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Abstract: Second- and third-line treatments of patients with antibiotic-resistant infections can have
serious side effects, such as organ failure with prolonged care and recovery. As clinical practices
such as cancer therapies, chronic disease treatment, and organ transplantation rely on the ability
of available antibiotics to fight infection, the increased resistance of microbial pathogens presents
a multifaceted, serious public health concern worldwide. The pipeline of traditional antibiotics is
exhausted and unable to overcome the continuously developing multi-drug resistance. To that end,
the widely observed limitation of clinically utilized antibiotics has prompted researchers to find a
clinically relevant alternate antimicrobial strategy. In recent decades, the discovery of antimicrobial
peptides (AMPs) as an excellent candidate to overcome antibiotic resistance has received further
attention, particularly from scientists, health professionals, and the pharmaceutical industry. Effective
AMPs are characterized by a broad spectrum of antimicrobial activities, high pathogen specificity,
and low toxicity. In addition to their antimicrobial activity, AMPs have been found to be involved in
a variety of biological functions, including immune regulation, angiogenesis, wound healing, and
antitumor activity. This review provides a current overview of the structure, molecular action, and
therapeutic potential of AMPs.

Keywords: antimicrobial peptide (AMP); multi-drug resistance (MDR); extracellular polymeric
substances (EPSs); lipopolysaccharides (LPS); lipoteichoic acid (LTA)

1. Introduction

The antimicrobial resistance (AMR) to available therapeutics is a serious healthcare
problem that is mostly associated with the death of a specific portion of people worldwide.
Moreover, current predictions indicate a significant increase in annual global death in the
future [1].

AMR is a multifaceted health problem that represents a serious global threat. In
addition, the traditional antibiotic pipeline is exhausted and unable to overcome the contin-
uously developing multi-drug resistance. As consequence, the widely observed limitation
of clinically utilized antibiotics has prompted researchers to find clinically relevant antimi-
crobial approaches. Accordingly, the discovery and development of alternative therapeutic
approaches to overcome the widely reported AMR are urgently need. Antimicrobial pep-
tides (AMPs) are group of small peptides, which are reported to play a crucial role in the
host innate immunity against a broad spectrum of microorganisms, including bacteria
(Gram-positive and Gram-negative), viruses, fungi, and parasites [1,2]. Accordingly, AMPs
belong to the first-line defense of a host against invading pathogens. These AMPs are, in
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great part, amphipathic peptides with α-helical structures and β-sheets linked by disulfide
bridges, extended loops, or cyclic configurations [2,3]. Thus, based on their broad-spectrum
antimicrobial activity, killing potential, high selectivity, and low toxicity, AMPs have gained
further interest from researchers and physicians as an alternative approach to the widely
utilized antimicrobial agents, especially over the past two decades. The currently identified
AMPs can be classified into different groups according to the information provided on
the Data Repository of Antimicrobial Peptides (DRAMP) [http://dramp.cpu-bioinfor.org/
accessed on 1 August 2022]. AMPs are derived from six kingdoms (bacteria, archaea,
protozoa, fungal, plants, and animals). As widely reported, AMPs are involved in a vari-
ety of biological functions, including immune regulation, angiogenesis, wound-healing,
anti-inflammatory activities, and antitumor activity [3–6]. Furthermore, AMPs function
as critical effectors in both innate and adaptive immunity. Thus, beyond their functional
role as a link between innate and adaptive immunity, AMPs contribute to the resolution of
inflammation [3,4]. The activation of the innate immune system by AMPs is recognized to
be one of the key mechanisms that regulate AMP-mediated early clearance of infections.
The immunomodulatory functions of AMPs are known to be very complex and involve
various receptors, signaling pathways, and transcription factors [3,4]. AMPs can either
directly or indirectly promote the recruitment of different immune cells, such as immature
dendritic cells (iDCs), T lymphocytes, monocytes, eosinophils, and neutrophils, to the site
of infection.

