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Abstract: Background: Empagliflozin has been shown to reduce cardiovascular morbidity and
mortality in patients with type 2 diabetes. Various research on its efficacy in patients with chronic
kidney disease (CKD) have been actively conducted. So far, few studies have investigated the safety
of these adverse effects specifically in Asians with CKD. We aim to address these safety concerns
on a patient population of Asian CKD patients using real-world data. Methods: We conducted a
retrospective cohort study using health insurance data from the Korean Health Insurance Review
& Assessment Service and compared safety outcomes between empagliflozin and sitagliptin in
26,347 CKD patients diagnosed with diabetes. Adverse outcomes, including major adverse cardiac
events (MACEs), all-cause mortality, myocardial infarction (MI), stroke, and hospitalization for
heart failure (HHF), among others, were assessed. Results: Among a 1:1 matched cohort (6170 on
empagliflozin, 6170 on sitagliptin), empagliflozin was associated with a significant reduction in
MACEs, all-cause mortality, MI, hospitalization for unstable angina, coronary revascularization, HHF,
hypoglycemic events, and urinary tract infections, but increased the risk of genital tract infections.
No significant changes were observed for transient ischemic attack, acute kidney injury, volume
depletion, diabetic ketoacidosis, thromboembolic events, and fractures. Conclusions: The usage of
empagliflozin in diabetic CKD patients shows a significant reduction in many adverse outcomes
compared to sitagliptin, but with an increased risk of genital tract infections. These findings provide
evidence for future clinical decision-making around the use of empagliflozin in Asian CKD patients.

Keywords: empagliflozin; chronic kidney disease; diabetes; adverse effects; real-world evidence

1. Introduction

In recent years, various research has emerged investigating the role of empagliflozin
in managing various aspects of diabetic complications. One of the studies that broadened
the scope of empagliflozin usage was the EMPA-REG OUTCOME trial [1]. The trial
demonstrated significant reductions in cardiovascular morbidity and mortality in patients
with type 2 diabetes mellitus (T2DM) and established cardiovascular disease. This paved
the way for a paradigm shift in the treatment strategy, with empagliflozin at the forefront
of therapeutic regimens and now widely being recommended as a second-line diabetic
medication after metformin [2,3]. In 2021, it was also approved for heart failure indications
in patients without diabetes [4].

Chronic kidney disease (CKD) is prevalent in about 40% of individuals with type
2 diabetes, and patients with CKD are at a higher risk of adverse outcomes due to their
compromised renal function [5]. Patients with an estimated glomerular filtration rate
(eGFR) below 30 mL/min/1.73 m2 were not included, and over 70% of the patients in the
trials had normal kidney function in the pivotal study. [1] To address these issues, several
randomized controlled trials (RCTs) have been conducted to evaluate the various clinical
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efficacy and adverse effects of empagliflozin in patients with CKD. The EMPEROR-Reduced
study demonstrated enhanced effectiveness in managing heart failure and deteriorating
kidney function for the group with eGFRs of less than 60 mL/min/1.73 m2 [6]. The EMPA-
REG OUTCOME study indicated there was no notable variance in side effects between
the group with an eGFR less than 60 mL/min/1.73 m2 and those with standard kidney
function [7]. Furthermore, the EMPA-KIDNEY study, which recently encompassed up to
30% of participants with an eGFR below 30 mL/min/1.73 m2, revealed that empagliflozin
continues to be advantageous for declining kidney function and cardiovascular disease [8].
A pooled analysis of safety results from RCTs reported a beneficial effect on hyperkalemia
and edema [9]. It seems the benefits of empagliflozin were generally consistent across a
range of eGFR values [10].

