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Abstract: Drug permeation across the intestinal epithelium is a prerequisite for successful oral drug
delivery. The increased interest in oral administration of peptides, as well as poorly soluble and poorly
permeable compounds such as drugs for targeted protein degradation, have made permeability a
key parameter in oral drug product development. This review describes the various in vitro, in
silico and in vivo methodologies that are applied to determine drug permeability in the human
gastrointestinal tract and identifies how they are applied in the different stages of drug development.
The various methods used to predict, estimate or measure permeability values, ranging from in silico
and in vitro methods all the way to studies in animals and humans, are discussed with regard to
their advantages, limitations and applications. A special focus is put on novel techniques such as
computational approaches, gut-on-chip models and human tissue-based models, where significant
progress has been made in the last few years. In addition, the impact of permeability estimations on
PK predictions in PBPK modeling, the degree to which excipients can affect drug permeability in
clinical studies and the requirements for colonic drug absorption are addressed.
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1. Introduction

The aim of drug development is to balance activity at the target with the absorption,
distribution, metabolism and excretion (ADME) properties of a drug, ensuring that the
ultimate goal is achieved—the successful treatment of the disease [1,2]. For this purpose,
the drug needs to be appropriately released, absorbed at the site of delivery, distributed to
the site of action and throughout the body and metabolized and eventually excreted from
the body, terminating its availability to mediate a function within the body.

In the past, drugs have traditionally been relatively small organic chemical entities, but
recently, a broader spectrum of drug modalities, which move beyond the classical “rules of
5” (bRo5)-type chemical structure, have been introduced into the pipeline [3]. Larger chem-
ical structures, including bifunctional degradomer molecules, like PROTACs (proteolysis
targeting chimera), and smaller molecular glues [4], as well as a whole plethora of diverse
biologics, ranging from monoclonal antibodies, antibody–drug conjugates (ADCs) [5],
nucleotide pharmaceuticals in the form of siRNA, microRNA and aptamers to gene therapy
and cell therapy approaches [6,7], require the adaptation of the methods used to determine
the absorption and disposition of a drug substance in the body [8,9]. The modification of
in vitro and preclinical in vivo test systems to predict whether and how a drug molecule
is absorbed and distributed in the human body, as well as the formulation of the drug
substance to enable it to be applied via the most appropriate route of administration, are
crucial steps to the successful development of these new drug classes. For all ADME
processes, particularly those including drug absorption and distribution, passive, as well
as active, permeability can play an important role. In particular, the absorption of new
chemical entities after oral administration is critical to bringing the drug to market, and
a range of models need to be set up to predict the absorption from preclinical to clinical
stages [10,11].

The ultimate goal of drug development is to achieve high drug exposures with min-
imal side effects at the lowest possible dose. In vitro, ex vivo and preclinical, as well
as clinical in vivo, approaches can assist in the identification of the best compound for
development. As active and passive transport mechanisms can be relevant to drug perme-
ability, methods are needed that accurately reflect both processes. Regulatory guidance
also stipulates the need for permeability studies, for example in BCS-based biowaivers.
Further, it is increasingly recognized that novel approaches are needed in drug discovery
and pharmaceutical development to reliably predict the permeability of complex organic
molecules in humans.

In this review, we summarize the current methods used to predict and describe
permeability, ranging from basic principles to in vivo and in silico models, and discuss
emerging methods that may drive permeability determination from early drug discovery
to the market in the future.

1.1. Permeability across Cellular Barriers

Permeability can be defined simply as how easily a molecule crosses a biological
membrane. It is expressed as the velocity—distance per unit time (e.g., in units of cm/s)—at
which the molecule crosses the membrane, irrespective of whether its transport mechanism
is active or passive [12]. For all molecular types described above, the relevant permeability
for oral administration is across enterocyte plasma membranes or between the cells [13].
In transcellular absorption, the drug encounters the gut enterocytes and must cross into
the interstitial fluid at the basolateral side of the cells to be absorbed, after which stage
it eventually enters the blood stream. As described in Figure 1, permeability across a
cellular barrier can occur through the cells (transcellular), during which transport can
occur via transcellular diffusion; through transporter proteins (active or facilitated); either
on both sides of the cell or only one side; or through cellular vesicles (transcytosis) [14];
alternatively, permeability can refer to movement between the cells (paracellular diffusion).
Efflux transport, in contrast to the above-mentioned mechanisms, is a directed, protein-
mediated transport out of the cell [15–18]. While transcellular diffusion, paracellular
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diffusion and facilitated transport are passive and follow the electrochemical gradient
across the cells from the sites of higher to lower electrochemical potential, active and efflux
transport can occur against the electrochemical gradient. Thus, both active uptake and
efflux transport are critical components of drug ADME [19,20]. Transcytosis is mostly
relevant for larger cargo, including drugs like antibodies or antibody–drug conjugates, and
occurs through endosomal vesicles.
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After oral dosing, the drug encounters a range of physiological conditions that influ-
ence drug absorption. For example, the pH in the gastrointestinal tract in humans ranges
from pH 1 to pH 5 in the stomach, depending on prandial state, and between pH 5 and 8
in the small intestine (increasing from duodenum to ileum) and the colon [21]. As many
drug substances are ionizable over at least part of this range of pH, it is important to note
the interplay between solubility, which is favored by ionization, and permeability, which is
favored by the non-ionized drug state. As a result of the substantial intra-individual and
inter-individual variation in the physiological parameters of the GI tract [22], as well as
their effects on the physicochemical properties of the drug substance, such as solid state
and solubility, the pharmaceutical parameters of the formulation (type, composition, and
quality of pharmaceutical excipients), as well as the manufacturing parameters, can affect
drug permeability across the gut wall and, thus, absorption after oral dosing.

1.2. The Role of Permeability in Pharmaceutical Development

Permeability can be measured by determining the disappearance of a drug substance
from the intestinal lumen (donor compartment) or measuring the appearance of a drug
substance in a compartment subsequent to the semipermeable membrane in an in vitro
experiment (receiver compartment). The disappearance from the intestinal lumen is quanti-
fied using the effective permeability (Peff) and the appearance of the drug substance in an
in vitro receiver compartment with the apparent permeability (Papp) [11,23].

The transport rate across the intestinal epithelium depends on the exposed surface
area, the drug concentration in the gut lumen and active and passive transport parameters.
Peff can, thus, be determined, for example, via perfusion in gut segments, either preclinically
or clinically, according to the following equation [24]:

Pe f f = Qin ×
Cin − Cout

Cout × A
(1)

where Qin is the perfusate flow rate in a system, A is the area available for permeation and
Cin and Cout is the concentration entering and leaving the system, respectively.

Papp is often studied in transwell assays employing artificial semipermeable mem-
branes or cell layers. In this setup, the movement of a drug substance from a donor
compartment through the membrane into the receiver compartment is measured by sam-
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pling the receiver compartment. The permeability can be described via the following
equation [11,25]:

Papp =
dQ
dt
× 1

C0 × A
(2)

Papp depends on the appearance of the compound in the acceptor compartment over
time (dQ/dt), the initial concentration of the compound in the donor compartment (C0)
and the surface area of the membrane (A). Both permeability measures are highly relevant
and used throughout the process of pharmaceutical development, as described in more
detail below.

As both solubility and permeability define the penetration of a drug across a biological
membrane, they need to be taken into consideration in concert. The Biopharmaceutics
Classification System (BCS) has been used for many years as a guidepost for drug develop-
ment [26,27]. Although the BCS can be applied to all types of compounds, further aspects
will need to be considered for complex bRo5 chemical entities [8]. Structural constituents,
including size, polarity, intramolecular hydrogen bonds and chameleonicity, need to be
optimized and tested in relevant in vitro systems [28]. As bRo5 compounds have com-
plex physicochemical properties, “standard” in vitro methods often do not lead to reliable
results. New methods, including mucin-protected cellular models [29], or studies with
co-solvents or biorelevant media may be of help [30].

In addition, quantitative structure–activity relationship (QSAR) methods are being
developed and compared to in vitro and in vivo results [9]. In the past, in vitro Caco-2
cell assays were used to investigate the cellular permeability of compounds by predis-
solving them in DMSO. Nowadays, permeability assessment includes simple in vitro
systems, like parallel artificial membrane permeability assays (PAMPA), and different cell
types, including efflux (P-gp, BCRP fully and MRP2 and BSEP with vesicles) and uptake
(OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, OATP2B1, MATE1 and MATE2K) trans-
porter studies, employing recombinant cell lines with different cellular backgrounds. Some
recombinant models include cell backgrounds with reduced intrinsic efflux transporter
expression to enhance the assay window and data quality [31–33]. To better characterize
the transporters of which a drug might be a substrate, inhibitor or induction studies may
also be required.

In vivo studies can be run in wild-type rodents, but humanized transporter mouse
models or transporter knockout mice can be used to supplement the experimental toolbox,
usually for specific questions, such as whether a drug is able to cross the blood–brain barrier.
A simplified table summarizing permeability studies at the various stages of development
is shown below (Table 1).
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Table 1. Role of permeability in pharmaceutical development.

Discovery
(Pre-CN)

Development
(Post-CN) Clinical

Drug Substance Drug Substance Drug Product Drug Substance/Drug
Product

Physicochemical
parameters

Lipinski rule of 5 (MW, LogP/LogD, HBD, HBA),
PSA aromatic rings, number of rotatable bonds, etc.;

bRo5 requires additional property evaluations

In vitro/ex vivo tools
(Papp, Peff)

PAMPA, cellular transport
screening

Passive cellular
permeability and active

transport

Dissolution–permeation systems
(e.g., biphasic dissolution, µFlux)

In vivo models
(F, fa) Rodent PK

PK in higher preclinical species and
food effect studies, extended release and

regional absorption recorded in dogs

Human PK (Fabs),
bioequivalence,

microdosing (Fabs),
perfusion studies

Modeling
(from Papp, Peff,

F to kA, fA, fG, fH,
predicted dose,

human PK)

Static predictions: in silico
tools, multiparametric scores

(AB-),
machine learning,

artificial intelligence [34]

Dynamic models: PBPK modeling

These studies are successively implemented and executed within a project. In the early
stages of drug discovery and development, before a candidate is nominated for further
development (pre-candidate nomination; pre-CN), the drug candidate is studied in high-
throughput simplified methods, while at a later stage in the drug development process
(post-CN), permeability is evaluated via more complex methods, including complex rodent
models, as well as dynamic in silico modeling approaches, culminating in permeability
studies of volunteers in clinical studies. In addition to the drug substance, the final drug
product is studied at these stages. An excellent overview of the current methods is provided
by O’Shea et al. [11] and described in more detail below.