While the primary treatment of bacterial pathogens relies on established antibiotics,
the development of multi-drug resistance (MDR) is ever evolving and changing [7,8]. In
contrast to established antibiotics, AMPs have been approved for their therapeutic potential
to overcome the multi-resistance of most microbial pathogens [5]. However, the clinical
advantage of AMPs over currently available antibiotics resides in their mode of molecular
action. Specifically, AMPs have been shown to kill microbial pathogens via a mechanism
mediated by the destruction of plasma membranes and interference with intracellular
components [2,7]. Despite the success of AMPs in clinical application, natural AMPs have
doubtful properties that hinder their functional application [8]. However, the functional
analysis of the chemical structure of AMPs may help to improve the molecular action and,
subsequently, the therapeutic potential of AMPs. This review will discuss the structure,
molecular action, and therapeutic potential of AMPs.

2. Sources and Structure of Antimicrobial Peptides

In addition to their distribution in all organisms, many if not all AMPs are evolution-
arily conserved and derived from viral, bacterial, fungal, plant, and animal sources.

AMPs with viral sources include endolysins (lysins), virion-associated peptidogly-
can hydrolases (VAPGHs), depolymerases, and holins, which are derived from bacterio-
phages [9].

AMPs with bacterial sources have been reported in several studies. For example,
Bacillus strains have been shown to produce AMPs with promising inhibitory activity
against Shigella, Salmonella, E. coli, and Staphylococcus aureus [10–13]. Furthermore, AMPs
derived from Bacillus sp have been reported for their antimicrobial activity against Staphy-
lococcus aureus, Alteromonas sp. strain CCSH174 and Klebsiella pneumoni [10,11]. Another
example of bacterial AMPs includes those derived from Propionibacterium jensenii [14] and
those isolated from Pseudomonas [12], which have been reported for their activity against
Shigella, Salmonella, E. coli, and Staphylococcus aureus [15].

These AMPs with bacterial sources have been reported to be both ribosomally and
non-ribosomally synthesized peptides.

Ribosomally synthesized bacterial AMPs are known as bacteriocins. Bacteriocins have
been suggested as promising alternative approaches to the conventional small-molecule
antibiotics. These bacteriocins can be divided into four classes. One of these classes is class
I, which includes a group of AMPs that consist mainly of small peptides of 19–38 amino
acids. The second class of the bacteriocins includes heat-stable AMPs, which are commonly
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synthesized as a prebacteriocin. The third class contains a group of large and heat-stable
peptides, and the fourth class IV contains uniquely structured bacteriocins containing
amino acids, lipids, or carbohydrates, in addition to being susceptible to lipolytic and
glycolytic enzymes [9,16]. These AMPs are only active against bacteria, which are closely
related to the producing strains but not their own producers [16].

Non-ribosomally synthesized AMPs of Gram-positive bacteria include cyclic lipopep-
tides, which are known as polymyxins, and linear peptides, which are known as tride-
captins. In contrast to Gram-positive-bacteria-derived AMPs, the majority of AMPs isolated
from Gram-negative bacteria are common in E. coli, as well as in other species including
Klebsiella spp. and Pseudomonas spp. [17]. These AMPs have limited activity against
Gram-negative bacteria and can be classified into four classes, namely, colicins, colicin-
like bacteriocins, microcins, and phage tail-like bacteriocins [17]. The classes of colicines
are predominantly produced by E. coli. Although the class of colicin-like-bacteriocins is
structurally and functionally similar to the colicins of E. coli, a number of other species,
including P. aeruginosa and the Klebsiella genus, have been reported to produce colicin-like
bacteriocins [18]. Furthermore, other bacteriocins such as microcins can be produced by En-
terobacteriaceae, and they are active against phylogenetically close species [18]. The fourth
class of bacteriocins includes Gram-negative-bacteria-derived AMPs, including phage
tail-like bacteriocins [19]. This type of bacteriocin is characterized by its high molecular
weight and cylindrical peptides [19].