Additionally, the real-world effectiveness of empagliflozin in patients with diabetes
and CKD has recently been explored. Various studies investigated the long-term effects
of empagliflozin on renal outcomes in a real-world setting and concluded that the drug
did slow the progression of kidney disease in these patients [11,12]. Htoo et al. reported
that empagliflozin significantly reduces the risk of MACEs (but not liraglutide) or HHF
when compared to liraglutide or sitagliptin [13]. Furthermore, SGLT2 inhibitors have also
been reported to reduce blood pressure, uric acid, and microalbuminuria or podocyturia,
indicating they might have structural benefits for glomerular health [14].

However, most of the prior research has been conducted in the US or Europe. In
fact, in the EMPA-REG OUTCOME trial, over 70% of participants were Caucasian, with
merely 20% being Asian [1]. The effect or adverse drug reaction to a drug could vary
based on genetic factors or medical practices across different racial groups. For instance,
Asians are often reported to have a lower rate of cardiovascular disease risk compared to
other ethnicities [15]. Differences in diabetes’ epidemiology and pathophysiology exist
across various racial and ethnic groups [16–18]. Asian individuals with type 2 diabetes
often receive their diagnosis relatively early, with about 20% being diagnosed before
turning 40 years old [19]. This group with early onset diabetes also has an elevated risk
for complications compared to those with a later onset [20]. Growing research indicates
that Asians with type 2 diabetes have a heightened risk for CKD compared to other
ethnicities [21,22].

A primary concern regarding adverse drug reactions to empagliflozin among CKD pa-
tients revolves around diabetic ketoacidosis (DKA) and dehydration [4]. So far, few studies
have investigated the safety of these adverse effects specifically in Asians with CKD. While
existing evidence does highlight beneficial renal outcomes and possible cardiovascular
benefits, the risks associated with adverse reactions like diabetic ketoacidosis and dehydra-
tion need careful examination, especially for Asian populations. Although there have been
numerous retrospective studies analyzing the effectiveness and safety of empagliflozin,
none have compared results between CKD and non-CKD patients. Real-world evidence
(RWE) studies hold value as they offer insights over longer durations and encompass a
broader patient demographic [23,24]. They might be valuable in scenarios where RCT data
may be lacking or unrepresentative of Asian population. Thus, our objective is to address
these safety aspects through undertaking an RWE study focused on Korean CKD patients,
utilizing insurance claim data.

2. Materials and Methods
2.1. Study Design and Sources

This was a retrospective cohort study evaluating the impact of empagliflozin com-
pared to sitagliptin on safety outcomes in patients with CKD and T2DM. The analyzed
health insurance data was officially provided by the Korean Health Insurance Review &
Assessment Service (HIRA) [25]. In Korea, enrollment in the National Health Insurance
(NHI) program is mandatory for 97% of the population. Healthcare facilities like clinics
and hospitals file claims with the HIRA service to get reimbursement for both inpatient
and outpatient care. These claims include details such as diagnoses coded according to
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the International Classification of Diseases, 10th revision (ICD10), procedures performed,
prescription records, and demographic details.

2.2. Ethical Approval

Given that all participants were anonymized using a randomized identification num-
ber, there was no requirement for written informed consent. The study received approval
from the Institutional Review Board of Seoul National University (IRB No. E2101/001-003)
and adhered to the Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) guidelines [26].

2.3. Study Patients

This study included patients diagnosed with T2DM between 2016 and 2018. All
included patients were adults (18 years or older) with established CKD (N18.4, N18.5,
N18.6, E11.2, and E13.2) and T2DM (E11–E14) who were prescribed either empagliflozin
or sitagliptin for the first time. We selected an active comparator (sitagliptin) as a proxy
for the placebo. We chose an active comparator, sitagliptin, to stand in for the placebo
due to its well-established use in observational studies. This decision was made because
non-user comparator groups in such studies can show significant differences from actively
treated patients, in contrast to RCTs [27]. Utilizing an active comparator can also aid
in minimizing the risk of immortal time bias. Numerous other research has also used
Dipeptidyl peptidase-4 (DPP4) inhibitors as comparators while evaluating the safety of
SGLT-2, given the established safety records of DPP4 inhibitors [28–32]. The index date was
determined to be the very first date each drug (empagliflozin or sitagliptin) was prescribed.
The study period was before the new 2022 American Diabetes Association guidelines on
type 2 diabetes were introduced [33], and empagliflozin and sitagliptin were commonly
considered as second- or third-line options post metformin. In some cases, empagliflozin
was prescribed after a DPP-4 inhibitor due to safety concerns associated with its use.

