
a higher mortality rate among patients with severe mental disorders (SMD), such as
schizophrenia, other psychotic disorders, bipolar disorder, and moderate to severe de-
pression. Research indicates that SMD patients have a 10 to 20 years reduction in life
expectancy compared to the general population [6]. Most deaths among this demographic
are attributed to preventable physical illnesses, notably cardiovascular diseases, respiratory
diseases, and infections. These individuals are two to three times more likely to die from
cardiovascular diseases compared to the general population [6].

Given these statistics, there is a pressing need to refine the prescription methods for
ADs and APs. Currently, prescriptions are based on broad recommendations, allowing
physicians to choose from a range of molecules across different classes. To adjust dosages,
switch medications, or enhance treatment, physicians rely on their understanding of the
disease’s progression and the patient’s tolerance to side effects [7]. This approach often
results in a period of three to four weeks for ADs and four to six weeks for APs before the
efficacy of a drug can be assessed. If a treatment fails, the patient continues to suffer from
their illness’s symptoms and potential side effects during this evaluation period.

To improve prescription, current biomedical research is focusing on the development
of pharmacogenetic tools for personalized prescriptions [8]. Pharmacogenetics involves
considering an individual’s genetic makeup to determine how they metabolize medications.
This approach shifts from a one-size-fits-all prescription to a tailored one, where the
choice of drug and dosage is based on the patient’s identified genetic variants [9]. This
personalized approach accounts for individual variability in both treatment tolerance and
efficacy [10].

Earlier studies have delved into the clinical implications of pharmacogenetic tests
in managing depression. In 2023, a meta-analysis reviewed randomized controlled trials
(RCTs) that used pharmacogenetic tools to assist in prescribing ADs for MDD patients [11].
The analysis revealed that patients whose treatment was guided by pharmacogenetics had
a higher remission rate compared to those receiving standard care (OR, 8w 1.58 [1.31 to
1.92]; OR, 12w 1.81 [1.44 to 2.26]). A more recent RCT by “Veterans Affairs” compared
AD prescriptions guided by pharmacogenetic tests to standard care. Conducted on 1944
military personnel with MDD, this study found that those guided by pharmacogenetics had
a higher 24-week remission rate (OR, 1.28 [95% CI, 1.05 to 1.57]; p = 0.02) [12]. Additionally,
pharmacogenetics has been shown to reduce treatment side effects [13,14], with a more
pronounced impact on side effect reduction than on treatment efficacy.

Studies on antipsychotics are less numerous, but a recent review examines the link be-
tween pharmacogenetic variants and outcomes of antipsychotics in patients with schizophre-
nia spectrum disorders (SSD) [15]. From 2010 to 2022, 29 meta-analyses from 298 studies
were analyzed, covering 69 pharmacogenetic variants across 39 genes. Significant effects
were observed in pharmacogenetic variants related to antipsychotic response, weight gain,
metabolic syndrome, prolactin levels, and other side effects. When analyzing both clinical
and preclinical data, in vivo and in vitro studies of aripiprazole emerged with substantial
data on the influence of gene variability on its pharmacokinetics and pharmacodynamics,
and CYP2D6 metabolizer status is pivotal when administering aripiprazole, supported
by FDA’s and EMA’s summary of product characteristics and by DPWG guidelines [16].
Brexpiprazole and cariprazine also have specific pharmacogenetic recommendations, while
data on lumateperone and pimavanserin remain limited, and the same applies to other
antipsychotics. Finally, some genetic markers that may predict a patient’s likelihood of
experiencing side effects or achieving therapeutic benefits from specific antipsychotic drugs
have been identified [17]. These findings underscore the potential of pharmacogenetics to
tailor antipsychotic treatments to individual patients, potentially improving outcomes and
reducing adverse effects.

In summary, the current prescription methods for antidepressants and antipsychotics
present significant challenges in terms of efficacy and side effects, leading to suboptimal
patient outcomes. The alarming statistics surrounding the mortality rates of patients with
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severe mental disorders further emphasize the urgent need for improved prescription
strategies. Pharmacogenetics offers a promising avenue for personalized prescriptions,
with emerging evidence highlighting its potential in enhancing treatment outcomes and
minimizing adverse effects. As we delve deeper into the intricacies of this approach, the
following chapters will provide a comprehensive exploration of the theoretical princi-
ples underpinning cytochrome pharmacogenetics and a detailed overview of the genetic
prescribing guidelines for these critical medications.

2. Theoretical Principles of Cytochrome Pharmacogenetics

The pharmacokinetics of drugs, a cornerstone in understanding their therapeutic and
adverse effects, is underpinned by the process of drug elimination. This pivotal phase
operates through two primary pathways:

Direct Excretion: This pathway pertains to the unaltered excretion of drugs through
the renal or biliary systems. A quintessential example of this is the elimination of amino-
glycosides, which are excreted in their original form.

Biotransformation: Before excretion, many drugs undergo biotransformation reac-
tions. Specialized enzymes facilitate these reactions, which encompass oxidations and/or
conjugations, eventually leading to renal or biliary excretion.

Central to these oxidation reactions is a unique heme-containing protein enzyme,
cytochrome P450. Its nomenclature is derived from its distinctive property of binding and
absorbing carbon monoxide at a wavelength of 450 nanometers in the visible spectrum [18].

Genes encoding for P450 enzymes, and the enzymes themselves, are designated with
the root symbol CYP for the superfamily, followed by a number indicating the gene family,
a capital letter indicating the subfamily, and another numeral for the individual gene. The
convention is to italicize the name when referring to the gene.

In adults, the metabolism of a plethora of drugs involves three predominant cy-
tochrome families: CYP 1, 2, and 3. These families further branch into subgroups, including
CYP1A, CYP2A, CYP2B, CYP2C, CYP2D, CYP2E, and CYP3A, with each playing a distinct
role in drug metabolism [19].