Fungal AMPs are common AMPs, which are generally grouped into two main classes,
fungal defensins and peptaibols [20].

Defensins are short, cysteine-rich peptides with different sources, including microor-
ganisms, plants, and animals. Therefore, fungal-derived defensins are known as defensin-
like peptides based on their high sequence and structural similarities. Although fungal
AMPs are similar in their structure and peptide sequences, their activities against Gram-
positive and/or Gram-negative bacteria and/or fungi differ [21].

Although there are different sources of AMPs, their numbers of amino acid residues
range between 10 and 60 amino acids, and most of them are cationic with an average net
charge of 3.32. In addition to cationic AMPs, there are also many anionic AMPs that contain
several acidic amino acids, such as aspartic acid and glutamic acid.

Plant-derived AMPs are cysteine-rich peptides with broad-spectrum antimicrobial activ-
ity against bacteria, fungi, and viruses, and they possess immunomodulatory activities [22].
These AMPs are classified into various families based on their cysteine motifs, the ar-
rangement of disulfide bridges, and sequence similarity. The most common members
of plant-derived AMPs include α-hairpinin, defensins, hevein-like peptides, cyclic and
linear knottin-type peptides, lipid transfer proteins, thionins, and snakins, in addition to
unclassified cysteine-rich AMPs [22].

The AMPs with animal sources include invertebrate AMPs, fish and amphibian AMPs,
reptile- and avian-derived peptides, and mammal-derived AMPs.

Invertebrate AMPs include those of insects, such as defensin and cecropin, mollusc
AMPs (e.g., defensins), nematode AMPs (defensins), and horseshoe crabs (e.g., big de-
fensins), in addition to invertebrate β-defensin and crustacean AMPs (e.g., crustins) [23].
Invertebrate AMPs are an integral component of humoral defense since the invertebrates
lack an adoptive immune response when compared with those of the animal kingdom [23].

Vertebrates AMPs, particularly those of fish and amphibian origin, have been shown
to play an essential role in defense responses to microorganisms. Although fish are a
considerable source of several AMPs, such as cathelicidins, β-defensins, hepicidins, pis-
cidins, and histone-derived peptides [24,25], amphibians are the largest source of AMPs
among invertebrates. However, the most common amphibian AMPs include bombinins, bu-
forin, cathelicidin, dermaseptins, esculentins, fallaxin, magainins, maximins, phylloseptins,
phylloxin, plasticins, plasturins, pseudins, and ranateurins [25].

AMPs with reptile and avian sources belong to the members of the cathelicidin and
defensin families [26]. Cathelicidins are small-sized AMPs secreted from macrophages and
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neutrophils upon their activation in response to infection. β-defensin was first discovered
in reptiles as a 40-residue peptide isolated from leukocytes of the European pond turtle.
Thus, based on its source, this type of AMP is known as turtle β-defensin 1 (TBD-1) [27].
Similarly, avian β-defensins include AvBD1-14 from the chicken, ostricacins from the ostrich
(e.g., OSP-1 to OSP-4), and mallard duck β-defensins (AvBD2 and AvBD9), which are the
common AMPs among avian family [27].

The most common mammalian AMPs belong to the members of the cathelicidin and
defensins families. Mammalian cathelicidins are cationic peptides with an amphipathic
structure in the form of α-helical, β-hairpin, or elongated conformations [26]. LL-37, the
most well-studied cathelicidin, has an amphipathic structure, which can be modified into
an aqueous solution to form an α-helix upon membrane interaction [26,28]. Mammalian
defensins are classified into three sub-families: α, β, and θ. These subfamilies of defensins
are synthesized first as prepropeptides, which share several features with mature peptides.
These common features include cationic net charge (+1 to +11), short polypeptide sequences
(18–45 amino acids), and three intramolecular disulfide bonds [27].