2.4. Key Variables

A total of 16 adverse effects including major adverse cardiovascular events (MACEs),
all-cause mortality, myocardial infarction [MI], hospitalization for unstable angina, coronary
revascularization, stroke, transient ischemic attack (TIA), hospitalization for heart failure
(HHF), hypoglycemic events, urinary tract infections (UTIs), genital tract infections (GTIs),
volume depletion, acute kidney injury (AKI), DKA, thromboembolic events, and bone
fracture were analyzed. In each cohort, individuals with a history of these adverse effects
were excluded, and separate cohorts were constructed. The operational definitions of
outcomes were determined using the Korean Standard Classification of Diseases-7 codes or
procedure codes (Table S1). To minimize the influence of potential confounding variables,
such as selection bias, we included a total of 71 covariates. These covered demographics,
comorbidities, and disease/outcome-specific variables. All these covariates were evaluated
within the year preceding the index date.

2.5. Statistical Analysis

Statistical analyses were performed for the intention-to-treat population. Patients
were followed until the earliest occurrence of any of the following events: an outcome
event, the date of the last follow-up, the date of switching diabetic medication to the other
comparison group, or the end of the study period. The maximum follow-up period was
set at 48 months. Empagliflozin users were matched 1:1 with sitagliptin users, and the
distribution of the propensity score was inspected [34]. A standardized difference greater
than 0.1 was considered indicative of an imbalance [35]. The Cox proportional hazard
regression model was used to estimate the sex- and age-adjusted hazard ratio (aHR) of
empagliflozin for adverse outcomes, with a 95% confidence interval (CI).

Sensitivity analyses were performed in two ways. First, patients who received at
least 1 dose of each study drug were observed until ≤30 d after a patient’s last intake
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of medication. Additionally, we followed up patients who received the study drug for
≥30 d (cumulative) including events that only occurred ≤30 d after a patient’s last intake
of medication (‘as-treated’ analysis). Analyses were performed with SAS Enterprise Guide
version 7.1 (SAS Institute Inc., Cary, NC, USA).

2.6. Comparative Analysis

Using the same study design, patients in the normal kidney function (NKF) group
were identified just like the CKD patients. The comparative analysis was conducted in
a comparable fashion on patients with NKF and contrasted with the results obtained
from patients with CKD. They were evaluated for the same set of 16 outcomes including
MACEs, all-cause death, MI, and more. The statistical analysis, involving Cox proportional
hazard regression and propensity score matching, was performed identically to maintain
consistency. Thus, the outcomes in NKF patients were compared to the outcomes in CKD
patients, thereby providing a comparison between the two distinct patient groups.

3. Results
3.1. Demographics

A total of 932,465 patients diagnosed with type 2 diabetes and treated with either em-
pagliflozin or sitagliptin were identified. From this group, 384,579 new users of these medi-
cations remained (Figure 1). Patients diagnosed with CKD were then selected, resulting
in an eligible study cohort of 26,347 patients (6211 on empagliflozin, 20,136 on sitagliptin).
The data revealed that sitagliptin users were older and had more frequent clinic visits (both
inpatient and outpatient) compared to empagliflozin users (Tables 1 and S2). Moreover,
a higher prevalence of coronary artery disease, including stroke, was observed among
sitagliptin users relative to empagliflozin users.