Of particular interest are cytochromes CYP2B6, CYP2D6, CYP3A4, and CYP2C19,
which exhibit a wide array of genetic variants [20]. These genetic variations significantly
influence the metabolism of antidepressant and antipsychotic medications. Intriguingly,
most individuals harbor two gene copies responsible for cytochromes CYP2D6, CYP2C19,
CYP2B6, and CYP3A4—one allele inherited from the maternal lineage and the other from
the paternal lineage. The topic of cytochrome alleles is notably complex, and there are
dedicated databases, such as The Human Cytochrome P450 Allele Nomenclature Database
of the PharmVar Consortium (https://www.pharmvar.org/, accessed on 20 October 2023),
that provide extensive information on this subject.

2.1. From the Genotype to the Phenotype of CYP2D6

The CYP2D6 enzyme showcases a remarkable genetic diversity, boasting over
150 known variants, significantly more than other cytochromes. However, only a handful
of these variants exhibit significant allelic frequency. Specifically, for CYP2D6, 20 alleles
(ranging from *1 to *12, and including *14, *15, *17, *29, *35, *39, *40, *41) account for over
90% of the variants. This distribution varies based on population origins, with the exception
of the Sub-Saharan African population, where this panel represents only 77%. Notably, the
*149 allele has a 15% allelic frequency in this population, but its activity remains unde-
fined [21].

To compute metabolization activity, it is imperative to understand the activity of both
alleles, with their cumulative activity representing the overall metabolization activity. The
activity value for each CYP2D6 allele is readily accessible on the PharmGKB website [21].

The activity score is derived by summing up the activity values of each allele. For
instance:

• Activity score for CYP2D6 (*1/*2) = 1 + 1 = 2

https://www.pharmvar.org/
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• Activity score for CYP2D6 (*4/*4) = 0 + 0 = 0
• Activity score for CYP2D6 (*3/*9) = 0 + 0.25 = 0.25

Using this activity score, one can assign a phenotype to individuals (Table 1) and dif-
ferent CYP2D6 phenotypes and their percentages in the European population can be listed
(Table 2). Phenotypic expressions, reflecting activity scores, were recently re-evaluated
during a consensus conference between the two primary scholarly societies overseeing
international recommendations: the CPIC (Clinical Pharmacogenetics Implementation
Consortium) and the DPWG (Dutch Pharmacogenetics Working Group) [21–23]. These
phenotypic differences manifest as variations in the rate at which treatments are metabo-
lized by the body. Generally, the faster the rate, the lesser the efficacy (drug eliminated too
quickly), and the slower the rate, the higher the risk of side effects (drug accumulation in
the bloodstream), especially for treatments requiring cytochromes for transformation into a
less active or inactive metabolite.

Table 1. Activity values for a panel of CYP2D6 variants as per PharmGKB [21,22].

Activity Score Variants Allele Type

1 *1, *2, *35, *39 Normal

0.5 *14, *17, *29 Reduced Activity

0.25 *10, *9, *41 Significantly Reduced Activity

0 *3, *4, *5, *6, *7, *8, *11, *12, *15, *40 No Activity

Table 2. Different CYP2D6 phenotypes and their percentages in the European population, adapted
from the 2020 consensus conference between CPIC and DPWG [21,23].

Activity Score Phenotype Genotype Example of Diplotype Phenotype Frequency *

>2.25 UM Duplications of functional alleles
*1/*1 × N,
*1/*2 × N,
*2/*2 × N

2%

1.25 to 2.25 NM

Two alleles of normal activity
+One of normal activity
+One of diminished activity,
OR a duplication of normal alleles with an allele of
very diminished activity.

*1/*10,
*1/*41,
*1/*9,
*1/*1,
*1/*2,
*2 × 2/*10,
*4/*10

49%

0.25 to 1 IM

Two alleles of diminished activity
+Two of very diminished activity
+One of normal activity
+One of no activity,
OR
One of diminished activity
+One of no activity
OR
One of very diminished activity
+One of no activity
OR
One of diminished activity
+One of very diminished activity.

*4/*41,
*10/*10,
*41/*41,
*10/*41,
*41/*41,
*1/*5

38%

0 PM An individual carrying only non-functional alleles

*3/*4,
*4/*4,
*5/*5,
*5/*6

7%

* In the European population; there are 4% of indeterminate phenotypes in the European population. UM:
ultra-rapid metabolizer; NM: normal metabolizer; IM: intermediate metabolizer; PM: poor metabolizer.

Conventionally, the different phenotypes are:

• Ultra-rapid metabolizer (UM)→ Increased metabolism speed;
• Normal metabolizer (NM)→ Standard metabolism speed;
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• Intermediate metabolizer (IM)→ Reduced metabolism speed;
• Poor metabolizer (PM)→ Slow metabolism speed.

Ultra-rapid metabolizers refer to individuals possessing multiple gene copies encoding
for CYP2D6. Instead of the typical two alleles, they might express three or even four alleles.
For instance, an individual with a diplotype *1 × 2/*14 has an activity score of:

*1 + *1 + *14 = 1 + 1 + 0.5 = 2.5 (indicating an ultra-rapid profile).

2.2. From the Genotype to the Phenotype of CYP2C19

The CYP2C19 enzyme, in contrast to CYP2D6, presents a more limited genetic diversity,
with currently identified variants numbering around thirty. The alleles *1, *2, *3, *9, and *17
account for over 90% of these variants, with their distribution varying based on population
origins [24].

Given the reduced activity variations among CYP2C19 variants, there are no numerical
activity values assigned to each allele of CYP2C19. Instead, the PharmGKB website provides
a qualitative definition of activity (Table 3).

Table 3. Variant activity for CYP2C19, adapted from PharmGKB [24].

Variants Allele Type

*17 Increased activity

*1 Normal activity

*9 Reduced activity

*2, *3 No activity

Based on this qualitative definition, the CPIC has defined phenotypes (Table 4) accord-
ing to the diplotype [25]:

• Ultra-rapid metabolizer (UM)→ Highly increased rate of metabolism;
• Rapid metabolizer (RM)→ Increased rate of metabolism;
• Normal metabolizer (NM)→ Normal metabolization rate;
• Intermediate metabolizer (IM)→ Reduced rate of metabolism;
• Poor metabolizer (PM)→ Slow metabolizing rate.

