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Abstract: Silencing genes using small interfering (si) RNA is a promising strategy for treating
cancer. However, the curative effect of siRNA is severely constrained by low serum stability and cell
membrane permeability. Therefore, improving the delivery efficiency of siRNA for cancer treatment is
a research hotspot. Recently, mesoporous silica nanoparticles (MSNs) have emerged as bright delivery
vehicles for nucleic acid drugs. A comprehensive understanding of the design of MSN-based vectors
is crucial for the application of siRNA in cancer therapy. We discuss several surface-functionalized
MSNs’ advancements as effective siRNA delivery vehicles in this paper. The advantages of using
MSNs for siRNA loading regarding considerations of different shapes, various options for surface
functionalization, and customizable pore sizes are highlighted. We discuss the recent investigations
into strategies that efficiently improve cellular uptake, facilitate endosomal escape, and promote cargo
dissociation from the MSNs for enhanced intracellular siRNA delivery. Also, particular attention
was paid to the exciting progress made by combining RNAi with other therapies to improve cancer
therapeutic outcomes.

Keywords: siRNA delivery; mesoporous silica nanoparticles; RNAi therapeutics; cancer treatment;
gene therapy

1. Introduction

The Food and Drug Administration (FDA) approved the first RNA interference (RNAi)
therapeutic in 2018, Patisiran [1], a lipid nanoparticle-coated small interfering (si)RNA,
thus translating fundamental research into clinical practice. This milestone event signified
a breakthrough in the combinatorial use of RNAi and nanotechnology to treat diseases,
ushering in a new era of gene therapy. RNA therapies aim to alter gene expression or
generate therapeutic proteins, making them appropriate for pathologies with known genetic
targets, including infectious diseases, immunological diseases, and cancer [2,3]. Due to its
high malignancy, low survival rate, poor prognosis, and ease of recurrence, cancer poses a
significant risk to human society. Currently, surgery is the mainstay for cancer treatment
in clinical settings, with chemotherapy as a backup. However, the therapeutic efficacy is
insufficient because of the toxic side effects of chemotherapeutic agents, poor selectivity,
and drug resistance. In addition to chemotherapeutic drugs, therapeutic RNAs such as
miRNAs and siRNAs can be delivered by appropriate carriers into target cells to interact
with specific genes and up/downregulate their expression [4–6]. RNA therapies have
consequently emerged as a promising therapeutic option for cancer.

siRNAs, with a length of 20 to 25 nucleotides, can bind to specific complementary
mRNA pairs, thus triggering mRNA degradation through the RNA-induced silencing com-
plex (RISC) to exert therapeutic effects. Currently, RNAi therapies can be classified based
on the distinct targets of selected therapeutic genes, including reversing the drug resistance
of tumor cells, promoting apoptosis, inhibiting angiogenesis, or acting synergistically with
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immunotherapy. Among them, reversing the drug resistance of tumor cells by altering the
expression of resistance proteins through gene silencing is a frequent therapeutic strategy.
The gene regulation of apoptosis-related proteins is an attainable antitumor approach
to enhance drug-induced apoptosis and improve cytotoxicity. Moreover, overexpression
of the Vascular Endothelial Growth Factor (VEGF) in tumor tissues drives angiogenesis
and blocks the VEGF signaling pathway, which can be diminished by RNAi to prevent
tumor growth [7,8]. siRNA-based gene therapy for the knocking down or downregulating
immune checkpoint proteins (e.g., PD-L1 and STAT3), “don’t eat me” signal (e.g., CD47),
and anti-inflammatory cytokines (e.g., TGF-β) induces antitumor immune responses and
significantly inhibits tumor growth in vivo [9–12]. However, delivering RNA remains a
challenge due to short blood circulation, poor cellular uptake, susceptibility to nuclease-
mediated degradation, and low transfection rates [13,14]. As a result, there is an urgent
need to develop a safe and effective delivery method for siRNA loads.

The delivery of siRNAs is commonly performed through viral and nonviral vec-
tors [2]. Due to their great effectiveness, viral vectors—primarily lentivirus, adenovirus,
and adeno-associated viruses (AAVs)—are frequently used for transfection [15]. Neverthe-
less, immunogenetic responses, inaccurate viral-genome integration, the inability to redose,
and the high cost of vector production pose hurdles to their application [16–19]. On the
other hand, nonviral vectors have their own advantages such as enhanced permeability
and retention (EPR) effects, better pharmacokinetic and pharmacodynamic properties, re-
duced hepatic accumulation, and lower toxicity [20,21]. The most common nonviral vectors
include polymeric nanoparticles, micelles, liposomes, inorganic nanoparticles, etc. [22–24].
Polymeric nanoparticles are processed with good biocompatibility and biodegradability
but easily combine with negatively charged nonspecific cells or proteins. Micelles show the
advantages of a long retention time in the body and good tissue penetration, but there are
shortcomings in drug leakage and burst release.

Mesoporous silica nanoparticles (MSNs) are being considered as a promising delivery
vehicle for a variety of biomedical applications, owing to their high biocompatibility [25,26].
MSNs have a distinctive structure and large specific surface area, which allows for efficient
drug delivery. Additionally, the chemical functional groups present on their surfaces enable
the introduction of other functionalities. In 2016, researchers investigated the usage of
MSNs to codeliver anticancer drugs and siRNA for the treatment of tumors and discussed
the potential of MSNs and combination therapy to enhance chemotherapy results [27].

We searched for articles published in the last ten years that discuss the use of MSNs
as delivery vehicles for cancer treatment. Our review includes an introduction to the
characteristics of MSNs and how they are efficiently loaded with siRNA for precise delivery
to tumor cells. We also provide an overview of cancer-treatment strategies that utilize
siRNA-loaded MSNs. In conclusion, we discuss the potential uses of siRNA-loaded MSNs
in tumor diagnosis and therapy.

2. MSNs as a Vector of siRNAs
2.1. The Characteristics of MSNs

MSNs have a unique structure that includes a silica matrix with organized pores,
providing a large surface area, enormous pore volume, and variably sized pores with a
narrow distribution [28] that allow them to hold large quantities of drugs. The physical
features, including the morphology, size, and aspect ratio, can impact cellular phagocytosis
and other biological processes [29,30]. Owing to the simplicity of their synthesis and
well-established silanol chemistry, MSNs can be subjected to a wide range of physical and
chemical alterations to tailor them for specific purposes [31,32]. On the one hand, different
shapes and aspect ratios of MSNs can be designed to acquire a larger surface area and
higher loading efficiency. On the other hand, MSNs can be designed to load various drugs,
both hydrophobic and hydrophilic, efficiently, via modifying the pore surface chemistry and
sizes. Biocompatibility is a crucial element in determining the compatibility of materials
with the human body. Silicon or silicon substances are commonly found in food and
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ingested by humans, and MSNs are believed to have good biocompatibility in vivo, based
on FDA reports [33–35]. Overall, MSNs offer great potential for drug delivery due to their
unique structure and versatility in design [36].