Based on the BCS system, regulatory bodies have issued harmonized system-based
biowaiver guidance (ICH M9) with the intent to reduce the need for in vivo bioequivalence
studies for drug products used in early clinical development through to commercialization,
for line extensions of the same pharmaceutical form of innovator products, in applications
for the approval of generic drug products, and for post-approval changes [26,35,36]. In this
regulatory document, a scientific approach based on the aqueous solubility and intestinal
permeability characteristics of drugs is used. Clear eligibility requirements for permeability
according to ICH M9 include in vivo human PK studies demonstrating Fabs > 85 %, mass
balance studies showing >85% of the drug recovered in urine (a) as the parent or (b) the
sum of parent and phase 1 and/or 2 (oxidative and conjugative) metabolites. This sum
may also include phase 1 and/or 2 metabolites in feces, but only if it can be shown that
they had previously been absorbed. In vitro assays that must be used are clearly defined.
Alternatively, data from validated, standardized Caco-2 experiments may be accepted if the
validation includes a minimum of five each of high-, mid- and low-permeability reference
drugs at n ≥ 3. The verification of cell layer integrity, absence of any efflux, justified drug
concentrations, and recovery of at least 80% or a mass balance evaluation are additional
requirements. High permeability is demonstrated if the apparent permeability (Papp) of
the test compound is ≥Papp of the selected high-permeability references. Under these
conditions, a drug product is eligible for a BCS-based biowaiver.

The M9 guidance further states that for BCS Class I drugs, qualitative and quantitative
differences in excipients are permitted, except for excipients that are expected to affect
absorption, which should be qualitatively the same and quantitatively similar i.e., within
10.0% of the amount of excipient in the reference. For BCS Class III drugs, all of the
excipients should be qualitatively the same and quantitatively similar (exceptions are
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described in the guidance) because low-permeability compounds are considered to be more
susceptible to excipient effects on absorption. In addition, the Scale-up and Post Approval
Changes (SUPAC) guidance provides recommendations for the post-approval period, when
changes are made to the following aspects: (1) the components or composition; (2) the
site of manufacture; (3) the scale-up/scale-down of manufacture; (4) the manufacturing
(process and equipment) of an immediate-release oral formulation [37]. The guidance
describes different levels of changes and parameters considered for different cases, which
can be applied by the sponsor, including different dissolution protocols for documentation
according to solubility and permeability.

This review provides an overview of the different methods used to predict or deter-
mine permeability at the preclinical and clinical stages of development of oral drug products.
We highlight the challenges and limitations of the current standard approaches (e.g., cell-
based assays, animal models, etc.) and provide an outlook on emerging methods (in silico
methods, gut-on-chip, human tissue based models and novel in vivo techniques). More-
over, we demonstrate how these techniques are used to address product-related questions,
such as colonic absorption, the effects of certain excipients and permeability enhancers.

2. Permeability in Drug Discovery and Preclinical Development

In this section, different in vitro, in vivo and in silico methods used to predict or
determine permeability across the intestinal epithelium are discussed. Here, the challenges
of working with cell monolayer systems and animal models, which are considered standard
tools in pharmaceutical development, are highlighted. Moreover, special emphasis is put
on emerging methods, such as computational approaches, gut-on-chip models and human
tissue-based approaches.

2.1. In Vitro Models

In most cases, Caco-2 or MDCK cell monolayers are applied to obtain apparent per-
meability (Papp) values. Caco-2 cells develop the morphologic characteristics of normal
enterocytes when grown on plastic dishes or nitrocellulose filters. They form polarized
monolayers, and confluence is achieved after 21 days in culture [38]. By coating the tran-
swell inserts with extracellular matrix gels, it is possible to obtain a confluent monolayer in
3–4 days [39].

Recently, gut-on-chip and human tissue-based approaches have been developed that
are expected to enable a more realistic assessment of the permeation across the gut wall.

2.1.1. Experimental Challenges in Cell-Based Permeability Assays

When evaluating permeability via in vitro setups, the experimental conditions selected
can have a substantial impact on the final outcomes (Figure 2). Therefore, it is critical to
define and control these conditions as much as possible to ensure accurate and reliable
results. An excellent overview of this topic has recently been published by O’Shea et al. [11].
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One particularly critical factor to consider is the selection of the solvent system used
in the permeability assay, as it can affect various aspects of the experiment [30,40]. When
working with contemporary drug candidates that exhibit low solubility, it is important to
carefully select a solvent system that will maintain the compound of interest in solution.
This may involve incorporating co-solvents or solubilizing agents to enhance solubility and
prevent precipitation. Failure to adequately address solubility issues can result in the un-
derestimation of permeability, leading to inaccurate conclusions regarding the compound’s
absorption potential.

Maintaining the integrity of the cell monolayer under the conditions used in the
permeability assessment is another crucial element of cell monolayer-based studies. Using
harsh solvents can easily destroy monolayer integrity and should be minimized/avoided.
Nevertheless, incorporating co-solvents or solubilizing agents can reduce the adsorption of
the desired compound by the materials used in the in vitro setup. Typically, adsorption is
more of an issue in the receiver compartment than in the donor compartment because the
concentrations in the receiver compartment are generally lower than those in the donor
compartment. At this point, it is worth noting that the well plates used for growing cells
are typically precoated with substances present in the cell culture medium. Precoating can
help to reduce the adsorption of compounds by the well plate surface during transport
experiments. Therefore, it may sometimes be advantageous not to replace the well plates
with new ones when performing transport experiments.

When considering the use of solubilizing agents to increase solubility or decrease
adsorption, it is important to be aware that they may reduce the free fraction and, subse-
quently, the permeability. This is referred to as solubility–permeability interplay [41] and
should be taken into account when interpreting permeability values.

In addition to co-solvents or solubilizing agents, incorporating proteins such as albu-
min can decrease the adsorption of hydrophobic compounds [40]. However, the presence
of albumin can lead to analytical challenges, such as interference with downstream assays.
Therefore, it is important to carefully consider the trade-offs and optimize the experimental
conditions when using proteins to reduce adsorption.

When adsorption in the receiver compartment poses a challenge, an alternative solu-
tion is to focus on desorbing the compound of interest [42]. For example, after conducting
a transport experiment in a Caco-2 setup, it may be possible to enhance compound re-
covery by removing the inserts and introducing a solvent with a stronger solubilizing
capacity into the receiver compartment. Adding DMSO into the receiver compartment is
one such option.

Maintaining a concentration gradient across the cell monolayer and preventing the
back flux of the tested compound are critical factors during permeability experiments.
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To achieve this outcome, it is necessary to limit the amount of transported compound
that reaches the acceptor compartment. Typically, it is recommended to determine the
permeability coefficient based on the linear part of the transport curve. If the permeation
rate is too high, it can lead to significant changes in the donor concentration, which, in
turn, can affect the accuracy of the results. When permeability is high, the duration of the
transport experiment can be shortened to reduce the amount of substance transported and
maintain sink conditions.

Up to this point, the focus has been on performing permeability assays under standard
conditions. However, it is also possible to modify experimental conditions to conduct
transport experiments under more biorelevant conditions. For instance, to mimic the
intestinal environment, the donor compartment could be adjusted to pH 6.5, and a small
amount of bile salts and lecithin could be added; in view of compatibility with a Caco-
2 monolayer, the use of Fasted State Simulated Intestinal Fluid (FaSSIF) is commonly
accepted as an apical solvent system [43]. Meanwhile, the receptor compartment’s pH can
be adjusted to 7.4, reflecting the blood compartment.

When incorporating biorelevant conditions, it is crucial to exercise caution when
interpreting results for ionizable compounds. For instance, with a basic compound, the
partitioning behavior depends on the ionization status (higher ionization leads to greater
solubility in the apical compartment but reduced permeation). While this approach en-
hances biorelevance, the pH gradient may create a situation that resembles the involvement
of an efflux mechanism. When investigating the role of transporters, it is, therefore, es-
sential to ensure an equal pH in both compartments to avoid generating “false efflux”
outcomes. For example, in a study of the bidirectional transport of atenolol and metoprolol
using the Caco-2 system, apical-to-basolateral and basolateral-to-apical transport were
comparable for both compounds under the no pH gradient condition [44]. However, when
a pH gradient was introduced (lower apical pH of 6.0 versus basolateral pH of 7.4), a shift
in passive transport due to the uneven distribution of the uncharged drug species led to a
“false” efflux ratio (asymmetry in transport was observed).

The outcome of an experiment can be significantly influenced by specific interactions
and mechanisms that are present under different experimental conditions. Factors such as
the choice of buffer species, modulation of the activity of transporters, and temperature at
which the experiment is conducted can all affect the results. The following two case studies
illustrate this point.

The selection of the appropriate buffer species is crucial to the permeability measure-
ment of fosamprenavir. Fosamprenavir, a phosphate ester prodrug, was developed to
address the solubility issues of its parent compound amprenavir. Due to its high solubility
in the intestinal environment, it is rapidly absorbed following conversion into amprenavir
by intestinal alkaline phosphatase. However, when investigating the permeation of fos-
amprenavir in the Caco-2 system using FaSSIF as the apical solvent system, no transport
was observed. It appeared that the inorganic phosphate used as a buffer species in FaSSIF
inhibited alkaline phosphatase activity [45]. Thus, to obtain reliable permeation results for
amprenavir using fosamprenavir as a prodrug, an alternative buffer species must be used
to replace phosphate.

A second case that emphasizes the importance of experimental conditions is related to
the influence of solvent system components on the transport characteristics of the substrates
of the efflux transporter P-gp [43]. The activity of these transporters can be modulated via
the addition of endogenous bile salts and/or excipients that are present in drug products.
The inclusion of these compounds in the solvent system may result in a reduction in the
asymmetry of apical-to-basolateral versus basolateral-to-apical transport. This issue can
mask the effect of P-gp. However, since these compounds are also present in the intestinal
environment, they may actually better reflect the real transport characteristics and enhance
the biorelevance of the permeability assay.