Table 4. Different CYP2C19 phenotypes and their percentages in the European population, adapted
from the CPIC guidelines [25].

Phenotype Genotype Example of Diplotype Phenotype Frequency *

UM Two increased activity alleles *17/*17 5%

RM One allele of normal activity
+One allele of increased activity *1/*17 27%

NM Two alleles of normal activity *1/*1 40%

IM One normal function allele
+One no function allele

*1/*2,
*1/*3,
*2/*17

19%

PM One increased function allele
+One no function allele

*2/*2,
*2/*3,
*3/*3

2%

* In the European population; there are 7% of indeterminate phenotypes in the European population. UM: ultra-rapid
metabolizer; RM: rapid metabolizer; NM: normal metabolizer; IM: intermediate metabolizer; PM: poor metabolizer.

The CPIC has recently introduced nuanced phenotypic definitions to better categorize
individuals based on their CYP2C19 genetic makeup. Two new classifications have been
highlighted:
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Likely intermediate metabolizer: This category encompasses individuals who carry
one decreased-function allele and one normal-function allele (*1/*9), or one increased-
function allele (*9/*17), or two decreased-function alleles (*9/*9).

Likely poor metabolizer: This classification pertains to individuals who possess one
decreased-function allele and one no-function allele (*2/*9).

Despite these refined definitions, the therapeutic recommendations for these newly
introduced phenotypes remain consistent with those for the previously established “inter-
mediate metabolizer” and “poor metabolizer” categories. Given this overlap in therapeutic
guidance, we have opted to streamline our approach by not differentiating between these
categories in our recommendations.

2.3. From the Genotype to the Phenotype of CYP2B6

The CYP2B6 enzyme, similar to CYP2C19, presents relatively limited genetic diversity.
Currently, there are just over 30 identified variants for this enzyme [26]. The alleles *1, *2,
*4, *5, *6, *7, *9, *17, and *18 collectively account for more than 95% of these variants. Their
distribution, as with other cytochromes, varies based on population origins. However, an
exception is observed in the Sub-Saharan African population, where this panel represents
only 83% of the population. Similar to those of CYP2C19, CYP2B6 variants exhibit fewer
activity variations. As a result, there are no numerical activity values assigned to each
allele of CYP2B6. Instead, the PharmGKB website provides a qualitative definition of
activity (Table 5) and different CYP2B6 phenotypes and their percentages in the European
population are provided (Table 6)

Table 5. Variant activity for CYP2B6, adapted from PharmGKB [26].

Variants Allele Type

*4 Increased activity

*1, *2, *5, *17 Normal activity

*6, *7, *9 Reduced activity

*18 No activity

Table 6. Different CYP2B6 phenotypes and their percentages in the European population, adapted
from the CPIC guidelines [25].

Phenotype Genotype Example of Diplotype Phenotype Frequency *

UM Two increased activity alleles *4/*4 0%

RM One allele of normal activity
+One allele of increased activity *1/*4 7%

NM Two alleles of normal activity *1/*1 43%

IM

One normal function allele
+one decreased function allele
OR
One normal function allele
+One no function allele
OR
One increased function allele
+one decreased function allele
OR
One increased function allele
+One no function allele

*1/*6,
*1/*18,
*4/*6,
*4//18

39%
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Table 6. Cont.

Phenotype Genotype Example of Diplotype Phenotype Frequency *

PM

Two decreased function alleles
OR
One decreased function allele
+One no function allele
OR
Two no function alleles

*6/*6,
*18/*18,
*6/*18

8%

* In the European population; there are 3% of indeterminate phenotypes in the European population. UM: ultra-rapid
metabolizer; RM: rapid metabolizer; NM: normal metabolizer; IM: intermediate metabolizer; PM: poor metabolizer.

Based on this qualitative definition, the CPIC has defined phenotypes (Table 6) accord-
ing to the diplotype [25]:

• Ultra-rapid metabolizer (UM)→ Highly increased rate of metabolism;
• Rapid metabolizer (RM)→ Increased rate of metabolism;
• Normal metabolizer (NM)→ Normal metabolizing rate;
• Intermediate metabolizer (IM)→ Reduced rate of metabolism;
• Poor metabolizer (PM)→ Slow metabolizing rate.

2.4. From the Genotype to the Phenotype of CYP2B6

CYP3A4 is distinct from other cytochromes in terms of its genetic variations. Remark-
ably, allele *1 dominates the genetic landscape, representing over 90% of the variants across
all populations. Furthermore, CYP3A4 does not exhibit any alleles leading to increased ac-
tivity or gene duplication. However, it is worth noting the presence of the *22 allele, which
results in reduced cytochrome activity. This allele has an allelic frequency of 5% in the Euro-
pean population [20], implying that 5% of this population exhibits diminished metabolism,
different CYP3A4 phenotypes are provided (Table 7). The DPWG has delineated three
phenotypes based on the diplotype [27]:

• Normal metabolizer (NM)→ Standard metabolism speed;
• Intermediate metabolizer (IM)→ Reduced metabolism speed;
• Poor metabolizer (PM)→ Slow metabolism speed.

Table 7. Different CYP3A4 phenotypes, adapted from the DPWG guidelines [27].

Phenotype Genotype Example of Diplotype

NM Two alleles of normal activity
*1A/*1A,
*1B/*1B,
*1A/*1B,

IM

One allele with normal activity
OR
One allele with increased activity
+One allele with no activity

*1A/*22

PM Two alleles with no activity *22/*22

3. An Overview of Genetic Prescribing Guidelines for Antidepressants
and Antipsychotics

There are two primary sources for drug prescription recommendations that are based
on pharmacogenetics: the Clinical Pharmacogenetics Implementation Consortium (CPIC)
(https://cpicpgx.org/ (accessed on 31 July 2023), an international consortium [28], and
the Dutch Pharmacogenetics Working Group (DPWG) (https://www.knmp.nl/dossiers/
farmacogenetica (accessed on 31 July 2023) [29]. Interestingly, these entities can sometimes
offer differing guidelines for the same drug. Several studies have documented the dis-
crepancies between the two groups [30–32]. In Canada, the Canadian Pharmacogenomics
Network for Drug Safety (CPNDS) has also issued recommendations [32].

https://cpicpgx.org/
https://www.knmp.nl/dossiers/farmacogenetica
https://www.knmp.nl/dossiers/farmacogenetica
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The disparities in recommendations stem from differing methodologies. The tech-
niques for grading the level of scientific evidence and the timeliness of the recommendations
vary [31]. For instance, the two groups do not update their guidelines in the same year.
However, as highlighted in a recent publication, harmonization efforts are underway to
establish a consensus between the two entities. This consensus aims to define a unified
method for translating the CYP2D6 genotype to a phenotype [23].