A successful match was achieved between 6170 empagliflozin users and sitagliptin
users. After matching, the differences in age, frequency of clinic visits, index date, car-
diovascular risk factors, comedications, and comorbidities between the two groups were
considerably diminished, resulting in a well-balanced cohort. All 71 covariates showed
standardized differences well below 0.1. The median follow-up period was recorded as
0.9 years, with the median duration of prescription for anti-diabetic medications during the
follow-up period being 0.9 years (interquartile range 0.2–2.3 years). The mean age of the
patients was noted as 50.9 years, with men constituting 56.7% of the cohort (n = 6998). The
baseline characteristics of patients with normal kidney function are presented in Table S3.
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Table 1. Baseline characteristics of matched cohort.

Variables Sitagliptin
n = 6170

Empagliflozin
n = 6170 STD

Sex, male 3534 (57.3) 3464 (56.1) −0.02

Age, year 50.8 ± 12.8 50.9 ± 12.1 0.01

Normal 5842 (94.7) 5846 (94.8)

0.004Medicaid 307 (5) 304 (4.9)

No charge 21 (0.3) 20 (0.3)

Number of inpatient visits 0.5 ± 1.3 0.5 ± 1.3 0.003

Number of outpatient visits 29.0 ± 28.4 29.0 ± 28.4 0.002

Index year

2016 1545 (25) 1564 (25.4)

0.022017 3106 (50.3) 3057 (49.6)

2018 1519 (24.6) 1549 (25.1)

Charlson comorbidity index

0 2 (0) 1 (0)

0.02
1 416 (6.7) 408 (6.6)

2 503 (8.2) 523 (8.5)

3 5249 (85.1) 5238 (84.9)

CV risk factor

CAD 1946 (31.5) 2054 (33.3) 0.04

Multi vessel CAD 1080 (17.5) 1126 (18.3) 0.02

MI 110 (1.8) 95 (1.5) −0.02

CABG 444 (7.2) 430 (7) −0.01

Stroke 190 (3.1) 181 (2.9) −0.01

PAD 170 (2.8) 148 (2.4) −0.02

DM circulation 1078 (17.5) 1083 (17.6) 0.002

DM foot 0 (0.0) 0 (0.0) 0

DM nephropathy 5789 (93.8) 5828 (94.5) 0.03

DM neuropathy 1111 (18) 1089 (17.7) −0.01

DM other complications 4101 (66.5) 4085 (66.2) −0.01

Hyperglycemia 126 (2) 140 (2.3) 0.02

CV risk factor

Hypertension 4312 (69.9) 4330 (70.2) 0.006

Edema 704 (11.4) 696 (11.3) −0.004

Kidney stone 120 (1.9) 123 (2.0) 0.004

Osteoarthritis 1832 (29.7) 1808 (29.3) −0.01

Other arthritis 1672 (27.1) 1698 (27.5) 0.01

PUD 1619 (26.2) 1596 (25.9) −0.01

Pancreatitis 126 (2) 124 (2) −0.002

UC 12 (0.2) 9 (0.2) −0.01

Crohn 3 (0.1) 4 (0.1) 0.000

Asthma 946 (15.3) 899 (14.6) −0.02

COPD 182 (3) 164 (2.7) −0.02

Bladder stone 2 (0) 3 (0.1) 0.01

Dementia 516 (8.4) 525 (8.5) 0.005

Electrolyte imbalance 576 (9.3) 617 (10) 0.02
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Table 1. Cont.