Based on their synthesis mechanisms, mammalian AMPs can be classified into ei-
ther ribosomal-produced peptides [29] or non-ribosomal-produced peptides [30]. The
synthesis of ribosomal AMPs occurs mainly in the cytoplasm of eukaryotic cells via the
ribosome-dependent translation of genes encoding for AMPs, e.g., nisin [29,31]. By contrast,
the synthesis of non-ribosomal AMPs is mediated by the peptide-synthesis-dependent
mechanism in the cytosol of mammalian cells [25].

In contrast to ribosomal AMPs, the assembly of non-ribosomal AMPs contains not
only the 20 common amino acids but also many rarer amino acids [32,33]. These different
amino acids are synthesized by large enzymes, which are known as non-ribosomal peptide
synthetases [33]. Non-ribosomal peptide synthetases are characterized by their ability to
synthesize both cyclic and linear AMPs in the form of polypeptides, which give the AMPs
their various molecular structures. [34]. A common example for both cyclic and linear
AMPs is Gramicidin A (Figure 1), which appears as a small linear peptide with amphipathic
and hydrophobic helices and a β-sheet secondary structure [35,36].
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Figure 1. Chemical structure of antimicrobial peptide gramicidin A. Gramicidin A is a linear an-
timicrobial peptide and one of the three known gramicidins (A, B, and C). They are non-ribosomal
peptides that consist of the following 15 L- and D-amino acids: formyl-L-X-Gly-L-Ala-D-Leu-L-
Ala-D-Val-L-Val-D-Val-L-Trp-D-Leu-L-Y-D-Leu-L-Trp-D-Leu-L-Trp-ethanolamine. The difference
between gramicidins A, B, and C is that the amino acid position Y is L-tryptophan in gramicidin A,
L-phenylalanine in B, and L-tyrosine in C. The isoforms of the gramicidins A, B, and C are determined
by the existence of L-valine or L-isoleucine at position X of anion acid and the origin [10].

Cyclic peptides, such as polymyxin B (Figure 2A) [37], bacitracin (Figure 2B) [38], and
vancomycin (Figure 2C) [39], are characterized by their unique amino acid compositions
that appear in the form of lipopeptides or macrocyclic peptides. By contrast, peptides such
as α defensin appear as bundles of α-helical rods in lipid bilayers (Figure 2D) [40].
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Figure 2. Chemical structure of cyclic antimicrobial peptides: (A) Structure of polymyxin B, including
fatty acyl tail, linear peptide, and cyclic peptide (B) Chemical structure of bacitracin: bacitracin is an
AMP that consists of D-aspartic acid, D-phenylalanine, D-ornithine, D-glutamic acid, and a ring of
thiazoline containing amino acids. (C) Chemical structure of vancomycin: vancomycin is a branched
tricyclic glycosylated non-ribosomal peptide. (D) Chemical structure of defensin: defensins comprise
an N-terminal β-strand followed by an α-helix and two more β-strands. The β-strands form a
triple-stranded antiparallel β-sheet that can be stabilized by disulphide bonds. Two of the disulphide
bonds connect the α-helix and the central β-strand, while a third disulphide bond stabilizes the
structure by linking the β-strand.

While the cationic amphipathic helix is common in the secondary structure, partic-
ularly among bacteriostatic peptides [41], α-helical peptides are either hydrophobic or
anionic with less selectivity towards microbes [42]. Apart from their different net charges,
helical peptides are characterized by their ability to form hexameric clusters that can tra-
verse bilayer membranes and surround an aqueous pore [43]. Consequently, the mechanism
by which AMPs kill bacteria is mediated via the formation of pores, which leads to the
disintegration of pathogen cell membranes [44,45]. The biological functioning of AMPs
therefore depends on their ability to undergo structural modifications that allow them to
interact with the membrane and elements of the cellular matrix.