The major regulators, the European Medicines Agency (EMA) in Europe and the Food
and Drug Administration (FDA) in the USA, have not issued any specific recommendations.
However, the FDA has provided a table listing some specific pharmacogenetic associa-
tions [33], indicating groups of patients likely to exhibit altered drug metabolism due to
specific genetic variants or inferred phenotypes. However, inclusion in this table does not
equate to an FDA endorsement of mandatory pharmacogenetic testing before prescription,
unless part of a companion diagnostic. The FDA emphasizes that patient genetics is but
one factor affecting the drug response and lacks comprehensive information for safe drug
utilization. The FDA itself recognizes that these are not official recommendations, which
is why we have not included them in the results, but have summarized them in Table 8,
where we have incorporated the FDA’s Table of Pharmacogenetic Associations, to provide
a more detailed insight into these recognized gene–drug interactions.

Table 8. FDA’s Table of Pharmacogenetic Associations for Antidepressants and Antipsychotics.

Drug Gene Affected Subgroups+ Description of Gene–Drug Interaction

Pharmacogenetic Associations for which the Data Support Therapeutic Management Recommendations

Aripiprazole CYP2D6 Poor metabolizers
Results in higher systemic concentrations and higher

adverse reaction risk. Dosage adjustment is recommended.
Refer to FDA labelling for specific dosing recommendations.

Atomoxetine CYP2D6 Poor metabolizers

Results in higher systemic concentrations and higher
adverse reaction risk. Adjust titration interval and increase

dosage if tolerated. Refer to FDA labelling for specific
dosing recommendations.

Brexpiprazole CYP2D6 Poor metabolizers
Results in higher systemic concentrations. Dosage

adjustment is recommended. Refer to FDA labelling for
specific dosing recommendations.

Citalopram CYP2C19 Poor metabolizers
Results in higher systemic concentrations and adverse

reaction risk (QT prolongation). The maximum
recommended dose is 20 mg.

Clozapine CYP2D6 Poor metabolizers Results in higher systemic concentrations. Dosage
reductions may be necessary.

Venlafaxine CYP2D6 Poor metabolizers Alters systemic parent drug and metabolite concentrations.
Consider dosage reductions.

Vortioxetine CYP2D6 Poor metabolizers Results in higher systemic concentrations. The maximum
recommended dose is 10 mg.

Pharmacogenetic Associations for which the Data Demonstrate a Potential Impact on Pharmacokinetic Properties Only

Amitriptyline CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

Amoxapine CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

Clomipramine CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

Desipramine CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.
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Table 8. Cont.

Drug Gene Affected Subgroups+ Description of Gene–Drug Interaction

Doxepin CYP2C19 Intermediate or poor
metabolizers Results in higher systemic concentrations.

Doxepin CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

Escitalopram CYP2C19 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

Fluvoxamine CYP2D6 Poor metabolizers Results in higher systemic concentrations. Use with caution.

Imipramine CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

Nortriptyline CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

Paroxetine CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

Risperidone CYP2D6 Poor metabolizers Alters systemic parent drug and metabolite concentrations.

Trimipramine CYP2D6 Ultra-rapid, intermediate,
or poor metabolizers May alter systemic concentrations.

The recommendations and publications from both groups (CPIC, DPWG) are indexed
and compiled on the PharmGKB website (https://www.pharmgkb.org/ (accessed on 1
August 2023) [22]. This platform aggregates and disseminates knowledge about the impact
of human genetic variations on drug response and tolerance. It also provides an evidence
level for each variant–drug interaction. This evidence level is a one-dimensional scale with
six possible tiers (refer to Figure 1).
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Figure 1. PhamGKB Clinical Annotation Level of Evidence.

The evidence level is determined based on a score constructed through a five-step pro-
cess, considering the phenotypic category, p-value, cohort size, effect size, and weight [34].
Only evidence levels 1a and 1b come with clinical guidelines that allow the utilization of
the interaction information as a prescription aid.

By entering terms like “antidepressant” and “antipsychotics” into the PharmGKB
search engine, users are provided with links to prescription guides issued by the CPIC
and DPWG [25,27,35,36], as well as all the studied and known genes influencing drug
distribution or metabolism.

3.1. Antidepressants

When “antidepressant” is entered into PharmGKB, there are 353 clinical annotations
and only 50 prescribing information pieces [37]. The only variants with a 1a evidence
level are those coding for CYP2B6, CYP2D6, and CYP2C19. All other variants, such as

https://www.pharmgkb.org/
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those of ABCB1, have an evidence level ≤ 2, which does not allow expert societies to issue
prescription recommendations.

3.2. Antipsychotics

Entering “antipsychotics” into PharmGKB yields 305 clinical annotations and merely
24 prescribing information pieces [38]. The only variants with a 1a evidence level are those
coding for CYP2D6 and CYP3A4. All other variants, like those of CYP1A2 or ABCB1 or even
DRD2, have an evidence level ≤ 2, preventing expert societies from issuing prescription
recommendations.

Thus, the most robust findings pertain to genetic variants, or genotypes, of the hepatic
cytochrome P450 (CYP) enzymes, such as CYP2B6, CYP2D6, CYP3A4, and CYP2C19. These
determine the activity, or phenotypes, of enzymes metabolizing the drug and, consequently,
the pharmacokinetics of numerous antidepressants and antipsychotics.