2.2. Therapeutic siRNA Payloads

Since MSNs are one of the prominent nanocarriers for cancer therapy, the synthesis
strategies of MSNs have been comprehensively reviewed [37]. To modify the surface of
MSNs, both noncovalent and covalent modifications can be performed due to their unique
physicochemical and physiological properties. Cationic molecules are usually employed to
coat the surface of MSNs through noncovalent strategies to enable electrostatic interactions
with nucleic acids when preparing siRNA-loaded MSNs [38]. The siRNAs are deposited
onto MSNs via electrostatic and hydrophobic interactions and are quickly released into
cells upon delivery. Polyamine polymers and cationic dendrimers are commonly used
for siRNA delivery. In addition, a class of polymer materials, cationic peptides, can
also serve as nucleotide carriers if appropriately functionalized [39,40]. Moreover, in
contrast to other nanomaterials, MSNs’ distinctive pore structure enables the loading of
various cargoes inside the pores [41]. MSNs with vast pores (>10 nm) have also been
developed by some research groups to broaden the application of MSNs in nucleic acid
delivery [42,43]. Additionally, the complexes’ siRNA/MSN ratio is typically calculated and
tuned by evaluating the complexation and delivery efficiency of MSNs towards siRNA [44].
Two main strategies are currently employed for siRNA delivery using MSNs, namely the
surface loading of siRNAs onto MSNs and containing siRNAs inside the pores of MSNs
(Figure 1).
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Figure 1. Mechanisms of small interfering (si)-RNA-loaded mesoporous silica nanoparticles (MSNs)
after modification.

2.2.1. Loading siRNAs onto the Surface of MSNs

Nucleic acids, bearing negative charges from phosphate groups, cannot directly bind
to bare MSNs with silicon hydroxy groups. Typically, positively charged polymers like
poly-l-lysine (PLL) or polyethyleneimine (PEI) are added to MSNs to facilitate the bind-
ing of negatively charged nucleic acids via electrostatic interactions [45,46]. Researchers
have coated MSNs with varying molecular weights of PEI to create a positively charged
surface and then loaded siRNAs. In vitro, investigations suggest that MSNs can efficiently
shield siRNA from degradation and induce gene silencing without altering the siRNA
structure. A simple yet efficient delivery method based on PEI-coated MSNs was presented
to evaluate the release kinetics of siGLO [44]. The noncovalent attachment of PEI to MSNs
both facilitates the cellular uptake of MSNPs and creates suitable conditions for siRNA
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conjugation. The maintenance of good cellular uptake and a good transfection efficiency
was possible while lowering or even removing cationic cytotoxicity by experimenting with
various polymer molecular weights. For a more-effective siRNA delivery, Rafatosadat and
coworkers simultaneously treated MSN with Zn2+ and PEI. The MSNs were synthesized
by a traditional hydrothermal method and modified with zinc ions [47]. Owing to the
vast surface charge density of Zn2+ and the cationic nature, PEI-Zn-MSN showed a higher
zeta potential and consequently a better siRNA adsorption capacity than PEI-MSN alone.
Additionally, grafting a layer of polyethylene glycol (PEG) onto the surface of PEI-Zn-MSN
can enhance its release profile without causing cytotoxicity.

The cationic polymer coated on the surface of MSNs by electrostatic binding comes off
after i.v. administration due to competing interactions with charged macromolecules in
the bodily fluid [46]. MSNs with surface silanol groups are not optimal for direct siRNA
capture. Modification with amines, carboxylic acids, and thiols is possible. Covalent
bonding is an alternate way of anchoring the polycationic polymer. Second-generation (G2)
polyamidoamines (PAMAMs) can covalently attach to the surface of isocyanatopropyl-
functionalized MSNs (ICP-MSNs) via a urea linkage [48]. Grafting poly (dimethylaminoethyl
methacrylate) PDMAEMA onto the surface of aminated MSN not only allowed it to highly
react with nucleic acid and protect siRNA from enzymatic destruction but also had a vast
electrostatic affinity with the cell membrane, increasing MSN cell absorption [49]. Nonpoly-
meric coatings such as triethoxysilane (APTES) provided positively charged amine groups.
Because it contains both silane and amino groups that can pair with the silanol groups of
MSNs, APTES is commonly employed for the amine functionalization of MSNs [50,51].
Covalent grafting using APTES via glutaraldehyde as the linker functionalized MSNs with
chitosan [52]. An amine-rich surface coating was created by using APTES and grafted
chitosan, permitting the electrostatic loading of both MTX and siRNAs. In vitro studies
on cell uptake, cytotoxicity, and STAT3 expression in MCF7 cells reveal suppressed cel-
lular division and proliferation as well as lowered STAT3 expression at the mRNA and
protein levels.

2.2.2. Containing siRNAs Inside the Pores of MSNs

Compared to other nanomaterials, MSNs have a unique pore structure that enables
the loading of various cargos inside the pores [53]. The mesoporous structure of MSNs
to encapsulate nucleic acid can significantly improve their loading rate; their surface can
be further altered, which not only prevents nucleases from destroying nucleic acid but
also significantly reduces particle aggregation owing to bridging. However, because of
RNA’s vast sizes, the loading of nucleic acids into narrow pores is typically impossible. To
broaden the applicability of siRNA delivery, several scholars have created MSNs with enor-
mous pores capable of encapsulating siRNAs, which improved the loading and delivery
efficiency [54–61] (Table 1).

Na et al. compared the application of two types of MSNs, MSN2 (pore radius = 1.05 nm)
and MSN23 (pore radius = 11.5 nm) as siRNA delivery systems [51]. Electrostatic attraction
is anticipated to be one of the primary forces guiding the loading of siRNA onto MSNs as a
result of the opposite charges of siRNA and amine-functionalized MSNs. The zeta potential
is a characteristic of MSNs that screens the electrostatic potential in the dispersing medium
and is inversely proportional to the MSNs’ effective surface charge density. MSN2 pores
have a higher potential than the outside surface has, and the relative difference between
the two potentials gets larger as the pore size gets smaller. Although the field towards the
pores is strong, the siRNA molecules (the gyration radius ≈ 2.0 nm) are larger than the
pore size, preventing siRNA from entering the pores. The other way around, for MSN23
with a pore size larger than siRNA, siRNA can enter the pores without restriction and stick
to the pore walls. Even if some siRNA is deposited on the MSNs’ outside, the majority of
siRNA is likely to be deposited inside the pores. Owing to the difference in pore size, the
release of siRNA from the two types of MSNs also starts at different points.
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The utilization of siRNA transfection technology based on MSN-based devices has
provided a new approach for the development of multifunctional delivery vectors with
relative hypotoxicity and excellent efficiency. Therapeutic siRNAs can be loaded onto
the surface of MSNs or inside their pores. However, it is challenging to determine which
strategy between these two can provide better results for widespread applications. On
the one hand, a number of antitumor applications can considerably benefit from the
use of MSNs’ wide pores. For instance, employing molecules to encase and cover other
functional molecules inside the pores can result in tumor-specific “on-demand” release [62].
Additionally, the successful construction of intelligent siRNA delivery systems has been
accomplished through biomimetic strategies, enabling the targeted delivery of siRNA
within tumor cells [63]. However, the complexity and uncertainty of the loading process
limit the widespread application of this transfection method, while the intramesoporous
loading of siRNA requires excellent preservation of the loaded siRNAs. On the other
hand, the surface deposition of siRNA on MSNs is a straightforward, controllable, and
measurable process, allowing for better control of the loading and development of various
intelligent delivery strategies. This is of great interest for the purpose of siRNA-based
synergistic therapy and the diagnosis of tumors.