The reasoning presented highlights the significance of considering the experimental
conditions involved in enabling a meaningful comparison of results when conducting
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permeability experiments using an in vitro cell culture setup. It is also important to develop
a protocol, taking into account the goal of this study (initial permeability ranking versus
biorelevant permeability assessment versus mechanistic studies). Various factors, such
as transport buffer composition, pH, transport temperature and time, the inclusion of
co-solvent or solubilizing agents, the creation of sink conditions, and the sampling method
used, need to be taken into account to ensure the reliability of the transport results [30].
The influence of the medium on monolayer integrity should not be significant. Biorelevant
conditions (e.g., pH, bile salts, and food components) may affect permeability directly (for
example, bile salts may be influencing P-gp functionality) [46] or indirectly through the
alteration of the free fraction (the so called solubility–permeability interplay) [47]. Only
when carefully considering all experimental conditions can precise and reliable permeability
data be obtained.

2.1.2. Gut-on-Chip Models

Microfluidic gut-on-chip models (GoC) are an emerging tool used for modeling in vitro
physiological and pathophysiological processes in the intestine. These models provide a
constant flow of oxygen and nutrient supply while removing waste residues, resulting in
a physiologically relevant environment. Under these conditions, intestinal cells sponta-
neously differentiate and form 3D villi-like structures with brush borders, tight junctions
and mucus layers closely mimicking the human intestine [48,49]. GoC have generally been
designed based on (i) the traditional transwell system [50–52], using a circular porous
membrane, or (ii) a semi-permeable porous membrane separating two sides of a linear
channel or tube [53,54]. Membranes are typically seeded with gut epithelial cells, often
Caco-2 cells potentially co-cultured with HT29 cells. Alternatively, primary cells derived
from the human or animal gut can be incorporated, especially for modeling specific disease
phenotypes or showing improved physiological relevance [55]. The cells are allowed to
adhere for some time, after which period media are pumped alongside the cell layer using
a syringe or a peristaltic pump [48,56]. In some cases, the microfluidics are gravity driven,
e.g., in the OrganoPlate® from Mimetas (Oegstgeest, The Netherlands), which is placed on
a rocker [53]. Depending on the application, endothelial or immune cells can be grown on
the basolateral side of the membrane, and/or elements of the human microbiota can be
added to further recapitulate the intestinal environment [57,58]. Furthermore, peristaltic
motions have been created by adding pressure pulses [56]. Generally, GoC can be accessed
from both the apical and basolateral side to measure barrier function. Membrane integrity
is often evaluated using transepithelial electrical resistance (TEER) [56,59] or paracellular
permeability measurements with fluorescently labeled dextran [53,56,60].

Although many GoC systems are available, few have been used to study the perme-
ability of (small molecule) drugs. One of the transwell-based microphysiological systems
(MPS) proposed for drug permeation studies is the CN Bio system (Cambridge, UK) using
Caco-2 and HT29 cells. In this system, the GoC can be coupled to a chip mimicking other
organs (e.g., the liver) to capture the interplay between multiple organs. In addition, it has
been shown that this GoC model allows the evaluation of carboxylesterase- and CYP450-
mediated gut metabolism [52,61]. Santbergen et al. also used a Caco-2/HT29 co-culture in
a transwell-based system and coupled it to a chip-based LC-MS setup to facilitate the bio-
analysis of small molecules and improve throughput. For verapamil, their system showed
similar results to those of a static transwell system, whereas for ergotaminine, a difference
was observed. The authors suggested that shear stress affects the permeability of this com-
pound, indicating the importance of dynamic systems [50]. However, no correlation was
made with the in vivo situation. Amirabadi et al. established a MPS system using porcine
or human colon tissue instead of cells and were able to distinguish between paracellular
and transcellular transport. The setup allowed the rank ordering of compounds according
to permeability but, unfortunately, did not directly correlate with the fraction absorbed
in humans; a potential reason is that the MPS did not capture permeation in the entire
gastrointestinal tract but only did so in the colon [51]. Sasaki et al. used a channel-based
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MPS to evaluate intestinal permeability, as well as carboxylesterase-mediated metabolism.
They observed that the permeability depended on the presence of albumin, which was
added to avoid non-specific binding, improve sink conditions and aid the solubilization of
lipophilic drugs [54]. As pointed out in Section 2.1.1., non-specific binding is an important
factor to consider when using gut/organ-on-chip devices in pharmaceutical applications,
as it reduces free drug concentrations in assays where small amounts of drugs need to
be detected [62]. ABCB1 (P-gp) and ABCG2 (BCRP) mRNA expression was found to be
significantly lower in the microfluidics devices than in the transwells. However, there was
similar P-gp functionality in both. Yeon and Park determined the permeability of 10 drugs
in a microhole-trapped Caco-2 based MPS. To the best of our knowledge, this study is
the only paper that showed a good correlation between permeability in a GoC model and
in vivo permeability in human (R2 = 0.90) and rat (R2 = 0.88) models, as well as the fraction
absorbed in humans (R2 = 0.96). Although the correlations found were good, similar or
better correlations were found using (modified) static Caco-2 cultures [60,63,64].

The reported studies have suggested the potential for using GoC devices in drug
permeability studies; however, only a limited number of compounds have been investigated
to date, and feasibility has yet to be systematically evaluated using a large set of compounds
with diverse physicochemical properties representing a wide range of fractions absorbed
in vivo. Currently, the relatively high costs of these complex and labor-intensive systems
with low-to-medium throughput limits their application in permeability screening in
an industrial environment [49]. However, GoC devices allow a faster differentiation of
cells and more physiologically relevant conditions in terms of morphology and gene
expression compared to static cultures [49]. Moreover, the potential to co-culture with
multiple cell types and/or microbes provides physiologically relevant conditions. These
systems can, therefore, potentially be used for mechanistic studies answering project specific
questions, e.g., (i) the disposition of prodrugs, (ii) region or disease-specific permeability,
(iii) permeability of new modalities that require the complex physiology of differentiated
cell types or (iv) prediction of oral absorption of drugs using advanced drug delivery
systems [65].
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2.1.3. Human Tissue-Based Models

Human intestinal in vitro models (Figure 3) play an increasing role in predicting and
evaluating pharmacokinetic properties (in particular oral bioavailability) [66]. Several
endpoints have been established to validate the performance of the individual intestinal
barrier function. These endpoints include the measurement of transepithelial electrical
resistance (TEER), permeability of epithelial cells, changes in the gene expression of cell
junction proteins and cell type-specific differentiation genes, immunotoxicology and cell
proliferation. Typically, apical and basal supernatants, as well as cell lysates, are used to
monitor compound concentrations, signaling molecules, activation factors and numerous
other parameters. While previously used immortalized cells, which mostly originate from
tumors and may, therefore, not be representative of the true physiological environment,
offer many advantages in terms of handling, standardization and cost-efficient implemen-
tation in the preclinical stage, the extrapolation of data generated with these cell lines
to in vivo conditions is often questionable. This is because tumor-based models do not
represent all cellular subtypes of the native intestinal epithelium and exhibit artificial gene
and protein expression profiles, which do not adequately reflect the in vivo situation.

In recent years, several exciting novel in vitro culture protocols, which enable the long-
term culture of primary intestinal stem and epithelial cells in vitro as intestinal organoid
structures, also known as “mini-guts”, have been published [67–69]. To do so, intestinal
crypts obtained from human donor tissue are mostly embedded in a three-dimensional
laminin- and collagen-rich extracellular matrix [70,71]. The basal lamina is also simulated
using Matrigel® or Collagen I hydrogels covered with culture media containing relevant
niche factors derived from Wnt, EGF, BMP, and Notch signaling pathways to maintain the
intestinal stem cell niche [72,73]. Within the first days of culture, crypt cells form spherical
structures with a crypt-like lumen, i.e., the so-called enterospheres. Simultaneously, this
culture condition enables the generation of budding protrusions from the central spherical
domain of the organoid containing LGR5+ stem cells and differentiated epithelial cell
types [68,69,71,74–76]. The spheres can subsequently expand into multilobulated enteroids
mimicking the multicellular structure of the intestinal epithelium, including crypts con-
taining stem cells and Paneth cells, as well as villus structures containing differentiating
cell entities, such as absorptive enterocytes, mucus-producing goblet cells and hormone-
producing enteroendocrine cells. For the specific promotion of differentiation e.g., into
the secretory lineages, Notch signaling can be reduced by γ-secretase inhibitors (such as
DAPT) and the omission of Wnt3A [77]. It is worth noting that the success and yield of
the individual human cell culture strongly depends on the donor tissue, including age, gut
region and pathology [78].

A patient-derived cell source is beneficial for the establishment of healthy- and disease-
related biobanks, but it clearly complicates standardization and reproducibility for in vitro
cell culture applications [79]. In this respect, Fujii et al. published a refined culture system
based on high-throughput single-cell RNA profiling data that support cellular diversity in
human intestinal organoids [76]. In addition to patient-derived organoid technologies, there
are an increasing number of protocols differentiating intestinal organoids from human iP-
SCs using stepwise differentiation protocols [80,81]. These human iPSC-derived organoids
(HIOs) are multi-layered structures that also contain the major cell types of the small intesti-
nal epithelium; however—so far—they still represent an immature, fetal-like phenotype
of the generated intestinal cell types [82]. The maturation of HIOs is only achieved after
implantation in vivo or via in vitro maturation based on the co-culture of HIOs with T
lymphocytes [83]. The STAT3-activating interleukin-2 has been identified as major factor
for in vitro maturation that leads to the development of adult-like phenotypes [83].
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to stimulate ECM-regulated cell functions; (2) flow used to apply mechanical stimuli and induce 
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bacterial metabolites; (4) immune cells used to enable epithelial–immune cell crosstalk, especially 
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Figure 3. Designing human tissue-based in vitro models of the gut. (a) Potential cell sources used for
the generation of tissue-based in vitro models. Prior to use as cells for intestinal modeling, hESCs and
hiPSCs require differentiation towards the intestinal lineage, while SCs require a final differentiation
to produce the individual intestinal cell types. (b) Schematics of currently applied culture systems
i.e., intestinal organoids, fluidic and transwell-like systems; corresponding histological cross-sections
of intestinal cell layer (Alzian blue [upper and lower picture] and H&E [center picture] stainings)
are shown. (c) Summary of most commonly used scaffold materials in tissue engineering, including
decellularized gut segments and synthetic matrices either coated with biomolecules, e.g., laminins
or biofunctionalized with peptides or relevant niche cells. (d) Overview of important factors that
need to be considered in future for designing even more physiologically relevant small intestinal
in vitro models. Relevant components are (1) the extracellular matrix scaffolds used to stimulate ECM-
regulated cell functions; (2) flow used to apply mechanical stimuli and induce mechanoresponsive
signals; (3) microbiome used to consider the diverse microbial effects, such as bacterial metabolites;
(4) immune cells used to enable epithelial–immune cell crosstalk, especially in terms of pathogen
invasion; (5) perfusable vascular structures used to allow the efficient transport of gases, nutrients
and metabolic products; (6) a biomimetic structure used to establish local tissue niches, such as
the stem cell crypt; and (7) innervating structures used to reproduce neural signals regulating
intestinal functions.