Variables Sitagliptin
n = 6170

Empagliflozin
n = 6170 STD

Glaucoma/cataract 1775 (28.8) 1766 (28.6) −0.003

HONK 40 (0.7) 44 (0.7) 0.01

HTN nephropathy 354 (5.7) 377 (6.1) 0.02

Hyperthyroid disease 170 (2.8) 175 (2.8) 0.005

Hypothyroid disease 722 (11.7) 685 (11.1) −0.02

Osteomyelitis 32 (0.5) 38 (0.6) 0.01

Pneumonia 493 (8) 457 (7.4) −0.02

Skin infection 296 (4.8) 290 (4.7) −0.005

Metformin 4731 (76.7) 4752 (77) 0.008

Insulins 1575 (25.5) 1620 (26.3) 0.02

SUs 3154 (51.1) 3178 (51.5) 0.01

Glitazones 978 (15.9) 954 (15.5) −0.01

GLP-1 agonists 65 (1.1) 78 (1.3) 0.02

AGIs 225 (3.7) 195 (3.2) −0.03

Meglitinides 98 (1.6) 113 (1.8) 0.02

Anticoagulants 2837 (46) 2825 (45.8) 0.01

Antiplatelets 2783 (45.1) 2768 (44.9) −0.05

Heparins 190 (3.1) 182 (3) −0.01

Thrombolytics 3 (0.1) 3 (0.1) 0.01

Statins 4750 (77) 4775 (77.4) 0.01

Other lipid lowerings 1129 (18.3) 1165 (18.9) 0.01

Nitrates 451 (7.3) 443 (7.2) −0.005

Digoxin 392 (6.4) 391 (6.3) −0.001

ACEIs 255 (4.1) 252 (4.1) −0.002

ARBs 3752 (60.8) 3723 (60.3) −0.01

Entresto 0 (0) 2 (0) 0.03

Other anti-HTNs 3009 (48.8) 2995 (48.5) −0.005

Loop diuretics 638 (10.3) 632 (10.2) −0.003

Other diuretics 1509 (24.5) 1469 (23.8) −0.02

Antianxieties 2131 (34.5) 2176 (35.3) 0.02

Antipsychotics 163 (2.6) 168 (2.7) 0.005

Antidepressants 891 (14.4) 893 (14.5) 0.001

Dementia 516 (8.4) 525 (8.5) 0.005

Antiparkinsons 114 (1.9) 117 (1.9) 0.004

Anticonvulsants 90 (1.5) 90 (1.5) 0

NSAIDs 4828 (78.3) 4779 (77.5) −0.02

Bisphosphonates 140 (2.3) 156 (2.5) 0.02

Opioids 2610 (42.3) 2639 (42.8) 0.01
Values are represented as mean ± standard deviation or number (%); ACEis, angiotensin-converting enzyme
inhibitors; AGIs, α-glucosidase inhibitors; ARBs, angiotensin II receptor blockers; CABG, coronary artery by-
pass graft; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; CV, cardiovascular;
DM, diabetes mellitus; HONK, hyperglycaemic hyperosmolar nonketotic coma; HTN, hypertensive; MI, myocar-
dial infarction; NSAIDs, non-steroidal anti-inflammatory drugs; PAD, peripheral artery disease; PUD, peptic ulcer
disease; STD, standardized difference; SUs, sulfonylureas; UC, ulcerative colitis.
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3.2. Risk of Safety Outcomes

The use of empagliflozin was associated with a notable reduction in the risk of MACEs,
with an aHR of 0.74 (95% CI: 0.64–0.85) (Table 2). The risk of all-cause mortality was also
significantly reduced when treated with empagliflozin (aHR 0.47, 95% CI: 0.33–0.68). In
the context of MI, empagliflozin usage resulted in a lower risk, as denoted by an aHR of
0.60 (95% CI: 0.45–0.81). However, for stroke, it did not show a significant difference in
risk, with an aHR of 0.92 (95% CI: 0.74–1.13). Patients receiving empagliflozin demon-
strated a decreased risk of hospitalization for unstable angina, presenting an aHR of
0.67 (95% CI: 0.57–0.79). Likewise, the risk of coronary revascularization was marginally
reduced with an aHR of 0.79 (95% CI: 0.65–0.97). HHF showed a reduction in risk with an
aHR of 0.66 (95% CI: 0.55–0.80). Hypoglycemic adverse events also had a slightly lower risk
with empagliflozin treatment, as indicated by an aHR of 0.78 (95% CI: 0.62–0.97). Addition-
ally, the risk of UTIs was slightly reduced, with an aHR of 0.90 (95% CI: 0.82–0.98). Notably,
the risk of GTIs was increased with empagliflozin, with an aHR of 1.43 (95% CI: 1.27–1.61).
There were no significant changes in the risk of transient ischemic attack, AKI, volume
depletion, DKA, thromboembolic events, and fractures as indicated by the aHRs close to 1.