4. Summary of Prescription Recommendations Issued by the CPIC for
Antidepressants and by DPWG for Antipsychotics
4.1. Prescription Recommendations for Antidepressants

Table 9 lists the antidepressants that have prescription recommendations and an
evidence grade of 1, along with the associated cytochromes. Tricyclic antidepressants have
been grouped together as they do not have differentiated prescriptions and share the same
recommendations [35]. For clarity and consistency, we have chosen to rely solely on the
CPIC recommendations for antidepressants [25,35]. However, it is worth noting that the
DPWG also issues recommendations for antidepressants [36].

Table 9. CPIC guidelines for antidepressants with grade 1 PharmGKB recommendations and associ-
ated cytochromes variants.

CYP450

Antidepressant CYP2C19 CYP2D6 CYP2B6

CITALOPRAM •
ESCITALOPRAM •

SERTRALINE • •
FLUVOXAMINE •

PAROXETINE •
TRICYCLIQUES • •
VENLAFAXINE •
VORTIOXETINE •

Based on these recommendations, a double-entry table was constructed, allowing
for prescription advice for all possible phenotype combinations involving CYP2C19 and
CYP2D6. An initial version of this table was published in 2022 [39], and Table 9 is an up-
dated version, benefiting from the 2023 update by the CPIC [25]. Moreover, it appears that
recommendations can vary depending on the phenotypic profile. For instance, venlafaxine
has dose adjustment recommendations for an individual with a poor metabolizer profile
for CYP2D6 but has no recommendation for ultra-rapid or intermediate slow phenotypes.
For this, we created a gray category “treatment without recommendation”, in which we
added commonly used molecules with evidence levels ≤ 2, such as fluoxetine, duloxetine,
and mirtazapine.

This revised version adapts existing guidelines and introduces new recommendations,
such as those for venlafaxine and vortioxetine. As a reminder, in a 2022 article [39], we
based our suggestions for venlafaxine on the DPWG (Dutch Pharmacogenetics Working
Group) recommendations [36] and did not issue any recommendations for vortioxetine.
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For better coherence, this new version of the table (Table 10) relies solely on CPIC recom-
mendations [25,35]. Another significant update pertains to the addition of guidelines for
CYP2B6, which is a crucial metabolic pathway for sertraline [25]. Thus, genotyping this
cytochrome provides additional information for sertraline. When the genotype information
for CYP2D6 is available, Table 11 shows specific recommendations for sertraline. Table 10
provides information on the color code for Tables 11 and 12.

Table 10. Color code and level of evidence for Tables 11 and 12.

Color Code Level of Evidence Recommendation
1A Drugs that can be used at the standard dosage.

No recommendation due to a lack of evidence.
1A Drugs that can be used with caution.
1A drug not recommended for use.

Table 11. Antidepressant prescription recommendations based on CYP2D6 and CYP2C19 phenotypes.

CYP 2C19\2D6 2D6 UM 2D6 NM 2D6 IM 2D6 PM

2C19 UM

SERTRALINE

FLUVOXAMINE,
PAROXETINE

VENLAFAXINE,
VORTIOXETINE,

SERTRALINE

FLUVOXAMINE,
VORTIOXETINE,

SERTRALINE
SERTRALINE

MIRTAZAPINE, DULOXETINE,
FLUOXETINE,

FLUVOXAMINE,
VENLAFAXINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE,

VENLAFAXINE

MIRTAZAPINE, DULOXETINE,
FLUOXETINE

/ / PAROXETINE (1) PAROXETINE (2), VORTIOXETINE (2),
FLUVOXAMINE (3)

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE
CITALOPRAM,

ESCITALOPRAM
PAROXETINE,

VORTIOXETINE

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE
CITALOPRAM,

ESCITALOPRAM

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE
CITALOPRAM,

ESCITALOPRAM

AMITRIPTYLINE, CLOMIPRAMINE,
TRIMIPRAMINE CITALOPRAM,

ESCITALOPRAM, VENLAFAXINE

2C19 RM

SERTRALINE

FLUVOXAMINE,
PAROXETINE

VENLAFAXINE,
VORTIOXETINE,

SERTRALINE

FLUVOXAMINE,
VORTIOXETINE,

SERTRALINE
SERTRALINE

MIRTAZAPINE, DULOXETINE,
FLUOXETINE,

FLUVOXAMINE,
VENLAFAXINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE,

VENLAFAXINE

MIRTAZAPINE, DULOXETINE,
FLUOXETINE

CITALOPRAM/ESCITALOPRAM
(A)

CITALOPRAM/ESCITALOPRAM
(A)

PAROXETINE (1), CITALO-
PRAM/ESCITALOPRAM

(A)

CITALOPRAM/ESCITALOPRAM (A),
PAROXETINE (2), VORTIOXETINE (2),

FLUVOXAMINE (3)
AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE

PAROXETINE,
VORTIOXETINE

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE

AMITRIPTYLINE, CLOMIPRAMINE,
TRIMIPRAMINE, VENLAFAXINE

2C19 NM

CITALOPRAM,
ESCITALOPRAM,

SERTRALINE

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE
CITALOPRAM,

ESCITALOPRAM,
SERTRALINE

FLUVOXAMINE,
PAROXETINE

VENLAFAXINE,
VORTIOXETINE

CITALOPRAM,
ESCITALOPRAM,

SERTRALINE
FLUVOXAMINE,

PAROXETINE,
VORTIOXETINE

CITALOPRAM, ESCITALOPRAM,
SERTRALINE

MIRTAZAPINE, DULOXETINE,
FLUOXETINE,

FLUVOXAMINE,
VENLAFAXINE

MIRTAZAPIN,
DULOXETINE,
FLUOXETINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE,

VENLAFAXINE

MIRTAZAPINE, DULOXETINE,
FLUOXETINE

/ /

PAROXETINE (1),
AMITRIPTY-

LINE/CLOMIPRAMINE/TRIMIPRAMINE
(4)

PAROXETINE (2), VORTIOXETINE (2),
FLUVOXAMINE (3)
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Table 11. Cont.