Table 1. Particle and pore sizes in systems for delivery of siRNA using MSNs.

Drug-Delivery
System Size (nm) Pore Size

(nm)
Pore Volume

(mL/g)
BET Surface
Area (m2/g) siRNA Type RNA Capacity Ref.

MSN23 200 23 0.97 395 siGFP 1.25 pmol/ug [36]

Protocells 165 23–30 / 850
Cyclin-
specific
siRNA

~6 × 104 siRNA
per particle

[46]

M-MSNs 50 3.6 / / siVEGF and
siEGFP ~27.5 µg/mg [47]

ssCP-MSNs 100–150 10 0.63 159 siPLK1 / [48]
PEI-Fe-LPMSN 200 4.6 0.33 217 siPLK1 / [49]

MSNPs-PLL 250 4 / / TGFβR-1
siRNA 3.13 wt% [51]

MP-1 150 4.7 0.75 670 STAT3
siRNA

380 µg per mg
MSN [52]

CMSN-A 80–110 21 1.42 481 FAN-siRNA 148 µg
siRNA/mg [53]

MNC@LPMSA 291 12 1.13 411 siPLK1 and
siEGFP 2 wt% [64]

3. Strategy to Achieve Efficient siRNA Delivery

MSN-mediated siRNA delivery offers distinct advantages. The unique modification on
the surface of MSNs allows the complete delivery system to improve target cell recognition
and enhance cellular uptake. MSNs with siRNA are endocytosed into the cytoplasm via
endocytosis and escape from the endosome. Then, they precisely release siRNA under
conditions of the internal and external activation of tumor cells, boosting the efficacy of
siRNA-targeted therapy for cancers (Figure 2). We concentrate on the distinct mechanisms
of MSNs as gene carriers as well as strategies for enhancing siRNA delivery effectiveness.



Pharmaceutics 2023, 15, 2483 6 of 24

Pharmaceutics 2023, 15, x FOR PEER REVIEW 6 of 25 
 

 

 

Figure 2. MSN-based active-targeting delivery and responsive release of siRNA for cancer RNA 

interference (RNAi) therapeutics. 

3.1. Enhancement of Cellular Uptake of MSNs 

MSNs have gained widespread interest as vectors and are promising candidates for 

packaging siRNAs. However, achieving the controllability and accuracy of delivery re-

mains a challenge. In the field of targeted delivery, biomarkers that are highly or specifi-

cally expressed at the target site are usually used as targets, and targeted molecules, anti-

bodies, and polypeptides are used to achieve specific binding to these targets. According 

to this idea of receptor-specific binding, siRNA-loaded MSNs can directly attach to the 

appropriate receptor, which is highly expressed on the surface of tumor cells, when mod-

ified by ligands including the targeting peptide, antibody, aptamer, small molecule, and 

polysaccharide [65–67]. Subsequently, MSNs enter the cell through receptor–ligand-me-

diated endocytosis. 

3.1.1. MSNs Decorated with Peptides 

In the MSNs’ delivery system, adding targeting peptides on their surface as ligands 

to selectively bind them to the corresponding receptors on the cell surface is a vital ap-

proach to achieving targeted transportation. Targeting peptides are a collection of linear 

or cyclic amino acids that bind to particular attaching sites on transmembrane receptors 

to specifically anchor vectors to target cells. These are generally composed of less than 50 

amino acids. Compared to proteins, peptides with smaller molecular weights have several 

advantages, like more stability, resistance to environmental conditions, and ease of syn-

thesis and conjugation. Currently, three main methods for screening tumor-targeting pep-

tides are practiced: phage display technology, chemically synthesized peptide library 

screening, and computer simulation design based on tumor-specific targets. 

Peptide-conjugated MSNs are popular for siRNA-targeting delivery. Some repre-

sentative peptides are utilized for targeting tumor areas with an emphasis on cancers that 

are now of great interest and those that might benefit from more-effective siRNA delivery 

(e.g., breast cancer, primary liver cancer, and lung cancer). At present, the Arg-Gly-Asp 

(RGD) family of peptides is widely used, and the binding site is integrin αvβ3, which is 

overexpressed in tumor cells and tumor neovascular endothelial cells [68,69]. Thus, RGD-

conjugated MSNs show enhanced selective endocytosis in cancer cells and angiogenic en-

dothelial cells. The MSNs’ surface was covered with functionalized PEG chains (DSPE-

Figure 2. MSN-based active-targeting delivery and responsive release of siRNA for cancer RNA
interference (RNAi) therapeutics.

3.1. Enhancement of Cellular Uptake of MSNs

MSNs have gained widespread interest as vectors and are promising candidates
for packaging siRNAs. However, achieving the controllability and accuracy of delivery
remains a challenge. In the field of targeted delivery, biomarkers that are highly or specif-
ically expressed at the target site are usually used as targets, and targeted molecules,
antibodies, and polypeptides are used to achieve specific binding to these targets. Accord-
ing to this idea of receptor-specific binding, siRNA-loaded MSNs can directly attach to
the appropriate receptor, which is highly expressed on the surface of tumor cells, when
modified by ligands including the targeting peptide, antibody, aptamer, small molecule,
and polysaccharide [65–67]. Subsequently, MSNs enter the cell through receptor–ligand-
mediated endocytosis.

3.1.1. MSNs Decorated with Peptides

In the MSNs’ delivery system, adding targeting peptides on their surface as ligands
to selectively bind them to the corresponding receptors on the cell surface is a vital ap-
proach to achieving targeted transportation. Targeting peptides are a collection of linear
or cyclic amino acids that bind to particular attaching sites on transmembrane receptors
to specifically anchor vectors to target cells. These are generally composed of less than
50 amino acids. Compared to proteins, peptides with smaller molecular weights have
several advantages, like more stability, resistance to environmental conditions, and ease of
synthesis and conjugation. Currently, three main methods for screening tumor-targeting
peptides are practiced: phage display technology, chemically synthesized peptide library
screening, and computer simulation design based on tumor-specific targets.