3. Molecular Mechanisms of AMP Action

AMPs are characterized by their diverse activities and modes of action. These char-
acteristics are determined by the type of target organisms and the mechanisms via which
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the AMPs exert their antimicrobial activity. For example, AMPs with antiviral activity
are mostly associated with viral assembly, adsorption, and entry processes, in addition
to their ability to target both RNA and DNA viruses. Among these antiviral peptides are
indolizidine and human α-defensin 1 [46]. These AMPs have been shown to eliminate
viruses via their incorporation into the viral envelope, leading to the instability of the
virus assembly, and they subsequently deliver the viral entry into the host cell [44]. By
contrast, AMPs such as lactoferricin have been shown to inhibit viral adsorption by binding
to the specific viral receptors on the target cells [46]. Further, AMPs such as NP-1, an
alpha-defensin that is derived from rabbit neutrophils, has been shown to inhibit viral
assembly and maturation by binding the intracellular components that are essential for the
cellular translocation of the virus in the host cell [46].

The most investigated AMPs are those with antibacterial activity. This type of AMP
is characterized by its ability to interact with anionic bacterial membranes, leading to the
disruption of the lipid bilayer [40].

Based on their molecular action, peptides with antimicrobial activity can be classified
into two types. One of these types includes membrane-disrupting peptides, while the other
one includes non-membrane-targeting peptides [40]. Although the molecular action of
the main types of AMPs is different, some bacterial AMPs exert their activity via both
membrane- and non-membrane-dependent mechanisms. Most AMPs trigger bacterial
membrane destruction via interaction between their positively charged peptide molecules
and the negatively charged cell surface as well as through hydrophobic interactions between
the peptide amphipathic domain and membrane phospholipids.

Cationic AMPs have been demonstrated to exert their antibacterial activities via
interaction with negatively charged bacterial membranes. The electrostatic interaction
between cationic AMPs and the anionic components of the plasma membrane results
in an increase in membrane permeability, and the release of AMPs into the cytoplasmic
membrane, which subsequently, causes the lysis of the plasma membrane and, finally,
the death of the microbial pathogen. To that end, four models have been proposed to
describe the mechanisms whereby AMPs trigger the destruction of the microbial membrane.
These include the barrel-stave (Figure 3A), toroidal pore (Figure 3B), carpet (Figure 3C),
and aggregate (Figure 3D) models. In the barrel-stave model, the increased number of
peptides binding to the membrane triggers membrane aggregation and conformational
transformation. Consequently, the shift of local phospholipid head groups leads to cell
membrane instability.

The barrel-stave mechanism is mediated via the vertical aggregation of helices into
the lipid bilayer. The insertion of the transmembrane peptide bundle is organized in the
cell membrane as staves of a barrel so that their hydrophobic face region is aligned with
the central lipid region of the lipid bilayer. In parallel, the hydrophilic peptide constituents
form the inner pore region that is filled with water [36]. The stable channels, namely,
the barrel-like pores, which are formed in the cell membrane, allow the outflow of the
cytoplasm. As consequence, the severe damage of the cell membrane results in cell collapse
and, finally cell, death [33].

The toroidal pore model is mechanistically similar to the barrel-stave model; however,
the mode of insertion of AMPs into the membrane and the binding behavior of AMPs with
lipid molecules are different. In the toroidal pore model, the insertion of peptides into the
membrane results in a continuous bending of the lipid monolayer from top to bottom [43].
The central water core is wrinkled with the inserted peptides and lipid head groups. Upon
the formation of toroidal pores, the polar regions of the peptides start to line up with the
lipid polar head groups.
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Figure 3. Proposed models for AMP-induced membrane permeability, membrane penetration,
and interference with cellular components. AMPs exert their antimicrobial activity via interaction
with negatively charged membranes to mediate and rapidly increase membrane permeability, cell
membrane lysis, or the release of intracellular contents, leading to microbial cell death. There are four
main models of membrane pore formation, namely, the barrel-stave model (A), toroidal pore model
(B), carpet model (C) and aggregate model (D). (E) Mechanisms of the penetration of AMPs into the
cytoplasm of the microbial cell and interference with intracellular components.