CYP 2C19\2D6 2D6 UM 2D6 NM 2D6 IM 2D6 PM

2C19 NM

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE

PAROXETINE,
VORTIOXETINE

/ / AMITRIPTYLINE, CLOMIPRAMINE,
TRIMIPRAMINE VENLAFAXINE,

2C19 IM

/

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE
FLUVOXAMINE,

PAROXETINE
VENLAFAXINE,
VORTIOXETINE

FLUVOXAMINE,
VORTIOXETINE /

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE,

FLUVOXAMINE,
VENLAFAXINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE,

VENLAFAXINE

MIRTAZAPINE, DULOXETINE,
FLUOXETINE

CITALOPRAM/ESCITALOPRAM
(5), SERTRALINE (5)

CITALOPRAM/
ESCITALOPRAM (5),

SERTRALINE (5)

PAROXETINE (1),
AMITRIPTY-

LINE/CLOMIPRAMINE/
TRIMIPRAMINE (4) CITALO-
PRAM/ESCITALOPRAM (5),

SERTRALINE (5)

PAROXETINE (2), VORTIOXETINE (2),
FLUVOXAMINE (3),

CITALOPRAM/ESCITALOPRAM (5),
SERTRALINE (5)

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE,

PAROXETINE,
VORTIOXETINE

/ / AMITRIPTYLINE, CLOMIPRAMINE,
TRIMIPRAMINE VENLAFAXINE,

2C19 PM

/

FLUVOXAMINE,
PAROXETINE

VENLAFAXINE,
VORTIOXETINE

FLUVOXAMINE,
VORTIOXETINE /

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE,

FLUVOXAMINE,
VENLAFAXINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE

MIRTAZAPINE,
DULOXETINE,
FLUOXETINE,

VENLAFAXINE

MIRTAZAPINE, DULOXETINE,
FLUOXETINE

SERTRALINE (6) SERTRALINE (6) PAROXETINE (1),
SERTRALINE (6)

PAROXETINE (2), VORTIOXETINE (2),
FLUVOXAMINE (3), SERTRALINE (6)

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE
CITALOPRAM,

ESCITALOPRAM
PAROXETINE,

VORTIOXETINE

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE
CITALOPRAM,

ESCITALOPRAM

AMITRIPTYLINE,
CLOMIPRAMINE,
TRIMIPRAMINE
CITALOPRAM,

ESCITALOPRAM

AMITRIPTYLINE, CLOMIPRAMINE,
TRIMIPRAMINE CITALOPRAM,

ESCITALOPRAM, VENLAFAXINE,

(A) Initiate therapy with recommended starting dose. If the patient does not respond to the recommended
maintenance dosing, consider titrating to a higher maintenance dose or switching to an alternative antidepressant
not predominantly metabolized by CYP2C19. (1) Consider a lower starting dose and slower titration. (2) Consider
a 50% reduction in recommended starting dose, slower titration, and 50% lower maintenance dose. (3) Consider
a 25–50% lower starting dose and slower titration or consider an alternative not predominantly metabolized
by CYP2D6. (4) Initiate treatment with a 25% reduced dosage and use therapeutic drug monitoring to guide
dose adjustments. (5) Initiate treatment with recommended starting dose, consider slower titration and lower
maintenance dose. (6) Consider lower starting dose, slower titration and 50% reduction of maintenance dose or
consider an alternative not predominantly metabolized by CYP2C19.

Table 12. Prescribing recommendations for sertraline according to CYP2B6 and CYP2C19 phenotypes.

CYP 2C19\2B6 2B6 UM 2B6 NM 2B6 IM 2B6 PM
2C19 UM/RM (a)

2C19 NM (1) (2)
2C19 IM (1) (1) (3)
2C19 PM (3) (3) (3)

(a) Initiate therapy with recommended starting dose. If the patient does not respond to the recommended
maintenance dosing, consider titrating to a higher maintenance dose or switching to an alternative antidepressant
not predominantly metabolized by CYP2C19 or CYP2B6. (1) Consider a lower starting dose, slower titration, and
lower maintenance dose. (2) Consider a lower starting dose, slower titration, and 25% reduction of standard dose
maintenance or consider an alternative not predominantly metabolized by CYP2B6. (3) Consider a lower starting
dose, slower titration, and 50% reduction of maintenance dose.
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4.2. Prescription Recommendations for Antipsychotics

Table 13 lists the antipsychotics that benefit from prescription recommendations and
have a grade 1 level of evidence, along with the associated cytochromes. As a reminder,
for the sake of consistency, we have chosen to rely on the DPWG recommendations for
antipsychotics, since the CPIC had not yet issued guidelines in 2023 [27].

Table 13. DPWG guidelines for antidepressants with grade 1 PharmGKB recommendations and
associated cytochromes variants.

CYP450

Antipsychotic CYP2D6 CYP3A4

Aripiprazole •
Brexpiprazole •

Pimozide •
Quetiapine •
Risperidone •
Haloperidol •

Zuclopenthixol •

Based on these recommendations, a double-entry table was constructed, allowing for
the provision of prescription advice for all possible phenotype combinations involving
CYP3A4 and CYP2D6. Moreover, it appears that recommendations can vary depending on
the phenotypic profile. For instance, zuclopenthixol has dose adjustment recommendations
for an individual with a slow or intermediate metabolizer profile for CYP2D6 but does
not have a recommendation in the case of an ultra-rapid phenotype. For this reason,
we created a grey category labelled “treatments without recommendations,” where we
added commonly used molecules with a level of evidence ≤2, such as olanzapine and
clozapine. It is crucial to note that these two molecules are primarily metabolized by
CYP1A2, which currently does not have prescription recommendations. Indeed, most
studies on the consequences between the genotypic and phenotypic groups of CYP1A2 did
not find a significant pharmacokinetic effect for clozapine and olanzapine. Furthermore,
most studies on clinical consequences showed no difference in adverse effects or responses
between the different genotypic and phenotypic groups [27]. Table 14 shows the color code
and level of evidence for Table 15 that provide antipsychotic prescription recommendations
based on CYP2D6 and CYP3A4 phenotypes.

Table 14. Color code and level of evidence for Table 15.