Taken together, the overall advantage of organoids compared to traditional 2D cell
culture systems lies in the fact that they possess all physiologically relevant cell phenotypes
and have a self-renewing capacity i.e., can be constantly maintained in culture [76] without
significant changes in the phenotype and karyotype. Additionally, they can be cryopre-
served for ‘off the shelf’ use if needed [78]. However, the drawback of an organoid lies
in the spherical and ‘up-side-down’ tissue morphology, which does not allow classically
applied endpoint measurements, which are typically determined within a 2D Transwell®

culture, such as intestinal permeability and transport. Nevertheless, through constant im-
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provements of real-time imaging systems (two-photon, spinning disc microscopy, etc.) and
mathematical modeling, organoid systems are increasingly being utilized as an efficient tool
to evaluate drug dynamics, such as P-gp efflux transporter-mediated drug transport [84].
Moreover, two independent groups have recently developed an intestinal organoid model
from patient-derived cells and pluripotent stem cells showing reversed (i.e., apical-out)
polarity, where the apical side faces the surrounding culture media and the basal side faces
the lumen [85,86]. This model will offer an additional research tool to study nutrient/drug
uptake in organoids.

Another option for better access in preclinical testing is the tissue engineering (TE)-
based culture concept using diverse biomaterials as scaffolds to culture intestinal (primary)
cell types within the widely used transwell-like systems [87,88]. The biomaterial can either
be synthetic [89–91] (e.g., polyester (PE), polycarbonate (PC) or polyethylene terephtha-
late (PET)) or of biological origin [92–94], such as spin silk or decellularized intestinal
scaffolds prepared from porcine gut. An example of the latter is small intestinal submu-
cosa (SIS) [95–97]. Whereas native biomaterials are often sufficient for cell attachment and
growth due to a conserved ECM structure and basal lamina contents, synthetic matrices
mostly need further surface modifications either via coating with ECM-proteins or the inclu-
sion of supporter cells such as fibroblasts, which then build an in vivo-like environment. As
opposed to synthetic matrices, which might influence the diffusion and distribution of bio-
logical or chemical compounds, biological matrices resemble a 3D microenvironment and
are biocompatible; however, they often fail in terms of standardization and reproducibil-
ity [98]. In contrast to organoids, transwell-like culture systems offer a large advantage in
terms of providing an accessible apical and basal compartment, thus mimicking the luminal
and basal sides of the small intestinal epithelium in vitro. On the other hand, transwell-like
models can only be kept in culture for a certain time-frame since self-renewing stem cells
are continuously lost during culture due to the still-artificial culture conditions. To also
meet these demands, emerging technology concepts try to design improved culture systems
that mimic natural environmental cues in vitro [99]. Those approaches include biomimetic
scaffolds produced via bioprinting technologies or microfluidic devices (bioreactors, chip
systems, etc.) [100,101]. For instance, Wang et al. reported the development of a micro-
engineered collagen-based scaffold that enables the formation of a human small intestinal
epithelium with key structural features, like a crypt-villus architecture and associated cell
type compartmentalization [102].

Taken together, organoid cultures can be highly representative of the in vivo situation
but are currently limited by their inability to provide standardized endpoint measurements
that are the norm in preclinical studies. In contrast, engineered TE-based systems meet
the requirements of high reproducibility and accessibility but, for now, fail to completely
resemble the functioning intestine. Combining the advantages of both culture systems
represents one of the main challenges for routine implementation in oral drug product
development. Ideally, adapting the complexity of TE-engineered models could follow
a bottom-up process via the stepwise integration of additional factors, for instance the
microbiome, immune cells, vascular structures, biochemical gradients, and mechanical
stimuli. In this regard, the evolution of current and new techniques in both the engineering
(e.g., 3D printing, novel surface materials, etc.) and biology (e.g., microbiome, stem cell
research, assembloid techniques, etc.) fields is of great interest and expected to lead to
intensive interdisciplinary exchange.

2.2. In Silico Methods

Computational modeling of cell permeability is applied in all stages of drug discovery
and development, with the tools applied varying in nature and complexity depending on
the needs of the project at that stage. From lead optimization all the way to clinical devel-
opment, computational tools are extensively used, for example, to translate data generated
in vitro and in non-clinical species to predict human exposure, using physiologically based
pharmacokinetic (PBPK) modeling and similar approaches [103]. In the early stages of drug
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discovery, experimental permeability data may not yet have been generated, and the focus
may rather be on the prediction of permeability from chemical structures and supporting
the design of new lead molecules with optimal permeability properties. Here, we focus on
such chemistry-oriented permeability prediction.

Principally, the applications of such methods can be divided into two main groups:
prioritizing molecules in large compound libraries based on predicted permeability proper-
ties and providing a mechanistic understanding of what is driving permeability during
lead optimization. Two conceptually different computational approaches have been ap-
plied to predict and rationalize permeability to drug molecules: structure–permeability
relationships, derived using machine learning methods, and physics-based simulations
of permeability.

2.2.1. Machine Learning-Based Permeability Modeling

In machine learning-based structure–permeability modeling (as in any type of structure–
activity relationship modeling), the measured permeabilities of a set of molecules are related
to numerical descriptions of their chemical structures and/or molecular properties through
a mathematical model (Figure 4A). Numerous flavors of molecular descriptors and ma-
chine learning algorithms are available and continue to be developed, and many have been
explored over the years for permeability relationships. Early examples include standard
linear or non-linear regression of measured permeabilities to individual descriptors, for
example identifying the very often strong relationship between permeability and lipophilic-
ity [104]. For chemically diverse, drug-like molecules, polar surface area (PSA) was shown
to be an important predictor of intestinal drug permeability [105,106]. These early stud-
ies indicated that surface areas calculated via three-dimensional representations of the
molecule, accounting for different molecule conformations, only marginally improved the
predictions of permeability relative to using single, arbitrary conformations [107], and,
hence, the more rapidly calculated 2D (or topological) TPSA was introduced and is com-
monly applied in permeability filters [108]. This apparent conformation-independence
was likely biased by the fact that the compounds included were mostly relatively small
(MW < 500 Da), aromatic and rigid, leading to relatively small variation in the exposed
polar surface among conformers of the same molecule. The recent literature revisiting
the role of exposed polar surface indicate that as drug molecules become larger and more
flexible—entering the ‘beyond-rule-of-5′ chemical space—conformational dynamics plays
an increasingly important role for membrane permeability [8,109,110].

While single-descriptor models can be informative regarding the molecular properties
affecting permeation, they often do not yield useful predictions outside of series of similar
molecules. Instead, combinations of large numbers of descriptors are typically used, in
combination with multivariate machine learning algorithms, such as partial least squares,
random forest, support vector or neural network regression [109,111,112], to better cap-
ture nuances in the driving forces of permeability in the dataset under study. Common
types of descriptors are introductorily described in two excellent publications [113,114].
Importantly, the choice of descriptors and algorithms will influence both how well the
model performs (i.e., how well it not only describes the molecules included in the training
data, but also predicts new, unseen molecules) and how easy the results are to interpret
(for example, which molecular properties or structural features are driving permeability in
the dataset). While predictivity is clearly important in a structure–property relationship
model, interpretability is also vital, especially if the model is used to guide the design of
new molecules.

Most importantly, any machine learning model will try to describe the data with which
it was provided, placing great importance on the quality of data used in training. For ex-
ample, inter-laboratory variability in permeability measurements can be pronounced [115]
even when (nominally) the same cell line is used. The reasons for this outcome include
the clonality of the cell lines and considerable differences in assay characteristics, such as
incubation times, sampling, temperature, pH, etc. Also, the fact that most experimental
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permeability systems—2D and 3D-cultured cells, cell-derived membrane vesicles, excised
tissue and in vivo models—include multiple transport pathways that work in concert makes
deriving a fully descriptive structure–permeability relationship difficult or even impossible.
Despite such complexities, however, computational models may capture the dominating
mechanism in a series of molecules and, thus, provide valuable mechanistic insights.
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Figure 4. Computational methods used to estimate and rationalize membrane permeability to
drug molecules. (A) In machine learning-based modeling of structure–permeability relationships,
measured permeability values are related to a numerical description of molecular structure and
properties using a machine learning algorithm. This process yields a mathematical model that can
be used to predict permeability for new molecules, given that they are similar enough to molecules
used in model training (‘within the applicability domain of the model’). (B) Molecular dynamics
simulation describes movement and interactions of atoms in a system of molecules and can be used
to derive energy landscapes for penetration of permeating molecules into a simulated cell membrane.

2.2.2. Physics-Based Permeability Simulation

While machine learning-based structure–permeability modeling is fundamentally
dependent on experimentally derived training data, physics-based techniques, such as
molecular dynamics (MD) simulation (Figure 4B), can provide highly detailed information
on the permeation process without the need for training data, although at a significantly
greater computational cost.

In MD, systems of molecules are simulated over time through an iterative process,
where the positions of all simulated atoms are updated based on the forces imparted from
the other atoms in the system. This approach yields an evolving picture of the movement of
the atoms over short, typically microsecond, time scales. By placing a permeating molecule
at different depths in a water/cell membrane system and calculating the free energy profile
as a function of the penetration depth, the energy barriers to permeation can be calculated
(Figure 4B). These energy landscapes, or ‘potentials of mean force’ (PMFs), can be integrated
to yield simulated permeability coefficients. MD simulations of membrane permeability
is extensively reviewed in [116]. Importantly, MD simulations also provide insights into
the molecular mechanisms of membrane permeability that are difficult or impossible to
experimentally study. For example, MD simulations combined with a Markov State Model
defined the rate-limiting step in membrane permeation in a series of drugs, indicating that
permeation was primarily limited by the transition (‘flip-flop’) between membrane leaflets
for more hydrophilic molecules, whereas membrane off-rates/resolvation in water was
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the limiting factor for highly lipophilic molecules [117]. The transition between different
conformations, which has been shown to profoundly affect the molecular properties and,
hence, permeability of larger, more flexible molecules, such as macrocyclic drugs and other
bRo5 molecules [8,109,110], can also be accurately simulated using MD. Recent examples
are the application of MD simulation to study the permeation behavior of macrocyclic
drugs [118] and cyclic peptides [119].