Peptide-conjugated MSNs are popular for siRNA-targeting delivery. Some represen-
tative peptides are utilized for targeting tumor areas with an emphasis on cancers that
are now of great interest and those that might benefit from more-effective siRNA delivery
(e.g., breast cancer, primary liver cancer, and lung cancer). At present, the Arg-Gly-Asp
(RGD) family of peptides is widely used, and the binding site is integrin αvβ3, which
is overexpressed in tumor cells and tumor neovascular endothelial cells [68,69]. Thus,
RGD-conjugated MSNs show enhanced selective endocytosis in cancer cells and angiogenic
endothelial cells. The MSNs’ surface was covered with functionalized PEG chains (DSPE-
PEG-DBCO) followed by the conjugation of iRGD by using copper-free click chemistry
between azido-terminated iRGD and cyclooctyne-containing DSPE-PEG-DBCO. Wang and
coworkers constructed an iRGD-modified lipid-coated MSN (iMSN) and utilized it for the
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codelivery of siRNA (siPlk1) and miRNA (miR-200c) [70]. N-terminal azido-functionalized
iRGD peptide (N3-Ac (CRGDKGPDC)) was synthesized to enable deep tumor penetration.
siPlk1 silenced the cell cycle mitotic regulator, Polo-like kinase 1 (PLK1), inhibited cell
proliferation, and induced apoptosis. Despite having many advantages compared to other
ligands, peptides face challenges in targeted drug delivery due to their high conformational
flexibility (which may bring about limited receptor selectivity) and instability [71]. These
limitations have become critical issues in the field, and any breakthrough in overcom-
ing these drawbacks is urgently needed for the development of peptide-based targeted
delivery vectors.

3.1.2. MSNs Decorated with Antibodies

The antibody is a glycoprotein with a high affinity to receptors and a unique specificity
to recognize receptors, which has been widely evaluated as a targeting ligand. Modified
antibodies can accomplish the targeted delivery of drugs by antibody–ligand or antibody–
receptor binding. The basic principle of actively targeted drugs constructed based on the
antibody–receptor binding strategy is that certain receptors are highly expressed in tumor
tissues. After binding to the surface membrane receptors of tumor cells, antibodies cause
receptor-mediated endocytosis [72,73]. Therefore, the delivery system constructed by using
RNA drugs coupled with corresponding antibodies can target tumor tissues.

A transmembrane glycoprotein with a coding molecular weight of 185 kDa, hu-
man epidermal growth factor receptor 2 (HER2), includes an intracellular tyrosine ki-
nase catalytic region, a transmembrane region, and an extracellular ligand-binding re-
gion [74]. When the receptor anchors to the ligand, the ligand activates the receptor’s
dimerization to form a dimer. HER2 undergoes dimerization and endocytosis to bind
the receptor and ligand to cells. Trastuzumab (Herceptin) is a well-recognized human-
ized anti-HER2 monoclonal antibody that directly targets the extracellular ligand-binding
region of HER2 and has been successfully applied to cure early-stage and metastatic
HER2-overexpressing breast cancer [75]. Ngamcherdtrakul and coworkers prepared a new
generation of siRNA delivery constructs in vivo with a 50 nm MSN core encapsulated with
crosslinked polyethyleneimine-polyethylene glycol copolymers, carrying targets for human
epidermal growth siRNA of the HER2 oncogene, coupled to trastuzumab [76]. A surface
modification of 50 nm MSNPs was performed by using crosslinked PEI and PEG. The
crosslinked PEI efficiently loaded negatively charged siRNA and facilitated intracellular
escape through the proton sponge effect, while PEG protected siRNA from enzymatic
degradation and nanoparticle uptake. A thiol-maleimide process was used to bind the
antibody trastuzumab (T) to MSNP PEI-PEG. This construct was created to lengthen the
siRNA in blood’s half-life, enhance the uptake of tumor-specific cells, and improve the
siRNA knockdown effectiveness. They further designed a novel nanodelivery vehicle
(T-siHER2-NP(DTX)) for the treatment of HER2+ breast cancer, namely a combination of
taxane and HER2-targeting antibodies [77]. At the same dose, the efficacy of the drug-free
counterpart (trastuzumab + docetaxel) was lower than that of T-siHER2-NP(DTX). Affinity
and size play important roles in antibody-based targeted delivery strategies. While the
tumor uptake of large molecules (full-length antibodies and antibody-conjugated nanopar-
ticles) is primarily influenced by the EPR effect, the high retention of small molecules
(single-chain antibodies) at the tumor site relies on their binding kinetics [78–80]. Another
important aspect to take into account when choosing solid-tumor-targeting antibodies
for therapeutic applications is antibody penetration, which is the uniform distribution of
antibodies throughout the tumor. A high affinity and internalization are two factors that
limit tumor penetration [81]. Wittrup’s group have documented that rapid internalization
rates and degradation metabolism impede antibody penetration [82].

3.1.3. MSNs Decorated with Aptamers

Aptamers are single-stranded DNA or RNA sequences that bind specifically to corre-
sponding targets by forming a specific conformation [83]. Aptamers are mainly synthesized
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by the exponential enrichment ligand system evolution technique [84]. Aptamers are
usually smaller in size, faster for synthesis, less costly, flexible, have low immunogenicity,
and can be altered chemically in a variety of ways [85,86]. Additionally, many aptamers
can internalize after anchoring to ligands on the cell surface, making them an effective
offsider for precise delivery. AS1411, with a high affinity for nucleolin, has been employed
to improve cells’ cancer-targeting ability [87]. A unique vehicle was created by Zhuang and
colleagues to deliver doxorubicin (DOX) and antimiR-21, an oncogenic antagomir, simulta-
neously inside cells. A thiol-containing organosilane, 3-mercaptopropyltrimethoxysilane
(MPTMS), was used to introduce -SH groups onto the surface of MSNs to obtain MSN-SH.
Subsequently, MSN-SH was coincubated with DOX to allow its loading into the porous
structure of MSN-SH. Finally, a thiol-functionalized oligonucleotide containing siTIE2
and an AS1411 aptamer was added to the solution and immobilized onto MSN-SH@Dox
through a disulfide exchange reaction to block the mesopores. The authors modified the
surface of MSNs with disulfide bonds to construct a suitable redox-responsive delivery
system aimed at facilitating the intracellular capture and controlled release of Dox and
siTIE2 for tumor cells. AS1411, through its interaction with nucleolin, undergoes a con-
formational change that allows for the release of multiple Dox molecules from MSNs,
functioning as a nanogatekeeper. Due to limited toxicological information regarding nu-
cleic acid aptamers, their potential toxicity and side effects and underlying mechanisms are
not fully understood. High concentrations of nucleic acids may lead to potentially toxic
reactions, including nonspecific tissue accumulation and nonspecific immune responses. In
the future, it is important to assess the biocompatibility and safety of MSNs binding with
aptamers for better clinical translation.