Table 2. Hazard ratios of empagliflozin for each safety outcome.

Events Person-Year
Hazard Ratio (95% CI)

Unadjusted Adjusted

MACEs

Sitagliptin 470 16,824

Empagliflozin 342 16,945 0.72 (0.63, 0.83) * 0.74 (0.64, 0.85) *

All-cause death

Sitagliptin 96 12,391

Empagliflozin 43 12,814 0.43 (0.30, 0.62) * 0.47 (0.33, 0.68) *

Myocardial infarction

Sitagliptin 120 17,104

Empagliflozin 74 17,320 0.61 (0.46, 0.82) * 0.60 (0.45, 0.81) *

Stroke

Sitagliptin 179 16,568

Empagliflozin 161 16,765 0.89 (0.71, 1.10) 0.92 (0.74, 1.13)

Hospitalization for unstable angina

Sitagliptin 364 15,428

Empagliflozin 254 15,829 0.68 (0.58, 0.80) * 0.67 (0.57, 0.79) *

Coronary revascularization

Sitagliptin 220 15,670

Empagliflozin 178 15,851 0.80 (0.65, 0.98) * 0.79 (0.65, 0.97) *

Transient ischemic attack

Sitagliptin 143 16,422

Empagliflozin 131 16,552 0.91 (0.72, 1.15) 0.92 (0.72, 1.17)

Hospitalization for heart failure

Sitagliptin 265 16,334



Pharmaceutics 2023, 15, 2394 8 of 14

Table 2. Cont.

Events Person-Year
Hazard Ratio (95% CI)

Unadjusted Adjusted

Empagliflozin 175 16,640 0.65 (0.54, 0.79) * 0.66 (0.55, 0.80) *

Hypoglycemic adverse event

Sitagliptin 177 16,431

Empagliflozin 138 16,666 0.77 (0.62, 0.96) * 0.78 (0.62, 0.97) *

Urinary tract infections

Sitagliptin 1112 9909

Empagliflozin 1032 10,231 0.90 (0.83, 0.98) * 0.90 (0.82, 0.98) *

Genital infections

Sitagliptin 459 12,300

Empagliflozin 639 12,025 1.42 (1.26, 1.60) * 1.43 (1.27, 1.61) *

Acute kidney injury

Sitagliptin 168 16,402

Empagliflozin 159 16,647 0.94 (0.75, 1.16) 0.94 (0.76, 1.17)

Volume depletion

Sitagliptin 413 15,336

Empagliflozin 375 15,436 0.90 (0.78, 1.04) 0.90 (0.78, 1.04)

Diabetic ketoacidosis

Sitagliptin 35 17,089

Empagliflozin 34 17,221 0.96 (0.60, 1.54) 0.96 (0.60, 1.54)

Thromboembolic event

Sitagliptin 257 16,042

Empagliflozin 226 16,227 0.87 (0.73, 1.04) 0.88 (0.73, 1.05)

Fracture

Sitagliptin 667 13,200

Empagliflozin 684 13,337 1.02 (0.91, 1.13) 1.03 (0.92, 1.14)
* Statistically significant; hazard ratio was adjusted for age and sex.

3.3. Sensitivity Analysis

For sensitivity analysis, after the follow-up of patients who received at least one dose
of study drugs until ≤30 d after the last intake of medication, similar results were obtained
in all 16 outcomes. Additional sensitivity analysis (including patients who received study
drugs for ≥30 d including only events that occurred ≤30 d after a patient’s last intake of
medications) did not produce meaningful changes in the study findings (Table S4).