2.2.3. PBPK Modeling

In physiologically based pharmacokinetic (PBPK) modeling, permeability is typically
predicted via machine learning approaches or correlations between in vitro and in vivo
data. Commercially available PBPK platforms, such as GastroPlus® or Simcyp®, have built-
in models to predict human jejunal effective permeability (Peff) from drug physicochemical
properties and apparent permeability (Papp) values obtained in in vitro Caco-2 or MDCK
cell monolayers. Due to their simplicity and high-throughput compatibility, Caco-2 cells
are largely used to predict human Peff. However, there are currently four challenges related
to translating preclinical permeability estimates for PBPK modeling, namely (1) differences
in the transcriptome, (2) the “no-micelle” assumption, (3) high lab-to-lab variability and
(4) modeling segment-specific permeability.

Even though Caco-2 cells are able to reproduce the polarized epithelium monolayer
phenotype, their transcriptome significantly differs from the human duodenum transcrip-
tome. For example, more than 1000 genes showed a more than 5-fold expression difference
when comparing Caco-2 in in vitro systems and human tissue [120], so modelers should
be aware that molecular mechanisms may differ between in vitro and in vivo systems.
Consequently, in vivo (Peff)-in vitro (Papp) drug permeability measurements correlated well
for passively absorbed drugs (R2 = 85%). However, the permeability correlation for carrier-
mediated drugs was 3- to 35-fold higher in humans above the correlation of passively
absorbed drugs [120]. In fact, Caco-2 Papp values led to the misclassification of four highly
permeable compounds, the uptake of which is dependent on transporters [121]. The
Papp-Peff correlations used in the commercial PBPK models were derived using reported
human jejunal effective permeability data mainly obtained from the Loc-I-Gut protocol
(see Section 3.1), which only used buffer to perfuse the isolated intestinal segment [122].
Therefore, no micelles are assumed to be present in the in vivo experiment. In this context,
permeability studies across Caco-2 monolayers generally use plain buffers as the medium in
the donor chamber, and all resulting Papp-Peff correlations are obtained under a “no micelle”
assumption. However, for poorly soluble drugs, Caco-2 permeability experiments have
been performed using biorelevant media in the donor chamber, which contains bile salts
at concentrations above their critical micelle concentrations. Interpolating resulting Papp
values in Papp-Peff correlation models violate their underlying assumption of “no micelle”
and may lead to biased Peff values. In fact, Markopoulos et al. [123] demonstrated that Papp
values for hydrophobic compounds decrease upon increasing the concentration of bile salts
in the donor media. For example, for danazol (logP = 4.2), Papp in plain buffer is 25-fold
higher than Papp obtained using FeSSIF in the donor chamber [123], which significantly
affects the derived Peff value (ranging from 8.2 to 0.4 × 10−4 cm/s when using the built-in
correlation in the Simcyp Simulator v21).

Another challenge related to translating Papp values is related to the very high lab-to-
lab variability. This variability can be attributed to experimental aspects, as outlined above
as well as to factors such as the cell passage number, cell culture conditions, number of cells
or cell monolayer integrity. It can potentially mislead decisions if permeability results from
different laboratories are directly compared. Lee et al. showed that Caco-2 cell permeability
results for the same compounds can substantially differ between different laboratories [124].
Interpolating Papp values using correlations obtained in different labs significantly increases
the root mean square error associated with fraction-absorbed predictions. So, ideally, Peff or
fraction absorbed should be estimated using correlation models derived in the same lab.
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Alternatively, Papp values for high and low permeability standards can be used to calibrate
external correlation models before using them to predict Peff or fraction absorbed.

When interpolating Papp values in Papp-Peff correlation models, we obtained estimates
of the human jejunal effective permeability, since these are the in vivo data used to build
such correlations [122]. In the Simcyp® Simulator, users may leverage the MechPeff model,
which predicts regional differences in intestinal permeability. The MechPeff model is based
largely upon the structure described by Sugano et al. [125]. In brief, the model:

1. Handles intrinsic transcellular permeability according to the pH partition hypoth-
esis (but allows the user to select an additional model permitting transcellular ion
permeation);

2. Considers paracellular permeability separately whereby molecular size in relation
to pore size is considered (via a Renkin function), in addition to pore charge–charge
interactions (electrolytes can pass through the paracellular pathways);

3. Includes consideration of the luminal Unstirred Boundary Layer (UBL), which may
be the rate-limiting barrier for otherwise highly permeable drugs.

The MechPeff model can be calibrated against Jejunal-1 Peff values predicted using
any of the in vitro cell permeability or in silico methods or directly determined using, for
example, the Loc-I-gut method. If it is assumed that transcellular permeability dominates
(rather than paracellular or unstirred boundary (mucus) layer permeability), then the
on-screen Ptrans,0 (intrinsic transcellular permeability) value can be manually adjusted to
reproduce the desired Jejunal-1 Peff value.

2.3. In Vivo Models

Animal intestinal absorption models are fundamental in many stages of the phar-
maceutical development of orally administered drugs and drug products. In preclinical
development, they are used to ensure adequate plasma exposure at high oral doses as part
of toxicokinetic evaluation [126]. In later stages of drug development, animal intestinal
absorption models are used to assess the effects of a range of biopharmaceutical proper-
ties, including the particle size and physical form of the drug, excipients, immediate- vs.
modified-release formulations, enabling formulations, prandial state and gastric pH [127].
The choice of animal model (e.g., rodent, dog, pig, etc.) relies on the research question,
as well as the size of the drug formulation. When evaluating intestinal absorption, drug
concentrations in relevant body compartments over time are typically quantified following
oral dosing. This approach means that the possibility of specifically studying intestinal
drug permeability is limited by difficulties in differentiating permeability from other ab-
sorption processes. There are, however, methods that allow more detailed mechanistic
studies of intestinal drug permeability in research animals. Two key animal models, namely
single-pass intestinal perfusion (SPIP) and intraintestinal dosing/instillation, are presented
below and in Table 2, including their advantages, disadvantages and applications.

Table 2. Advantages, limitations and applications of two key in vivo permeability models used for
drug permeability and absorption studies: single-pass intestinal perfusion (SPIP) and intraintestinal
dosing/instillation.

Model Advantages Limitations Applications

SP
IP

Defined intestinal segment and surface area
Allows direct drug permeability determination

from luminal disappearance or indirect
determination from plasma appearance

Physiological regulation of gut functions is
maintained

Controlled luminal conditions
Physiologically relevant permeability values

Slightly more labor intensive than
the intestinal bolus model

Tubing could cause non-specific
binding of APIs

Determination of permeability independent
of other absorption mechanisms

Investigations of luminal, physiological and
pharmaceutical effects on drug permeability

Drug permeability can be studied at
different physio-logical and

pathophysiological conditions
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Table 2. Cont.

Model Advantages Limitations Applications

In
tr

ai
nt

es
tin

al
do

si
ng

Very simple and efficient setup
Minimal material use takes away risk of

non-specific binding
Can be used to investigate the entire

absorption process, including dissolution,
precipitation, gastric emptying kinetics, transit,

etc.
Useful for comparative formulation

assessment

Permeability determination
requires more assumptions than

in the SPIP model
Absolute Peff calculation less

accurate due to lack of defined
segment (relative assessment)

More generalized and formulation-related
approach

Investigation of absorption mechanisms as
opposed to isolated permeability testing

By comparing different formulation groups,
different processes can be assessed more

isolated
(early preclinical formulation development)

2.3.1. Single-Pass Intestinal Perfusion

For the determination of intestinal drug permeability (and flux), a range of in situ
models with small variations can be applied. They all rely on the monitoring of drug trans-
port from, or to, an isolated intestinal segment, whereby the segment can be either a closed
loop or perfused [128]. The most commonly used one is the SPIP model (Figure 5) [129].
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Figure 5. Illustration of the experimental setup of the rat single-pass intestinal perfusion model
used for determining intestinal drug permeability of a test substance (blue line) and two idealized
examples (green and red line) of how output data look in perfusate samples and plasma. Drug
permeability can be directly determined from luminal drug disappearance (bottom left) or indirectly
determined from plasma drug appearance (bottom right).

In this model, effective drug permeability (Peff) is quantified by comparing the concen-
tration of a drug solution entering (Cin) and leaving (Cout) a perfused intestinal segment,
corrected for water flux, to the intestinal surface area of the perfused segment (A) and the
perfusion rate (Q) using Equation (3).

Pe f f =
Q
A
×

(
−ln

(
Cout

Cin

)
(3)

Alternatively, a deconvolution method can be applied [130], where permeability is
determined by calculating an intestinal absorption rate from the perfused intestinal segment
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based on the drug appearance rate in plasma, the perfused luminal surface area (A) and
the average luminal drug concentration (C) using Equation (4).

Pe f f =
absorption rate

A× C
(4)

This deconvolution–permeability method requires an intravenous reference of the
same drug, as well as an assumption/approximation regarding the first-pass extraction in
the gut wall and liver, for which we need to make corrections.

Calculation based only on drug disappearance in the perfusate (Equation (1)) is
easier from a bioanalytical and practical point of view, while the deconvolution method
has a higher accuracy for drugs with low absorption [131]. The higher accuracy of the
deconvolution approach is because the difference in the concentration entering and leaving
(Cin and Cout) the perfused intestinal segment can be insignificant for low absorption drugs,
while the drug concentration differences in plasma may still be substantial. However, for
very low permeability drugs such as peptides, the plasma concentrations often end up being
below the lower limit of quantification for the conventional LC/MS-MS methods. When
plasma concentrations are too low, drug appearance in the mesenteric veins that drain the
perfused segment can be sampled instead [132], thus avoiding dilution in the central blood
compartment, as well as first-pass hepatic metabolism. However, this specialized method
requires a blood reservoir.

The SPIP model is very versatile, as it enables mechanistic investigations of drug
permeability at defined luminal conditions. This includes the effect of, for instance, the
luminal drug concentration [133], pH [134], perfusion rate [135], fasted and fed condi-
tions [136], formulation and excipients effects [137] and regional intestinal differences [138].
It also has the advantage of maintained physiological regulation of gut functions, includ-
ing intact neurohormonal and immunological feedback mechanisms, which opens up the
possibility of evaluating drug permeability at different physiological and pathophysiolog-
ical states [139]. Maintained physiological regulation is also a big advantage of the SPIP
permeability model (and other in vivo models) compared to in vitro systems (e.g., Caco-2
cells and Ussing chamber).