3.1.4. MSNs Decorated with Small Molecule

Small molecules, i.e., molecules with a low molecular weight (usually less than
1000 Da), have attracted research attention for cancer targeting owing to their straight-
forward structure and inexpensive cost. As a targeting ligand, small molecules bind
specifically to the receptors overexpressed in tumors and thus have been widely studied for
their application in tumor-targeted therapy. Among these, folic acid (FA) stands out as the
most up-and-coming targeting molecule due to its excellent affinity to the folate receptor.

Folate receptors (FRs), which are transmembrane glycoproteins linked by glyco-
sylphospholipid acyl alcohols with a molecular weight 38–40 kDa, exist on most tumor
cell surfaces and are rarely expressed in normal body cells [88]. FRs are highly expressed
in ovarian cancer, brain cancer, kidney cancer, lung cancer, colon cancer, nasopharyngeal
cancer, and other cancers [89]. FRs can transfer folate and folate drug complexes into tumor
cells by endocytosis and further release drugs for therapeutic effects. Targeted antitumor
drugs mediated by folate can improve the antitumor drug targeting and reduce the an-
titumor drug distribution in normal tissues, thereby attenuating adverse reactions [90].
Folate-modified MSNs show a selective enhancement of endocytosis in cancer cells to
achieve the therapeutic effects of RNAi [65]. In this study, an FA-modified MSN nanocarrier
was designed and synthesized. First, FA was covalently bound to the surface of MSNs via
an amide bond that was vulnerable to acidity. Subsequently, siVEGF was loaded into the
nanocarrier through electrostatic interactions. Furthermore, tumor-targeted MSNs encapsu-
lated with permeability glycoprotein (P-gp) siRNA and a polydopamine (PDA) outer layer
for FA decoration were designed [91]. Due to the modification of FA, the multifunctional
nanodrug-delivery system can actively target tumor cells and achieve the knockout of P-gp
in MCF-7/ADR cells.

3.1.5. MSNs Decorated with Polysaccharides

With a molecular weight of 5000–2 × 107 U, hyaluronic acid (HA) is a natural macro-
molecule acid mucopolysaccharide comprising N-acetylglucosamine and D-glucuronic
acid joined by glycosidic bonds [92]. Four HA receptors are distributed on the surface of the
cell membrane, namely the CD44 receptor, receptor-mediating HA motility 4 (RHAMM),
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receptor-mediating HA endocytosis (HARE), and lymphatic endothelial cell HA receptor
1 [93]. According to reports, the CD44 receptor exhibits a difference in expression between
normal and tumor cells and is also involved in tumor invasion and cancer cell metastasis.
CD44 receptor expression is low in normal tissues and requires activation while it is over-
expressed on the surface of several tumor cells and thus can be used as a biomarker for
targeting tumors [94]. Through the receptor–ligand interaction, the CD44 receptor precisely
binds to HA and its derivatives to achieve targeted delivery.

Ding et al. combined HA and the breast-tumor-cell-penetrating peptide (PEGA-pVEC)
as the targeting media in the cascade vector (rmSiO2@siRNA@DOX@HA@ peptide NPs,
HACT NPs) [95]. To target CD44 overexpressed on the surface of MDA-MB-231 breast
cancer cells, rmSiO2 was coated with HA, creating a protective shell. The PEGA pVEC
peptide, another target ligand for tumor vascular system recognition, is bound to the HA
shell by an amino oxime reaction. The assembly of negatively charged peptides was shown
by the significant drop in the zeta potential from −5.7 mV to −17.8 mV following the
coating of the outermost peptide layer. After an intravenous injection of DDS, NP first
accumulates in tumor blood vessels through the peptide’s active targeting recognition of
vascular markers and is selectively ingested by CD44-rich cancer cells. Shi and coworkers
successfully loaded and delivered an MTH1 inhibitor, TH287, and multidrug resistance
protein 1 (MDR1) siRNA with HA-modified MSNs (HA siTMSN) [96]. A cell uptake
assay showed that the uptake of rhodamine-labeled HA siTMSN in cancer cells was
significant, indicating that it could effectively deliver MDR1 siRNA in the intracellular
environment. This firmly establishes HA siTMSN’s dual function in inhibiting MDR1
activity and enhancing the effect of TH287 on tumor-cell killing. Nevertheless, a drawback
of using HA as a targeting ligand is that they are high-molecular-weight substances that are
rapidly cleared from circulation by liver cells. In an attempt to circumvent this disadvantage,
low-molecular-weight HA fragments have been used as targeting moieties. Unfortunately,
the affinity of low-molecular-weight HA fragments to the CD44 receptor is lower than that
of intact HA, thereby weakening the targeting ability [97].

3.2. Facilitation of Endosomal Escape of MSNs

When siRNA-containing MSNs are internalized by cells through endocytosis, they
are transported to late endosomes followed by lysosomes, where they are degraded [98].
Hence, endosomal escape is a prerequisite for siRNA-mediated knockdown to occur. In the
study of siRNA delivery systems, how to achieve endosomal escape and release siRNA
into the cytoplasm is a crucial factor to consider. The mechanism of endosomal escape
mostly includes the proton sponge effect, interaction with the endosomal membrane, and
photochemical internalization (Figure 3).

3.2.1. Proton Sponge Effect

According to the proton sponge hypothesis, endosomes inflate due to osmotic pressure
and rupture as a result of the buffering power of polycations, releasing their contents into
the cytoplasm [99]. Some peptide polymers, such as PEI or PAMAM, usually use the proton
sponge effect to achieve the effect of endosome escape [100]. These polymers contain a
large number of amino acids, mainly primary and secondary amines, to protonate the
endosome during acidification, so as to obtain the pH buffer capacity and inhibit the
decline in the environmental pH and enable cells to persist in pumping protons into the
endosome to maintain the required pH, which then causes the inward flow of chloride ions
and water molecules, leading to the increase in osmotic pressure in the endosome, which
then breaks, and the content is released. Parnian and coworkers designed an MSN-based
siRNA delivery system by using PEI on the pores’ outer surface and guanidinium ionic
liquid (GuIL) groups on the inner surface [101]. It has been demonstrated that PEI and
GuIL’s proton sponge effect encourages the endosomal escape of nanoparticles, which is
dependent on increased H+ concentrations in endosomes during hydrolysis.
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3.2.2. Photochemical Internalization

Photochemical internalization (PCI) is triggered by light to promote drug transport
from endosomes to the cytoplasm. The photosensitizer bound to the cytoplasmic mem-
brane enters the cell through the endocytosis pathway and then locates the membrane of
the endocytosis vesicles. Under light, the photosensitizer is activated, oxygen-free radi-
cals (ROS) are induced to generate oxygen, the membrane structure of the endosome is
destroyed, and drugs are released into the cytoplasm [102]. Zhang and coworkers designed
a photo-tearable tape-wrapped nanocapsule by using upconversion nanoparticles (UCNPs)
coated with a mesoporous silica layer for the loading of photosensitizer hypocrellin A and
siRNA against PLK1 [103]. The UCNPs emit blue emissions in response to exposure to 980
nm of NIR light, which activates HA and causes it to create ROS. ROS make it easier for
loaded cargos to escape from endosomes, which increases the efficacy of gene silencing
and reduces tumor development in vivo and in vitro.