Color Code Level of Evidence Recommendation
1A Molecules that can be used at the standard dosage.
1A Molecules that can be used with caution.
≤2 No recommendation due to a lack of evidence.
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Table 15. Antipsychotic prescription recommendations based on CYP2D6 and CYP3A4 phenotypes.

CYP 3A4\2D6 2D6 UM 2D6 NM 2D6 IM 2D6 PM

3A4 NM

ARIPIPRAZOLE,
BREXIPIPRAZOLE,

PIMOZIDE,
QUETIAPINE

ARIPIPRAZOLE,
BREXIPIPRAZOLE,

HALOPERIDOL,
PIMOZIDE,

QUETIAPINE,
ZUCLOPENTHIXOL,

RISPERIDONE

ARIPIPRAZOLE,
BREXIPIPRAZOLE,

HALOPERIDOL,
QUETIAPINE,
RISPERIDONE

QUETIAPINE

HALOPERIDOL (a),
ZUCLOPENTHIXOL (b),

RISPERIDONE (c)
/ PIMOZIDE (4),

ZUCLOPENTHIXOL (7)

ARIPIPRAZOLE (1),
BREXIPIPRAZOLE (2),

HALOPERIDOL (3),
PIMOZIDE (5),

ZUCLOPENTHIXOL (8),
RISPERIDONE (9)

OLANZAPINE,
CLOZAPINE

OLANZAPINE,
CLOZAPINE

OLANZAPINE,
CLOZAPINE

OLANZAPINE,
CLOZAPINE

3A4 IM

ARIPIPRAZOLE,
BREXIPIPRAZOLE,

PIMOZIDE,
QUETIAPINE

ARIPIPRAZOLE,
BREXIPIPRAZOLE,

HALOPERIDOL,
PIMOZIDE,

QUETIAPINE,
ZUCLOPENTHIXOL,

RISPERIDONE

ARIPIPRAZOLE,
BREXIPIPRAZOLE,

HALOPERIDOL,
QUETIAPINE,
RISPERIDONE

QUETIAPINE

HALOPERIDOL (a),
ZUCLOPENTHIXOL (b),

RISPERIDONE (c)
/ PIMOZIDE (4),

ZUCLOPENTHIXOL (7)

ARIPIPRAZOLE (1),
BREXIPIPRAZOLE (2),

HALOPERIDOL (3),
PIMOZIDE (5),

ZUCLOPENTHIXOL (8),
RISPERIDONE (9)

OLANZAPINE,
CLOZAPINE

OLANZAPINE,
CLOZAPINE

OLANZAPINE,
CLOZAPINE

OLANZAPINE,
CLOZAPINE

3A4 PM

ARIPIPRAZOLE
BREXIPIPRAZOLE,

PIMOZIDE

ARIPIPRAZOLE,
BREXIPIPRAZOLE,

HALOPERIDOL,
PIMOZIDE,

ZUCLOPENTHIXOL,
RISPERIDONE

ARIPIPRAZOLE,
BREXIPIPRAZOLE,

HALOPERIDOL,
RISPERIDONE

/

HALOPERIDOL (a),
ZUCLOPENTHIXOL (b),

RISPERIDONE (c),
QUETIAPINE (6)

QUETIAPINE (6)
QUETIAPINE (6),

PIMOZIDE (4),
ZUCLOPENTHIXOL (7)

ARIPIPRAZOLE (1),
BREXIPIPRAZOLE (2),

HALOPERIDOL (3),
PIMOZIDE (5),

QUETIAPINE (6),
ZUCLOPENTHIXOL (8),

RISPERIDONE (9)
OLANZAPINE,

CLOZAPINE
OLANZAPINE,

CLOZAPINE
OLANZAPINE,

CLOZAPINE
OLANZAPINE,

CLOZAPINE
(a) Use 1.5 time the normal dose or consider an alternative (flupentixol, penfluridol, quetiapine, olanzapine, or
clozapine). (b) No dose recommendation. If ineffective, try to increase the dose, do not exceed 1.5 times the
normal dose. (c) Choose an alternative or titrate the dose according to the maximum dose for the active metabolite
(paliperidone): if >15 years old (and >51 kg), consider 12 mg/day, if <15 years old (or <51 kg), consider 6 mg/day:
IM 75 mg every 2 weeks. (1) Administer no more than 10 mg/day or 300 mg/month (68–75% of the normal
maximum dose of aripiprazole). (2) Use half the normal dose. (3) Use 60% of the normal dose. (4) Use no more
than 80% of the normal maximum dose: if >12 years old, up to 16 mg/day, if <12 years old, consider 0.08 mg/kg
per day up to a maximum of 3 mg/day. (5) Use no more than 50% of the normal maximum dose: if >12 years
old, up to 10 mg/day, if <12 years old, consider 0.05 mg/kg per day up to a maximum of 2 mg/day. (6) For
major depressive disorders, consider an alternative, and for other indications, use 30% of the normal dose. (7) Use
75% of the normal dose. (8) Use 50% of the normal dose. (9) Use 67% of the normal dose. If problematic central
nervous system side effects occur despite a reduced dose, then reduce the dose further to 50% of the normal dose.
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5. Discussion

This guide sheds light on recommendations that are backed by a level 1a or 1b evidence
base. Currently, only genes encoding for CYP2B6, CYP2D6, CYP2C19, and CYP3A4
meet this criterion. While recommendations by CPIC or DPWG are based on phenotypic
expressions, it’s crucial to recognize that these expressions can be influenced by both
extrinsic and intrinsic factors. These encompass co-medications, specific foods, certain
lifestyle habits, inflammatory diseases, and cancers. When any of these factors interfere
with a cytochrome, it can lead to a change in its phenotypic expression, a phenomenon
termed “phenoconversion” [40,41].