Another important advantage of in vivo permeability models over in vitro systems
is the high permeability value that is generated. For instance, the permeability values of
atenolol and metoprolol are 10–100 times higher in the rat intestine in vivo [129] compared
to when it is mounted in the Ussing chamber [140] or compared to Caco-2 cells [141].
This result means that a higher flux (amount/time/area) is generated, which is necessary
for correctly evaluating many biopharmaceutical effects, such as luminal dissolution,
precipitation and supersaturation.

2.3.2. Intraintestinal Dosing

Intraintestinal dosing of drug solutions (or formulations) directly into the intestinal lu-
men of suitable animal species can be used to determine permeability based on plasma drug
appearance (Figure 6), using the same permeability calculation method as that described in
Equation (2) [142].

Compared to the SPIP model, this method needs to be modified regarding intestinal
surface area, as there is no defined perfused segment. The most accurate assumption is to
calculate with a surface area corresponding to a water plug with an area defined by the
dosed volume [143]. The methods of dose administration are plenty and include oral and
anal tubing [144], stoma models [145], and luminal entry across the serosal side following
laparotomy [142]. The latter method is the easiest from an experimental point of view, but
the most suitable approach will rely on the species at hand and the intestinal segment to
be investigated.
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Figure 6. Illustration of the experimental setup of the rat intraintestinal bolus (instillation) model
used for determining intestinal drug permeability and one idealized example of how output data
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low (red) permeability. Drug permeability is determined from plasma drug appearance (bottom left).

A major advantage of the intraintestinal bolus model for the determination of drug
permeability lies in the high throughput compared to SPIP, as gastrointestinal surgery,
perfusion tubing and pumps can be avoided. The method may also be used to assess the
impacts of more in vivo relevant biopharmaceutical processes affecting intestinal drug
absorption kinetics, such as dissolution, precipitation, gastric emptying and transit. This is
also a reason why the intraintestinal bolus model is less applicable than the SPIP model for
mechanistic absorption studies, as the relative impact of the different factors can be difficult
to assess in detail.

3. Permeability in Clinical Development
3.1. In Vivo Methods Used to Determine Permeability in Clinical Development

Permeability can be defined as the ability of a substance to pass the barrier formed
by the enterocytes in the GI tract, or in other words, the fraction absorbed. Due to the
complexity of the processes that take place during the passage of a substance from the
lumen of the gastrointestinal tract, it is, in principle, very difficult to isolate the permeability
from data obtained in a clinical study. Similar to the situation in animal studies, factors
such as the dissolution/release of the drug from the dosage form, drug solubility, luminal
stability and intestinal transit time can all influence the fraction absorbed [10], as shown in
Figure 7.

The most obvious method of investigating permeability is to determine the absolute
bioavailability after oral administration. However, the determination of the absolute
bioavailability requires using intravenous administration as the reference value. This
approach, in turn, requires the availability of a parenterally administrable dosage form,
which for poorly water-soluble drugs may be difficult to achieve. Furthermore, absolute
bioavailability is only a reliable measure of the permeability of the gastrointestinal tract
if it is high. Otherwise, mechanisms such as first-pass metabolism in enterocytes or the
liver, hepatic extraction or even the activity of intestinal efflux transporters may result in
low bioavailability, despite a high fraction being absorbed i.e., successful negotiation of the
enterocyte barrier. Most of these aspects are depicted in Figure 8.
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The determination of the absolute bioavailability can also be helpful to understanding
whether the formulation influences the processes involved in oral absorption, although it
may be difficult to tease out exactly which processes have been affected.

A clinical alternative to determining absolute oral bioavailability as a measure of
fraction absorbed is to conduct a mass balance study [146]. The advantage of a mass balance
study is that metabolites formed after absorption can also be taken into consideration and,
thus, a clearer picture of the fraction absorbed can be achieved. Another clinical alternative
is microdosing [147], which can be used either in absolute bioavailability studies or mass
balance studies, although intravenous dosing seems to be rather rarely performed.

The gold standard for the determination of human GI permeability according to
current guidelines [26,36] is regional intestinal perfusion, which is usually performed using
the Loc-I-gut method. An overview of the different methods used can be found in Sjögren
et al. [127]. In principle, the methods of determining regional intestinal permeability Peff
are based on determining drug disappearance from the lumen of the perfused segment
at a given perfusion rate. The perfused surface area required for the calculation of Peff is
determined as the surface of the perfused cylinder given by the length (l) and radius (r) of
the perfused intestinal segment. For the jejunum, r = 1.75 cm is typically assumed [148]. It
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has to be kept in mind that Peff is a measure of the regional permeability rate, reflecting the
balance between the uptake (absorption) and efflux of parent drug within the investigated
segment during the experimental time frame. Peff is, therefore, not necessarily descriptive
of the fraction absorbed. The advantages and limitations of intestinal perfusion techniques
are discussed in a recent review [149]. To date, almost all regional perfusions in humans
have been performed in the upper small intestine, as it is difficult and time-consuming to
intubate subjects down to the distal small intestine, and the method is not feasible at the
colonic level.

In addition to regional perfusion techniques, it is possible to measure the regional
relative bioavailability. Over the years, many swallowable devices have been used to
gather information about pathophysiology in the gastrointestinal (GI) tract, and several
devices have been marketed with the aim of better understanding drug absorption after
oral administration.

In the pharmaceutical arena, a popular swallowable device is the Heidelberg capsule,
first developed by Prof. H. G. Noller at the University of Heidelberg fifty years ago [150]
which has been used to explore the pH profile in the GI tract and imbalances in the GI pH
due to disorders such as gastric ulcer, hypochlorhydria and cystic fibrosis, as well as to
determine the gastric emptying time of large, non-disintegrating objects [151–154].

Later, further swallowable devices were developed to monitor further GI parame-
ters, such as temperature and pressure, in addition to the pH. One such product is the
SmartPillTM from Medtronic (Dublin, Ireland), which is marketed as a Motility Test Sys-
tem consisting of a swallowable capsule that can measure pressure, pH, transit time and
temperature as it moves through the GI tract. In the clinic, the SmartPillTM is used to
test whether the GI motility is functioning well by measuring the gastric emptying time,
transit through the colon and transit time through the intestines as a whole, as well as the
pressures that are developed in the antrum and duodenum [155]. An example of its use
in pharmaceutical research is the study by Koziolek et al. of intragastric pH and pressure
profiles after ingestion of the high-caloric, high-fat meal used for food effect studies [156].

Concurrently, capsules were developed to investigate the ability of drugs to pene-
trate through the gut wall at various points within the GI tract. Although, as mentioned
above, the Loc-I-Gut and related techniques have been successfully used to determine
Peff in humans, as described by O’Shea et al. in their excellent summary of permeability
models [11], there are many challenges associated with intubating subjects to make such
measurements, and in recent years, few data have been generated via techniques relying
on multi-channel intubation. Thus, analogous to the development of diagnostic capsules to
replace endoscopy (preparation of the GI tract prior to intubation, the intubation procedure
itself, time taken to reach more distal regions, like the ileum, etc.), devices which can be
swallowed without requiring intubation became desirable for studying permeability [157].

One such device, the IntelliCap, was originally developed by Medimetrics (Eindhoven,
The Netherlands) as an electronically controlled device for local drug delivery, but it was
later primarily used as a clinical research tool to specifically study permeability. This system
uses the gastrointestinal pH profile to identify the capsule’s location within the human
GI tract [158,159]. In an initial study, Becker et al. explored the use of the IntelliCap to
investigate diltiazem permeability in the colon. The release pattern of the diltiazem was
adjusted to match that of a sustained release product containing diltiazem, and in vivo
results demonstrated that the IntelliCap was able to match the pharmacokinetics of the
product [160]. Söderlind et al. attempted to validate the use of the IntelliCap by studying
metoprolol release in humans according to two different patterns. The first was linear
release over 4 or 6 h, and here the data for the programmed and in vivo release pattern
were in excellent agreement. However, when two separate pulses of metoprolol were
programmed, the second pulse only released about half of the intended amount of meto-
prolol in the colon [158]. Another system based on a similar concept is the InteliSite system
(Scintipharma, Lexington, KY, USA), which uses gamma scintigraphy to determine the
position of the device in the GI tract [158,159]. Despite the mostly encouraging results
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generated via these devices, both the IntelliCap and InteliSite products appear to have
been discontinued.

Another apparatus that can measure permeability at different locations in the GI tract
is actually a hybrid of an intubation method and a device used to deliver the drug at
predetermined sites [161]. Intubation is performed via a thin, nasally introduced tube
to which a capsule is attached to enable the local instillation of substances in solution
or solid form, e.g., as pellets at defined intestinal locations. Using this system acquired
from BioPerm AB (Lund, Sweden), studies of local bioavailability, metabolism, active
transport, and interactions in the small bowel, as well as in the colon, can be undertaken
(www.bioperm.se, accessed on 13 April 2023). A limitation of the release device is that
it is “tethered” via the intubation tube, such that the length of the tubing, together with
scintigraphic data, are used to locate the position of the device within the GI tract. Two
recent papers describing the pharmaceutical applications of the BioPerm method are
Dahlgren et al. [162] and Hofmann et al. [163].

The current state of the art demonstrates a clear need for a programmable, swallowable
device to measure the permeability of drugs at different locations within the GI tract. At
Fraunhofer, a major project to develop a device of this type that uses sensor information
rather than a tether to locate the device within the GI tract is underway. An important
aspect of this development is making the accrual of data for human Peff values possible for
a wider range of compounds than had been possible with the Loc-I-Gut technique. Such an
expanded data bank would be extremely useful for benchmarking permeability studies
based on cell lines and estimations of permeability based on in silico models. The first
prototypes of the Fraunhofer device will be available for study in vitro and in an animal
model later this year. Potentially, this device will have broader applications, including use
in diagnostics and therapeutics, as well as to guide drug formulation [164].