3.3. Promotion of siRNA Dissociate from the MSNs

When delivering siRNA, the main challenges are dissociating siRNA from the carrier
to facilitate inclusion into RISC following cellular binding and exiting the endosomes via
receptor-mediated endocytosis. Despite continuing efforts to suppress off-target effects and
improve the gene-silencing efficiency, understanding the release of siRNA from vectors
still possesses vital importance [104].

3.3.1. Chemical Bond Breaking

Through sensitive groups (like acetal bonds, hydrazone bonds, and imine bonds)
by cleavage under different conditions, the carrier and the drug are separated, and the
release and uptake of the drug are accelerated. The disulfide bond possesses distinct
chemical properties [105]. It can be broken down into thiols when exposed to reducing
substances that contain sulfhydryl functional groups, such as glutathione (GSH). The
responsiveness of the bond to different concentrations of GSH varies significantly, allowing
for controlled release in the vector. Lu and coworkers described and designed a redox-
responsive MSN with enlarged pores (denoted as MSN-siRNA/CrPEI) by immobilizing
PEI as a cap for redox-responsive intracellular RNA delivery via intermediate linkers
of disulfide attached to the MSNs [106]. After MSNs were loaded with siRNAs in the
mesopores, a positively charged polymer PEI was utilized as a supramolecular cap on the
surface of MSNs via disulfide linkages induced by dithiobis(succinimidyl propionate) and
disulfide-bond crosslinked PEI to retain cargo within the MSNs. The closed capping PEI on
the MSN surface was swiftly removed after the siRNA-loaded MSNs were internalized by
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the tumor cell because the disulfide bond was broken in the presence of the GSH released
by the tumor cell. In the presence of dithiothreitol, a small reductive molecule used to
simulate the effect of GSH, a burst release of siRNA due to the cleavage of the disulfide
bond was observed. At a pH of 7.4, the cumulative drug release percentage reached up to
90%, whereas no siRNAs could be found within 120 h without dithiothreitol.

3.3.2. The Change in Solubility

Through the change in solubility of the dissociable groups (such as the amino and
carboxyl groups) on the polymer, the stability of the carrier system reduces while drug
release is promoted. A surface carboxylated MSN formed an in situ bond with a zeolite
imidazole framework-8 (ZIF-8) membrane with a thickness of several nanometers and
was used to block the pores of the MSN to efficiently load siRNAs for a pH-responsive
drug-delivery system [107,108]. The ZIF-8 membrane can effectively load Bcl-2 siRNA
via electrostatic interactions, alter the charge of MSN-COOH from negative to positive,
and shield siRNAs from nuclease degradation. At a pH of 6.0, siRNA-releasing profiles
show a fast siRNA release in the initial 3 h and remain unchanged for 8 h. In contrast, no
obvious release of siRNA is observed at a pH of 7.4 for 8 h. The quick reaction and elevated
release can be linked to the ZIF-8 film’s quick breakdown under acidic circumstances.
MSN-COOH@ZIF-8 NPs enable the rapid cellular uptake of siRNAs, and ultrathin ZIF-8
membranes can be broken down in acidic lysosomes, thereby triggering the intracellular
release of siRNAs, which significantly enhances the therapeutic effects of cancer cells
including MCF-7/ADR and SKOV-3/ADR cells.

4. siRNA-Loaded MSNs for Cancer Treatment

Research on siRNA in the field of antitumor gene therapy has been increasing, making
it a major focus in cancer treatment. By targeting specific genes and effectively inhibiting the
expression of disease-causing genes (such as oncogenes) and/or regulating the expression
of tumor-suppressor genes, it is possible to achieve the prevention and treatment of tumors.
siRNA provides an efficient means to silence specific genes, and its recognition of target
sequences is highly specific. By chemically synthesizing siRNA targeting different genes
and transfecting them into tumor cells, tumor signal transduction can be disrupted and
the relevant target genes can be modulated, thereby achieving the goal of blocking tumor
occurrence and development [14,109–111].

4.1. Prevention of Multiple-Drug Resistance

Cancers can frequently develop treatment resistance because of their highly heteroge-
neous character [112]. Chemotherapy has long been utilized as a first-line treatment for
numerous malignancies [113]. The development of tumor heterogeneity and treatment re-
sistance, however, reduces the efficacy of several routinely used cancer therapies. Changes
in drug influx/efflux, the augmentation of the DNA repair ability, transformations in drug
metabolism (to achieve detoxification), drug target mutation, and the activation of parallel
signaling pathways are all examples of MDR [110,114,115]. The combination of two drugs
that can block many survival pathways in tumor cells simultaneously is particularly useful
for tackling drug resistance and improving the antitumor ability [116,117]. By restoring
tumor-suppressor genes and introducing apoptotic genes, the combination of RNAi and
chemotherapy drugs can augment chemotherapy in several ways. The codelivery of siR-
NAs and anticancer drugs results in a synergistic impact; once the siRNA silences the
targeted gene, drug efflux pumps reduce, thus allowing drug diffusion into cells across cell
membranes [118–122] (Figure 4). Hence, the apoptotic process is accelerated, resulting in
enhanced chemotherapeutic effects.
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Figure 4. Loaded and tumor-targeted delivery of siRNAs via MSNs for overcoming drug resis-
tance. (A) Schematic representation of the synthesis of MSNP-PLR-PEG(OCH3) and overcoming
resistance through the BCl-2/BCl-xL pathway; (B) schematic illustration of the preparation process
and antagonistic drug-resistance strategies of siRNA-MSN@PVA NPs; (C) structural evolution of
MSNs from small pore-sized MSNs to large pore-sized MSNs, the hierarchical MSNs in present
work for gene/drug codelivery for MDR reversing, and the schematic illustration of the formation
mechanism of MSNs@MONs; (D) schematic of siRNA-MSNs nanoconstruct synthesis; (E) schematic
illustration of synthesis steps and MSNs functionalization to obtain NH2-MSN, NH2-MSN-siRNA,
and NH2-MSN-siRNA-chitosan functionalized with PEG-folate and PEG-TAT; (F) the preparation of
folic-acid-conjugated mesoporous silica nanoparticles loaded with myricetin and MRP-1 siRNA.