3.4. Comparative Analysis: CKD Group versus NKF Group

In a comparative analysis, we observed that CKD patients who used empagliflozin
showed a protective effect against cardiovascular diseases. These included associations
with MACEs, MI, coronary revascularization, angina, HHF, hypoglycemia, UTIs, GTIs,
volume depletion, and thromboembolic events, as depicted in Figure 2. A notable obser-
vation was the risk of death in the CKD group with an aHR of 0.47 (95% CI: 0.33–0.68).
Empagliflozin in the CKD group was not significantly associated with stroke, with an aHR
of 0.92 (95% CI: 0.74–1.13); AKI, with an aHR of 0.94 (95% CI: 0.76–1.17); DKA, with an
aHR of 0.96 (95% CI: 0.60–1.54); or fractures, with an aHR of 1.03 (95% CI: 0.92–1.14).
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Figure 2. Comparative analysis of empagliflozin for each safety outcome in chronic kidney disease
and normal kidney function patients. Normal kidney function patients refer to those not diagnosed
with chronic kidney disease.

For NKF patients, the HRs for empagliflozin use were generally similar between
both groups, except some outcomes. The risk of stroke was noted with an aHR of
0.74 (95% CI: 0.69–0.79). The association with the risk of AKI was marked by an aHR
of 0.75 (95% CI: 0.69–0.80). Additionally, the risk of fractures was noted with an aHR of
0.91 (95% CI: 0.88–0.94) in the NKF group.

4. Discussion

This RWE study explored the safety outcomes of empagliflozin use in T2DM pa-
tients with CKD. To our knowledge, this is the first RWE study to examine a range of
safety outcomes in Asian CKD patients. Despite concerns that these patients might not
respond well to empagliflozin due to the reduced glucose reabsorption capabilities of their
kidneys [4], the study found a substantial decrease in cardiovascular event risks in Asian
CKD patients. These results are consistent with findings from the EMPA-REG OUTCOME,
EMPEROR-REDUCED, and EMPA-KIDNEY studies [6–8].

The kidneys play a crucial role in the underlying mechanisms of T2DM. Firstly, in
healthy individuals, the kidneys account for about 20% to 25% of the body’s endogenous
glucose production during fasting, due to the process of gluconeogenesis. Secondly, the
kidneys are pivotal in managing blood glucose levels as they oversee both glucose filtra-
tion and reabsorption processes [36,37]. At this point, empagliflozin has received more
attention for its glucosuria mechanism. Moreover, empagliflozin’s benefits in CKD patients
appear to extend beyond just inducing glucosuria, positively impacting cardiovascular
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and renal dynamics, reducing inflammation, and providing protection to end-organs. Sev-
eral mechanisms have been proposed for the effects of empagliflozin, including its role
in natriuresis, ketogenesis, lipid metabolism, improvements in cellular and endothelial
functions, and antiproliferative effects on certain types of cancer. One of the mechanisms
involves aiding sodium excretion [38], which in turn activates transforming growth factor,
offering hemodynamic protection to the kidneys [39–41]. Concerns have been primarily
raised regarding AKI when empagliflozin is used in patients with CKD [42] due to vaso-
constriction or volume depletion; however, such events are usually temporary. Our study
did not identify any enhanced risks of AKI or volume depletion in Asian CKD patients.
Additionally, empagliflozin boosts endogenous G production that promotes lipid oxidation
and ketone body utilization. Studies have reported an increase in lipolysis and a reduction
in visceral fat [43]. In CKD patients with decreased renal function, the development of
DKA has been a concern due to decreased ketone excretion; however, this study found
that empagliflozin did not increase the risk of DKA. Furthermore, empagliflozin has been
associated with improved arterial vascular stiffness and reduced resistance [44,45]. It has
shown a decline in both cardiac and vascular sympathetic nerve activities, and it exhibits
anti-inflammatory properties [46,47] and mitigates fibrosis [45,48]. All these factors provide
a strong rationale for its potential cardiovascular benefits, especially in CKD patients with
deteriorated renal function. However, our study did not find significant changes in the risk
for stroke, transient ischemic attack, thromboembolic events, and fractures.