This highlights the challenge posed by the static results provided by pharmacogenetics,
which often overlook the interactions between the individual and their environment.
Moreover, drug–drug interactions play a pivotal role, especially when introducing new
chemical entities to patients. A study revealed that drug-related deaths constituted 7% of
all deaths in hospital settings, emphasizing the significance of drug–drug interactions in
this context [42]. To elucidate this further, two examples are given:

Example 1: Consider a schizophrenic patient solely treated with risperidone at 6 mg,
who develops a severe depressive episode. Following a clinical decision, genotyping of
CYP2D6 and CYP2C19 is conducted. The results indicate that the patient is a normal
metabolizer (NM) for CYP2D6 and an ultra-rapid metabolizer for CYP2C19. Referring to
the recommendation table, the decision is made to add paroxetine at 20 mg to the treatment
without altering risperidone dosage, as indicated in Table 11. However, it is noteworthy
that paroxetine is a potent inhibitor of CYP2D6 (https://drug-interactions.medicine.iu.
edu/MainTable.aspx (accessed on 22 August 2023). This induces a phenoconversion of
CYP2D6, transitioning the patient from a normal metabolizer to a slow metabolizer [43].
Consequently, the recommendations for prescribing risperidone change. According to the
DPWG, for this phenotypic profile, a 50% reduction in the maintenance dose is suggested.
Thus, by adding paroxetine, this patient faces a significant risk of risperidone overdose,
increasing the likelihood of side effects. An alternative could have been prescribing ven-
lafaxine, which aligns with the patient’s profile and does not cause phenoconversion, or
introducing paroxetine while adjusting the risperidone dose downwards. The initial exam-
ple showcased how a drug can inhibit a cytochrome’s activity. However, it is also feasible
to induce this activity.

Example 2: Consider a schizophrenic patient who smokes and is treated with clozapine.
Smoking strongly induces the activity of CYP1A2, thereby reducing the blood concentration
of clozapine. Hence, to achieve the desired therapeutic effects, this smoking patient requires
a higher clozapine dose than if he did not smoke. The primary concern arises when the
patient decides to quit smoking. Without the inductive effect of tobacco, the clozapine
concentration will suddenly surge, exposing the patient to a high risk of adverse effects.
Reductions of clozapine dose by 30% are recommended when a patient on clozapine ceases
smoking, as per a meta-analysis that studied the impact of smoking behavior on clozapine
blood levels [44]. Such reductions should be guided by a clozapine steady-state trough
levels and a thorough clinical risk–benefit evaluation.

Phenoconversion is not a trivial phenomenon. Research from Australia involving
2900 patients revealed significant increases due to phenoconversion. For CYP2D6, the rate
of slow metabolizers surged from 5.4% to 24.7%, while for CYP2C19, it escalated from
2.7% to 17%. These figures underscore the importance of considering phenoconversion
when prescribing and monitoring drug treatments [45]. Phenoconversion emphasizes the
need to transition from a static recommendation to a dynamic one, incorporating patient
environment changes that might interfere with drug metabolism [40].

The future of pharmacogenetics lies in dynamic reports based on two information
sources and two algorithms to process this information:

The first information source is genetics: What are the patient’s alleles? The first
algorithm translates this genetic information into a phenotype, following international
recommendations.

https://drug-interactions.medicine.iu.edu/MainTable.aspx
https://drug-interactions.medicine.iu.edu/MainTable.aspx
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The second information source pertains to the patient’s living environment: co-medication,
lifestyle, inflammatory disease, cancer. The second algorithm translates this information into an
adjusted phenotype, i.e., phenoconversion.

This adjusted phenotype will subsequently assist in prescription.
Algorithms designed to consider a patient’s living environment are under development.

One of them, focused on CYP2D6 and accounting only for medications, is already accessi-
ble and usable [43] (https://precisionmedicine.ufhealth.org/phenoconversion-calculator/,
accessed on 19 October 2023). Phenoconversion rules are also being formulated. Future
consensus conferences are anticipated in this regard, as it is vital to define an inhibitor and
inducer effect level for each treatment and determine its implication on phenoconversion.
Currently, three distinct methods exist to calculate CYP2D6 phenoconversion. Cicali et al.
summarize all these emerging issues in their article [43].

While awaiting these consensus conferences and the availability of mature and com-
prehensive tools, it is incumbent upon the practitioner possessing a cytochrome pharma-
cogenetics report to be aware of the phenoconversion issue. They must cross-reference
their inquiry with the list of substrates, inhibitors, and inducers of the concerned cy-
tochrome. This information is readily available online, with three slightly divergent primary
sources [46–48].

6. Conclusions

This guide underscores the pharmacogenetic recommendations applicable in daily
clinical practice to assist in the prescription of antidepressants and antipsychotics. Its
aim is to support practitioners equipped with genetic reports for their patients in making
treatment choices, considering the patients’ phenotypic expressions. In the discussion
section, we emphasized the limitations of these static reports and highlighted the need to
transition towards dynamic reports that account for phenoconversion. As mentioned in the
introduction, clinical trials [11] assessing the efficacy of these static reports already demon-
strate an improvement in patient management in groups guided by pharmacogenetics.
Adopting dynamic reports, more aligned with the patient’s metabolic reality, could further
enhance these outcomes. Moreover, the number of genes for which recommendations exist
is still limited, but this is poised to expand with research advancements. In the future, we
might consider integrating other metabolization stages, like the ABC1 gene, which encodes
for Pgp. This protein plays a role in drug absorption at the intestinal level and in the ability
of psychotropics to cross the blood–brain barrier [49].

Pharmacogenetics is a rapidly evolving field. Hence, it is vital to consider this swift
progression when contemplating conducting meta-analyses based on studies that do not
employ the same gene panel or the same recommendations. Future clinical trials, incor-
porating the concept of phenoconversion, should be subject to separate meta-analyses to
re-assess the relevance of pharmacogenetics. Currently, the use of cytochrome pharmaco-
genetics as a prescription aid tool for psychotropics is not a common practice and is not
reimbursed by Social Security in France. It remains primarily confined to a few specialized
centers. One reason for this could be the lack of health economics studies, although some
have already underscored the potential benefits not only for patient, but also for society
at large [50]. It is therefore imperative that future clinical trials systematically incorpo-
rate health economics analyses. This could pave the way for a broader adoption of this
approach, allowing a larger patient population to benefit from it, even outside a research
context.
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