Resistance to antineoplastic drugs mostly comprises pump and nonpump drug resis-
tance. Pump resistance is caused by the ATP-binding cassette (ABC) transporters, such as
P-gp, MDR-related protein, and ABC subfamily G member 2 (ABCG2), which carry drugs
from cancer cells to the plasma membrane [123]. To overcome resistance to antineoplastic
drugs, a stimuli-responsive delivery system (HPMSN) with tumor-targeting capabilities to
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codeliver DOX and GCN5 siRNA (siGCN5) was developed [124]. This system efficiently
transported DOX and siGCN5 into drug-resistant cancer cells, and the siGCN5 released
later downregulated P-gp expression and suppressed the DOX efflux. The HPMSN jointly
delivered by DOX/siGCN5 effectively inhibited tumor growth by 77% and reduced DOX
systemic toxicity in the MDR breast tumor model (MCF7/ADR). In another study, through
loaded MSNs, antineoplastic drugs and anti-ABCG2 siRNAs were successfully delivered
to CD133+ cancer cells [125]. The downregulation of ABCG2 considerably improved the
efficacy of chemotherapeutic drugs in inducing the apoptosis of laryngeal cancer cells,
along with the efficacy of therapeutic agents in inducing apoptosis in mice models of
laryngeal cancer.

4.2. Induction of Cancer Apoptosis

In the development of tumors, certain genes such as oncogenes and tumor-suppressor
genes play a crucial role in controlling programmed cell death, also known as cellular
apoptosis. When these genes are not properly regulated, they can lead to uncontrolled
cell growth and prevent the normal apoptotic process, ultimately resulting in cellular
malignancy and unlimited proliferation [126–128]. As research on apoptosis deepens and
key apoptotic molecules are discovered, “promoting tumor cell apoptosis” has become an
important strategy in anticancer therapy [129,130] (Figure 5).
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Figure 5. Promotion of apoptosis in tumor cells by MSNs-loaded siRNAs. (A) Scheme of the
preparation process of Vorinostat and cFLIP siRNA-coloaded mesoporous silica nanoparticles
with pH-ultrasensitive valves (Vor/siR@MSN-PB-PEG) for suppression of cFLIP in cancer cells,
Vor/siR@MSN-PB-PEG-inhibited cFLIP expression, and induced apoptosis caspase pathways in
cancer cells; (B) EGFR-targeted (cetuximab) mesoporous silica nanoparticle (NP) platform for PLK1
siRNA (siPLK1) delivery or C-siPLK1-NP and proapoptotic effects of C-siPLK1-NP treatment on
NSCLC (A549, H460) cell lines. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not statistically
significant.
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Bcl-2, an antiapoptotic gene closely associated with malignant tumors, can impede the
apoptosis of tumor cells induced by chemotherapy drugs and is closely linked to cancer
development and drug resistance [131]. By utilizing RNAi technology to construct corre-
sponding siRNA vectors targeting different hepatocellular carcinoma genes, the expression
of cancer-related genes can be inhibited, leading to the induction of cancer cell apoptosis.
This approach selectively blocks the transcription products of oncogenes without affecting
the expression of other genes [132]. Choi and coworkers loaded chloroquine (CQ) into the
pores of calcium-doped MSNs and subsequently loaded Bcl-2 siRNA in an amination-free
manner [133]. This delivery system increased the sensitivity of SKOV3 human ovarian
cancer cells to CQ due to the siRNA-induced downregulation of Bcl-2 expression and
showed an enhanced therapeutic efficacy. Besides Bcl-2, other proteins are closely asso-
ciated with apoptosis in tumor cells. Alpha-fetoprotein (AFP) is a specific protein that
produces multiple effects on cell differentiation, proliferation, and tumor occurrence. The
stable expression of siRNA-AFP has been established in vitro, and by silencing the AFP
gene and upregulating Caspase-3 expression, significant apoptosis induction has been
observed in cancer cells [134]. By designing MSN vectors for the appropriate siRNAs, it is
feasible to effectively manage the expression of genes associated with cancer and trigger
apoptosis in cancer cells.

4.3. Inhibition of Angiogenesis

The growth of malignant solid tumors is dependent on angiogenesis, which occurs
after the tumor breaches the basement membrane. This process enables the tumor to
acquire a continuous supply of nutrients and oxygen, facilitating its growth and expansion.
Neovascularization is therefore an important factor to consider in the treatment of tumors.
The formation of new blood vessels is closely linked to tumor growth, proliferation, and
metastasis. By preventing the development of tumor neovasculature and cutting off the
tumor’s nutrient supply, we can more effectively inhibit tumor invasion, recurrence, and
metastasis [135]. The amplification of growth factor and receptor expression, such as Epithe-
lial Growth Factor (EGF), Insulin-like Growth Factor (IGF), Vascular Endothelial Growth
Factor (VEGF), and their receptors’ expression, is closely associated with cell overgrowth
and angiogenesis [136,137]. Due to angiogenesis’ pivotal function in the growth and propa-
gation of tumors, VEGF has become a hot topic in antitumor angiogenesis research. Using
VEGF siRNA to downregulate VEGF is a promising cancer treatment that inhibits tumor
angiogenesis and metastasis [8]. Chen et al. successfully inhibited the expression of the
VEGF gene at the site of ovarian tumors by constructing M-MSN_siRNA@PEI-PEG-KALA
loaded with VEGF siRNA [138]. Due to the significant reduction in angiogenesis, there was
a noticeable suppression of in situ ovarian tumor growth without any systemic toxicity. Sun
et al. designed an oxidoreductive-responsive MSN delivery system (MSN-siRNA/CrPEl)
that released VEGF siRNA from the cytoplasmic MSN in response to high levels of GSH
present at the tumor site, thereby exerting its gene-silencing effect [106]. VEGF siRNA,
through gene silencing, reduction in the tumor interstitial fluid pressure, inhibition of
CD31, and suppression of angiogenesis had been applied to KB tumor-bearing mice by
using this system. It had been demonstrated to have a significant anticancer effect.