3.2. Formulation and Permeability
3.2.1. Excipients and Permeability—Separating Effect from Artefact

The importance of excipient effects on drug permeability has been much discussed,
and guidance on the subject was published in the International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human Use (ICH) “M9 guideline on
biopharmaceutics classification system-based biowaivers (Step 5)” in 2020 [26,36]. M9
is a notable accomplishment and the first harmonized allowance of a Biopharmaceutics
Classification System (BCS)-based regulatory relief, including in Japan.

M9 indicates that when there is a difference in excipient(s), BCS-based biowaiver
applications should justify why the excipient differences will not impact the rate and extent
of drug absorption and include mechanistic and risk considerations. M9 provides decision
trees to facilitate such analysis and specifies that possible effects can occur via impacts
on solubility, gastrointestinal motility, transit time and intestinal permeability, including
transporter mechanisms. Sodium lauryl sulfate is exemplified as an excipient that may
affect absorption.

M9 Annex II provides guidance on assessing possible excipient effects when excip-
ients in the reference and test formulations differ. Excipient risk should consider, in a
mechanistic fashion, excipient quantity, possible mechanisms via which the excipient may
impact absorption and drug substance absorption properties (e.g., mechanism and extent
of absorption). M9 states that Class III drugs have greater risk of excipient effects than
Class I drugs. Hence, M9 requires more restrictive excipient considerations for Class III
biowaivers than for Class I biowaivers.

Human Studies That Test for Excipient Effects on BCS Class 3 Drug Permeability

M9 indicates that drug permeability class (i.e., high or low) should be preferentially
based on human pharmacokinetic studies. Presumably, human studies of excipient risk
merit high reliability in assessing for possible excipient effects in a BCS-biowaiver appli-
cation. M9 implies the need to consider excipient risk in a mechanistic fashion, since a
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Pharmaceutics 2023, 15, 2397 24 of 38

BCS biowaiver application is very unlikely to contain a combined study of the excipient
and drug substance in question. Class III biowaivers will almost certainly rely on external
literature considerations of excipient risk [165]. Two such studies are discussed here.

Vaithianathan et al. conducted a series of bioequivalence studies in humans using two
Class III drugs: cimetidine and acyclovir [166]. In studies with 14 common excipients, they
concluded that 12 excipients need not be “qualitatively the same and quantitatively very
similar” to the reference in a BCS-based biowaiver application. The 12 common excipients
were sodium lauryl sulfate (SLS), sodium starch glycolate, corn starch, dibasic calcium
phosphate, colloidal silicon dioxide, lactose, crospovidone, povidone, pregelatinized starch,
steric acid, magnesium stearate and croscarmellose sodium. Large quantities of each
excipient were tested. Meanwhile, the results of capsules containing both hypromellose
(HPMC) and microcrystalline cellulose (MCC) failed the Cmax criterion for bioequivalence
(BE). It was speculated that MCC was an unlikely reason for high Cmax and further studies
were needed to investigate possible effects of these large amounts of MCC and HPMC. The
limitations of Cmax as a BE metric have been also discussed [165,167,168].

More recently, Metry et al. investigated potential effects of polysorbate 80 on active
and passive intestinal drug absorption in humans [169]. Polysorbate 80 is a surfactant, an
excipient class that has been mentioned in BCS guidance with regard to potential excipient
concerns. A pharmacokinetic study in humans assessed valacyclovir, chenodeoxycholic
acid (CDCA) and enalaprilat. Valacyclovir is a peptide transporter 1 (PepT1) intestinal
substrate, CDCA is an apical sodium bile acid transporter (ASBT) intestinal substrate and
enalaprilat exhibits very low passive permeability. The surfactant did not inhibit PepT1 or
ASBT and did not increase enalaprilat absorption.

Rationale for Discordance between In Vitro and In Vivo Excipient Effects on BCS Class 3
Drug Permeability

M9 indicates that the drug permeability class can also be assessed using Caco-2 mono-
layers. An in vitro permeability method can be used when human studies (e.g., absolute
availability, mass balance) do not exist or are conducted in a manner that does not allow
class determination (e.g., insufficient collection of drug in mass balance study). Several
in vitro studies have been performed to measure excipient effects on drug permeability.

M9 further indicates that Caco-2 permeability results should be considered in light of
any human pharmacokinetic data. Presumably, given that Class III biowaivers will almost
certainly rely on the external literature considerations of excipient risk, in vitro studies used
to measure excipient effect on drug permeability should be considered when available and
in light of any human pharmacokinetic data of a possible excipient effect on permeability.
Hence, a combined examination of in vitro excipient effects and in vivo excipient effects
will often be attempted for Class III drugs.

What should be the standard? Should in vitro always be assumed to be correct?
Should in vivo always be assumed to be correct?

There are eight potential combinations of concordance and discordance between
in vitro and in vivo results [167]. For example, if two products are truly bioequivalent, the
four possible outcomes are that in vitro and in vivo are both correct, both are incorrect,
only in vitro is correct and only in vivo is correct. Discordance between in vitro and in vivo
results reflects the type I and type II errors of each approach. It merits recognition that both
in vitro and in vivo methods suffer type I and type II error potential. For example, Rege
et al. reported a false-positive outcome in 10% of all excipient effect studies [170], while
Cmax is a basis for type II error in bioequivalence studies [168].

It appears that Caco-2 monolayers can be expected to frequently over-predict in vivo
effect of excipients, given differences between Caco-2 studies and human in vivo conditions.
Caco-2 monolayers lack mucous and are a single monolayer, whereas the human intestine
secretes mucus and, thus, presents a much greater physical barrier than the Caco-2 mono-
layer. Direct drug exposure effects (e.g., insult to cells) are more likely in Caco-2 monolayers
than in in vivo tissue. Also, drug dilution and residence time effects in vivo results in a
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lower drug exposure of the absorbing surface to the drug than in Caco-2 monolayers.
Overall, Caco-2 cells can be expected to be more susceptible to membrane disruption.

The literature supports this general trend of in vitro methods being overly sensitive.
Parr et al. examined several excipients in studying Class III drugs [171]. Indeed, 0.1 mg/mL
OF SLS increased Class III drug permeability across Caco-2 cells in spite of in vivo observa-
tions indicating no SLS effects [166]. Polysorbate 80 increases the cell membrane fluidity of
Caco-2 cells, which presumably is a basis for the surfactant to inhibit PepT1 functioning
in Caco-2 cells [170]. However, polysorbate 80 does not inhibit PepT1 in vivo or cause
intestinal membrane disruption [169].

3.2.2. Permeation Enhancers—Where Are We?

Orally delivered peptides must overcome several barriers, such as the acidic pH of
the stomach, proteolytic enzymes, the mucus layer and the intestinal epithelium, in order
to reach the systemic circulation. Strategies to overcome these hurdles include the use
of enteric coatings, protease inhibitors, nanoparticles and medical devices [172,173]. An
increasingly popular formulation approach is to include a permeation enhancer (PE) to aid
the transport of the peptide across the intestinal epithelium paracellularly, transcellularly
or a combination of both options [174]. PEs may interact with the lipid membrane of
the cell, fluidizing it and allowing the peptide to enter the cell and cross transcellularly.
Alternatively, PEs may work paracellularly by transiently opening the tight junctions
between intestinal cells, allowing the peptide to move between the cells. Currently there
are two formulations approved for the oral delivery of peptides that include a PE.

Rybelsus® (Novo Nordisk, Bagsværd, Denmark) is an oral semaglutide tablet used to
treat type-2 diabetes, which includes sodium salcaprozate (SNAC, 300 mg) as a PE [175,176].
Semaglutide is a glucagon-like peptide-1 receptor agonist (GLP-1 RA), modified to facilitate
a longer half-life. SNAC enhances the transport of semaglutide transcellularly across the
gastric epithelia and protects the semaglutide by creating a higher local pH [177]. In the
presence of SNAC, semaglutide is in its monomer form, which can more easily cross the
epithelia. It is important to note that even with all of these strategies, the formulation has a
bioavailability of ~1%.

Other pharmaceutical companies, such as AstraZeneca and Eli Lilly, are also interested
in developing different GLP-1 analogues and delivering them orally. Astra Zeneca have
specifically developed MEDI7219 for oral delivery [178]. The peptide was modified using
amino acid substitution to make the peptide less vulnerable to proteases, and its potency
was increased via the lipidation of the peptide backbone. An in vitro screen was carried
out to select the best PE. PEs tested included sodium caprate (C10), different bile salts and
SNAC. This screen identified a novel combination of the PEs, sodium chenodeoxycholate
(NaCDC) and propyl gallate (PG). In a dog model, an enteric coated tablet containing 20 mg
of MEDI7219 and 300 mg of PE (100 mg NaCDC and 200 mg PG) had a bioavailability of
6%. Eli Lilly formulated an acylated glucagon-like peptide-1/glucagon co-agonist peptide
with a PE and a protease inhibitor for oral delivery [179]. The screen of PEs found sodium
caprate, relative to other Pes, such as SNAC and lauroyl L-carnitine, to be the most effective
PE when co-administered with the protease inhibitor soybean trypsin inhibitor (SBTI). In
a mini pig model, when orally administered in enteric coated capsules, acylated peptide
(25 mg) blended with C10 (500 mg), EDTA (150 mg) and SBTI (125 mg) achieved an oral
bioavailability of 1%.

The second formulation on the market that contains a PE is Mycapssa® (Amryt
Pharma, Dublin, Ireland). Mycapssa® consists of a capsule containing an oily suspen-
sion for the oral delivery of octreotide, which is a somatostatin analogue for the treatment
of acromegaly [180,181]. The capsule contains sodium caprylate (C8) as the PE, along with
other surfactants such as polysorbate 80 and glycerol mono/tri caprylate. The bioavailabil-
ity achieved with this formulation is ~0.8%.

An orally delivered leuprolide to treat endometriosis, Ovarest®, is currently in clinical
trials using Peptelligence® technology (Enteris BioPharma, Boonton, NJ, USA). Previous
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versions of this technology comprised an enteric coating, citric acid as a pH modulator and
acyl carnitines or bile salts as PEs [182]. A phase 2 clinical trial in healthy volunteers has
been completed with promising results [183,184] and a trial is currently being carried out
in women with endometriosis [185].

Labrasol® ALF (caprylocaproyl polyoxyl-8 glycerides), a lipid-based non-ionic sur-
factant that contains C8 and C10, has also been investigated as a PE. In a rat intra-jejunal
instillation model, Labrasol® was shown to increase the relative bioavailability of insulin
to 7% [186]. Merck screened tricyclic peptide PCSK9 inhibitors and found that when
compound 44 was formulated with Labrasol® (30%) and delivered orally to cynomolgus
monkeys, a bioavailability of 3% could be reached [187]. While low, this bioavailability was
sufficient to reach target levels in the blood.