Our research strength lies in its comprehensive analysis of various adverse effects. To
date, only a few studies have investigated the effectiveness or safety of empagliflozin in
Asian patients with CKD. Sugiyama et al. reported that SGLT2 inhibitor enhanced kidney
protection, leading to a marked improvement in the reduction in eGFR and proteinuria
in Japanese patients [12]. Another study also showed a reduction in risk for developing
end-stage kidney disease in Singaporean patients [49]. However, a significant limitation
of these studies is their focus solely on CKD’s progression, neglecting to consider cardio-
vascular events and side effects. We examined a range of safety outcomes in Asian CKD
patients and concluded that the pattern of results closely aligns with those observed in
Western populations. A few key points should be considered when interpreting these
results. For cardiovascular outcomes, Asian individuals often exhibit a stronger reaction to
antihypertensive medications that influence the renin–angiotensin–aldosterone system. [50].
Another study also indicates racial distinctions in plasma renin activity levels [51]. This
suggests reducing overall sodium content as a potential therapeutic target, showing why
Asian individuals might be also responsive to empagliflozin. It is reported that GTIs were
considerably less frequent in Asians than in Western populations, and this could be at-
tributed to better hygiene practices in Asia [52]. However, GTIs also seem to be an issue
with the use of empagliflozin in the Asian population.

For those with significant renal impairment in CKD (<30 mL/min/1.73 m2), the area
under the concentration–time curve of empagliflozin increased 1.7–2.7-fold, and its half-life
was increased by 1.4-fold compared to NKF patients [53,54]. Indeed, our comparative
analyses have shown that Asian CKD patients showed a higher occurrence of adverse
reactions irrespective of being on sitagliptin or empagliflozin compared to NKF patients.
Nevertheless, the HRs for empagliflozin use in relation to various outcomes were generally
consistent between both groups, with a few exceptions. SGLT2 inhibitors are as effective to
use in CKD patients as they are in NKF patients while preventing a variety of cardiovascular
events. The cardiovascular safety benefits of empagliflozin appear to be further maximized
in CKD patients. However, the comparative analysis did reveal no significant results
for stroke, AKI, and fractures in CKD patients compared to NKF patients. Other RWE
studies have also reported safety in other NKF patients with these results (stroke [55],
AKI [56–59], and fractures [60]). This could be explained by the underlying disease state
and co-morbidities in CKD patients and warrants further research to explore these risks
in more detail. Even though empagliflozin did not reveal any new safety concerns, these
findings underline the significance of tailored therapeutic strategies in CKD patients. This
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fact emphasizes the importance of patient education and close monitoring to prevent and
manage such complications.

This study’s results need to be considered within the limitations of an observational
study. Our research employs a retrospective cohort methodology, and the HIRA database
does not incorporate all details, such as lab outcomes for blood glucose tests, urine culture
tests, or body weight. Despite our effort to control all potential confounders, there still may
be residual confounding factors present. It should also be noted that the control utilized
in this research was sitagliptin, not a genuine placebo. This could potentially impact the
study’s external validity. Furthermore, the follow-up period in this study was relatively
short, potentially limiting the ability to detect the long-term effects of the medications.

5. Conclusions

In conclusion, our study results suggest reassuring the efficacy and safety profiles of
empagliflozin in CKD patients, and further supports its use in Asian population. As the
number of patients with CKD continues to grow globally, the real-world evidence in this
study could serve as a key step in providing evidence for future clinical decision-making
around the use of empagliflozin in Asian CKD patients.
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