4.4. Effective Activation of Immunity

Immunotherapy approaches have gained attention in the field of cancer treatment as
they have the potential to eradicate cancer cells and metastatic tumors by recruiting the
host immune system. Unfortunately, not all therapeutic targets can be effectively treated
with antibodies or small molecule inhibitors due to the complex mechanisms of immune
evasion by tumor cells. RNAi technology, which can target different molecules, has been
used to silence specific targets in tumor cells and noncancerous host cells, enhancing the
immune response against tumors [139]. Some cancer cells produce molecules that help
them evade the immune system (Figure 6). These molecules can be targeted for gene
silencing by using siRNA. The signal transducer and activator of transcription 3 (STAT3)



Pharmaceutics 2023, 15, 2483 15 of 24

plays a pivotal role in immune suppression in tumors. Inhibiting STAT3 in cancer cells
enhances immunogenic cell death and increases the production of interferon-responsive
chemokines that facilitate immune cell infiltration [140]. Furthermore, STAT3 also mediates
immune inhibitory functions in various tumor-associated immune cells, such as eliminating
STAT3 in dendritic cells, and can improve antigen presentation activity and enhance
adaptive antitumor immune responses [141]. Researchers have devised a tumor vaccine
named AIRISE-02 that utilizes MSNs as carriers to codeliver CpG and siSTAT3 [142]. This
innovative vaccine aims to augment immune responses within the tumor microenvironment
and counteract its inhibitory effects. Remarkably, AIRISE-02 has exhibited a remarkable
therapeutic efficacy in models of melanoma, breast cancer, and colon cancer. The use
of immune checkpoint inhibitors has greatly advanced tumor immunotherapy, but their
effectiveness in treating many cancers is still limited. Programmed cell death protein 1
(PD1) is an immune checkpoint inhibitor that suppresses T lymphocyte function by binding
to programmed cell death protein ligand-1 (PDL1), resulting in a reduced self-immune
response [143]. Researchers have developed a siRNA carrier called “Nanosac” by coating
MSNs with polydopamine and then removing the sacrificial MSN core [62]. Nanosac acts
as a targeted siRNA carrier for PD-L1, successfully hindering the growth of CT26 tumors
by inducing immune checkpoint blockades.

Figure 6. Effective activation of immunity by MSNs loaded with siRNAs. (A) Preparation and
intracellular behavior of c(RGDfK)-MSN; (B) schematic and TEM images of O/siRNA/pD (Nanosac)
preparation and antitumor activity of Nanosac in Balb/c mice bearing CT26 tumors; (C) schematic
and TEM images of siSTAT3-CpG-NP and its TEM electron micrographs. Effectiveness of siSTAT3–
CpG–NP in inducing in situ tumor vaccination in mice bearing bilateral syngeneic melanoma tumors.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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4.5. Combination with Other Therapies

Ferroptosis is a new form of programmed cell death that involves iron-dependent lipid
peroxidation and is linked to various illnesses, such as cancer [144]. Encouraging ferroptosis
in cancer cells could be an effective cancer-treatment method. Consequently, ferroptosis-
inducing drugs are gaining more recognition in cancer treatment. Li and coworkers
created a platform called siRNA@SFP (sSFP) by using mesoporous silica nanoparticles [70].
This platform enhances ferroptosis by reducing the levels of cysteine (Figure 7A). They
synthesized FePt nanoparticles within the pore channels of dendritic mesoporous silica
nanoparticles and efficiently loaded siRNA targeting xCT onto them through electrostatic
interactions. The iron death-inducer FePt within sSFP nanoparticles elicits ferroptosis in
breast tumor cells. By interfering with the expression of xCT and inhibiting cysteine uptake,
siRNA effectively depletes intracellular cysteine levels. This depletion disrupts the redox
system and magnifies the cytotoxic impact of ferroptosis on tumor cells.
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Figure 7. Combining multiple therapies against tumors through MSN delivery of siRNAs. (A) Prepa-
ration of FePt nanoparticles and siRNA coloaded mesoporous silica nanoplatform sSFP and enhanced
ferroptosis process of tumor cells by Cys depletion; (B) schematic illustration of light-triggered RNA
delivery by tumor-penetrating iMSNs for siPlk1/miR-200c combination therapy.

Photothermal therapy (PTT), an emerging cancer-treatment method, uses photother-
mal agents to convert absorbed NIR light into thermal energy to achieve the photothermal
ablation of cells [145]. By injecting materials with a high photothermal conversion efficiency
into the human body and using targeted recognition technology to accumulate them near
tumor tissues, it is possible to convert light energy into heat energy. This approach is
designed to selectively and precisely eliminate cancer cells with minimal invasiveness
when exposed to external light irradiation. The FDA has approved the clinical use of the
photosensitizer indocyanine green (ICG) with outstanding biocompatibility. It is suitable
for PTT/PDT and can efficiently absorb light energy to produce singlet oxygen or heat
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energy. ICG loaded into MSNs for local ROS production improves cytosolic siRNA deliv-
ery. iMSNs (loaded ICGs) with light-triggered endosomal escape and tumor-penetration
capacities substantially increase the RNA delivery efficacy [70]. Researchers have devised
a versatile MSN delivery system capable of codelivering siPlk1 and miRNA (miR-200c),
thereby integrating photothermal therapy with RNA interference (Figure 7B). By downreg-
ulating the expression of Plk1, a critical mitotic factor in the tumor cell cycle, siPlk1 inhibits
tumor progression. The combined delivery of therapeutic RNAs demonstrates synergistic
cytotoxic activity in metastatic breast cancer and reduces metastasis following transient in
situ light exposure.

5. Conclusions and Outlook

RNAi therapies work by directly introducing genes—either through regulation or
replacement—into cancer cells or the tissues around a tumor. However, the vulnerability of
degradation by serum nucleases, the difficulty of crossing physiological barriers, the poten-
tial off-target effect, and the possibility of activating the innate immune system has limited
clinical applicability. As relatively well-studied and widely used nanomaterials, MSNs
possess characteristics such as different pore sizes, good biocompatibility, and various
targeting strategies, making them a suitable carrier for siRNA. The incorporation of siRNAs
onto nanometer-sized MSNs has clearly advanced their biological behavior. siRNA-loaded
MSNs have greatly overcome the aforementioned limitations and provided a new strategy
to tackle cancer. To realize clinical functionalization, a therapeutic combination was pro-
moted recently to extend synergistic antitumor effects by using RNAi and other adjuvants,
which can induce ROS or heat species to achieve the ablation of cells. Additionally, through
various forms of surface functionalization and the creation of core/shell nanomaterials,
therapeutic techniques using MSN-based RNAi are being successfully integrated with
various imaging modalities. We anticipate that these functional MSN systems have an
excellent application potential for RNAi applications, such as achieving precise treatment
and the integration of cancer diagnosis and treatment. In conclusion, the development of
multifunctionally modified MSNs or their combination with other functional biomolecules
has led to the pursuit of smart nanomedicine based on MSNs, and the testing of these
systems in depth in vitro and in vivo has grown to be one of the most significant study
fields in recent years. Future developments will see siRNA-loaded MSNs used in a wider
range of drug-delivery procedures, therapy, and therapeutic evaluation.
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