Realistically, the bioavailability achievable for a peptide is ~1–5% in the presence of
a PE, and high concentrations of PE are needed to achieve this level. To improve on this
goal, a number of strategies are being investigated, such the use of PEs in combination
with nanoparticles [188]. It has been shown that some nanoparticles themselves can act
as PEs [189]. Berg et al. designed an intestinal administration device that contained mini
tablets made of sodium caprate and the peptide MEDI7219 [190]. The device was designed
to release the tablets in contact with the wall of the intestine. While the device did not
increase bioavailability more than enteric coated capsules, it did reduce peptide plasma
concentration variability. It has been suggested that the release kinetics of formulations
containing PEs could be controlled e.g., releasing the PE in two phases or the sustained
released of the PE and drug over time, to improve the effects of the PE [191].

There is a need for more physiologically relevant in vitro models to screen intestinal
PEs [192,193]. This development would improve the in vitro–in vivo correlation (IVIVC).
A study carried out with sucrose laurate (C12) showed that the effective PE concentration
in vitro was 1 mM, but in an intra-jejunal instillation model, it was 25–100 mM [194]. The
GI Tract-Tissue Robotic Interface System (GI-TRIS), a high throughput screening tool using
porcine intestine, has been developed, and it identified polyethyleneimine as a potentially
suitable PE [195]. This PE was able to deliver a 11.3-fold increase in the oral bioavailability
of oxytocin in vivo in a large animal model. Another model being investigated is the
intestinal organoids generated from minipig tissue [196].

3.3. Colonic Absorption

Colonic absorption after oral administration of a drug/drug product is of interest in
cases when a high dose–low solubility active pharmaceutical ingredient (API) is adminis-
tered and absorption is incomplete in the small intestine, an extended (prolonged) release
dosage form is administered or the product targets the colon for local action [197]. For
a drug to be quantitively absorbed from the colon, three aspects need to be considered:
(1) sufficient permeation across the colonic epithelium, (2) sufficient dissolution of the drug
in the special environment of the colon (low volumes of free fluid, presence of microbiota,
etc.) and (3) sufficient stability in colonic fluids.

The emphasis to date has been on the physicochemical characterization of the environ-
ment in the upper intestinal lumen of healthy adults, as the oral drug absorption is usually
expected to be complete in the upper small intestine. However, differences in the luminal
environment between the upper small intestine and the lower intestine may impact the
performance of orally administered drug products, which deliver drugs during residence
in the lower intestine.

Modern imaging techniques (e.g., telemetric capsules, magnetic resonance imaging,
etc.) offer some options to study the fate of orally administered drug products and have
been successfully applied to investigate the pH and the fluid volume with little or even
no bowel preparation [156,198]. In addition, a well-defined protocol for direct sampling
from the lower intestine with minimal effects on its physiology under conditions to which
drugs/drug products are exposed during BA/BE studies in healthy adults has been pro-
posed [197] and applied in older adults [199].
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Although roughly 1–2 L of intestinal contents are transferred into the large intestine
every day, from which around 200 mL/day are excreted via the feces. Schiller et al. showed
that the luminal fluid volume in the colon is relatively small, with measured values in the
range of 1–44 mL in the fasted state and 2–97 mL in the fed state [198]. These volumes
primarily exist in several fluid pockets located in the ascending colon and the descending
colon. Due to the limited free water volume in the transverse colon [198], the regions
of interest with regard to drug/dosage form performance in the lower intestine are the
distal ileum, the cecum and the ascending colon. In the aspiration studies, contents were
collected from the ascending colon over a period of approximately 10 min, and the volume
of the contents in the ascending colon was approximately 23 ± 8 mL in the fasted state and
30 ± 11 mL in the fed state [200], with substantially lower volumes in the cecum (5 ± 2 mL
in the fasted state and 8 ± 3 mL in the fed state) [197]. During colonic transit, the viscosity
of the contents increases, while the volume of free fluid decreases. Consequently, the
conditions for drug dissolution in the colon are relatively poor. This issue is of particular
concern in the development of colon-targeted dosage forms, given the assumption that
only dosage forms in contact with fluid can release the drug and noting that fluids are also
needed to enable drug absorption by bringing the dissolved drug into contact with the
absorptive surface of the intestinal tract [201].

It is interesting to mention that in older adults (65–74 years of age), aspirated volumes
from the distal ileum and the cecum were found to be even lower than those recovered from
young adults (Figure 9) [199]. The macroscopic evaluation of the nature of contents in the
proximal colon of older adults indicated that the fraction of contents adhering to the mucosa
and, therefore, not amenable to aspiration during colonoscopy was substantial (65–90% of
total contents), dissimilar to observations in young adults. The adhesion of water to the
mucus may, thus, explain the difference in reported volumes of aspirated fluids in the two
subject groups. The implications of these observations on drug release/dissolution from
drug products in the lower intestine, as well as drug transport kinetics towards the surface
of the mucosa, warrant further investigation [199].
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Based on colonic volume data and the physicochemical characterization of colonic
contents [197,200], a two-stage in vitro methodology for the evaluation of dissolution in
the lower intestine using commercially available dissolution system and equipment has
been proposed [202]. Based on this methodology, the dissolution can be studied via a
single-compartment setup using a medium to simulate the environment in the distal ileum
in Stage 1 and then, in Stage 2, a medium simulates the environment in the ascending colon
in the fasted state or the fed state in all levels of simulation of biorelevant media [203]. In
Level III simulating conditions, the viscosity effects on drug release were simulated using
microcrystalline cellulose. The ratio of volumes in Stage 1 and Stage 2 was 1:5, which
is similar to the average ratio of aqueous volumes in distal ileum and ascending colon
of healthy adults observed in the clinical studies. Dissolution data were coupled with
physiologically based oral absorption modeling to simulate the average plasma levels or
the average absorption process, and the reliability of the modeling approach was evaluated
based on previously collected data in adults. It was concluded that for immediate release
products, pellets and products coated with pH-sensitive polymers (situations where stress
effects are not expected to be of an issue), Level II or even Level I (if the API is not very
lipophilic) biorelevant media in combination with the two-stage in vitro methodology seem
to be adequate for the evaluation of dissolution in the lumen of the lower intestine of adults.
For highly dosed low solubility APIs with long apparent terminal half-lives, the impact
of absorption from the lower intestine on the plasma profile is very small. The simulation
of actual drug particle dissolution in the lower intestine is not typically necessary for the
adequate prediction of oral absorption from immediate release formulations containing
discrete, dispersed particles of lipophilic drugs [202].

Aside from the volumes and viscosity of lower bowel contents, another factor that may
limit colonic absorption is the bacterial degradation of APIs. In 2008, at least 30 drugs that
have been commercially available were subsequently shown to be substrates of bacteria
in the lower intestine [204]. Several in vitro systems have been developed with the aim of
mimicking the periodic entry of fermentable substrates into the colon in order to study
the bacterial degradation of APIs [204,205]. These in vitro setups do not always reflect the
physiological bacteria density and the available volumes in the colon and their dynamics,
and they need a long period of precultivation before building a stable culture. So, the
biggest challenge in developing in vitro tools simulating the colonic bacterial environment
seems to be creating a fermentation system that contains a physiologically relevant number
and diversity of colonic bacteria. The simplest ex vivo techniques are the static batch
cultures. These cultures can use human feces that are then placed into a suitable medium
(saline or buffer solution). The drug is added in solution at time zero, and regular samples
are withdrawn and quantified for the amount of drug and its metabolites. They are suitable
for short incubation periods and are easy and flexible screening tools. It should be noted
that a lack of justification of the level of dilution of stools and the questionable clinical
relevance of the collected data may lead to the rejection of potentially useful therapeutic
agents (false-negative decision) or the selection of problematic compounds for further
development (false-positive decision) during the development phase [206].

Several years ago, the experimental conditions and the level of dilution of stools
with normal saline were optimized based on clinically important degradation profiles of
metronidazole and olsalazine in distal ileum and proximal colon of healthy adults [207,208].
Using optimized human fecal material to simulate bacterial degradation in the proximal
colon [simulated colonic bacteria (SCoB)] consisting of 8.3% (w/v) human stools in normal
saline has been proposed, and its usefulness in simulating nitro-, azo- and sulfo-reducase-
related bacterial degradation activity in the lower intestine has been evaluated based
on data from various model compounds [206,209]. Recently, it has been shown that the
degradation half-lives generated ex vivo in SCoB could also be used in simulating the
drugs’ performance and metabolism through in silico modeling [209]. The usefulness of
this approach in the case of therapeutic agents, which are degraded by enzymes other than
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nitro-, azo-, or sulfo-reductases, and formulations targeting the lower intestine is worthy of
further investigation.

Improving knowledge of the barriers to colonic absorption will enable better prediction
of colonic absorption [210]. In vitro evaluation of permeability, together with colonic
stability testing, is important to the early assessment of colonic absorption.

4. Conclusions and Perspectives

With the advent of ICH M9, methods of determining permeability have been harmo-
nized across ICH and affiliated countries, making the regulatory landscape much easier
for pharmaceutical companies to navigate in the area of permeability studies and their
reporting requirements. However, it is generally recognized that Caco-2 monolayer systems
may not adequately predict permeability in humans and tend to overpredict interactions
with excipients. Thus, there is great interest in developing alternative approaches to predict
human permeability, ranging from in silico approaches to 3D-human tissue scaffolds, and
the field as a whole is rapidly evolving.

On the clinical side, the limitations of absolute bioavailability studies and mass balance
studies in terms of estimating permeability are widely recognized. Alternatives to jejunal
perfusion studies are also sought, given that these methods are elaborate and difficult
to extend to more distal regions of the human GI tract. In particular, for drugs that are
administered in controlled release formulations and those that are targeted to the lower
gut, methods to determine regio-specific permeability values are sorely needed.

Recently, there has also been special interest in the ability of permeation enhancers to
enable the oral administration of peptides, as this would circumvent the need for parenteral
formulation of drugs in this increasingly important therapeutic category. Moreover, the
advent of drugs that enable targeted protein degradation has led to growing interest in
the application of permeation enhancers in the field of small molecules, as pharmaceutical
scientists are looking for new ways to improve the oral absorption of these compounds
because their chemical structure are often poorly permeable and poorly soluble.
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