To mediate their antimicrobial activities, AMPs first undergo confirmational modifica-
tions so that they can penetrate the phospholipid membrane. Following the penetration
of the phospholipid membrane, the hydrophobic regions of the AMPs combine with the
internal hydrophobic regions of the phospholipid bilayer, exposing the hydrophilic regions
to the outside and subsequently increasing the membrane permeability of the microbial
cell, which ultimately results in microbial death. Upon their entry into the cytoplasm,
AMPs start to interfere with the intracellular components, leading to the dysregulation of
cellular function via the mechanism mediated by the enhancement of DNA/RNA damage,
inhibition of enzyme activity, and suppression of the transcription/translation processes,
which are necessary for cell wall synthesis. Although in both barrel-stave and toroidal
pore models, the mode of AMP insertion into the membrane determines the action of
AMPs, in the carpet model, the action of AMPs depends on the concentration levels and
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electrostatic effect of the AMPs, as well as the net charge of the anionic component [43]. The
hypothesis of the carpet model relies mainly on the initial aggregation of the peptides on
the membrane in the monomeric or oligomeric form that ultimately cover the membrane
as a carpet. As a consequence, the hydrophobic regions start to interact with the cell
membrane while the hydrophilic ends face the aqueous solution. Once the concentration
threshold has been reached, the aggregation of the peptides starts to enhance membrane
permeability and ultimately membrane disruption [34]. Finally, in the aggregate model,
the binding of the AMPs to the anionic cytoplasmic membrane causes the peptides and
lipids to form a peptide–lipid complex micelle that opens membrane channels and allows
the release of ions and intracellular contents, which ultimately leads to cell death [46].
In all models, the molecular action by which AMPs trigger microbial death depends on
both a conformational change in the AMPs and the peptide–lipid ratio of the AMPs and
the microbial membrane [46]. The conformational change in α-helical AMPs following
anionic lipid membrane binding transforms the disordered structure of the AMPs in the
aqueous solution into an amphiphilic α-helical structure, which facilitates the interaction
of the AMPs with the microbial membrane [46]. Of note, in contrast to α-helical AMPs,
AMPs with β-sheets are unable to undergo major conformational transitions during the
interaction with the microbial membrane [46] due to the β-sheet AMPs’ stable disulfide
bond bridges [16]. Peptide–lipid ratios likewise significantly impact conformational change
and membrane lysis. At low peptide–lipid ratios, AMPs are located in parallel orientations
on the surface of the plasma membrane [47], whereas at high peptide–lipid ratios, the
AMPs becomes vertically oriented and are inserted into the hydrophobic center of the
plasma membrane. This insertion of AMPs into the hydrophobic center of the plasma
membrane increases the membrane permeability and subsequently enhances the release of
both intracellular ions and metabolites that induce microbial cell death [48,49].

In addition to the destruction of the microbial membrane, AMPs have been reported
to mediate their antimicrobial activity via intracellular-dependent mechanisms (Figure 3E).
These include the induction of DNA/RNA damage, the inhibition of protein synthesis,
enzyme activity, and the synthesis of a bacterial cell wall [50]. The above-mentioned AMP
conformational changes and microbial membrane peptide–lipid ratios are unsurprisingly
the main factors governing the ability of AMPs to pass through bacterial cell wall com-
ponents, such as the lipopolysaccharides (LPSs) in the case of Gram-negative bacteria
and lipoteichoic acid (LTA) and peptidoglycan in the case of Gram-positive bacteria [51].
AMP-mediated DNA/RNA damage has been found to be induced by the direct binding
of AMPs to DNA or by the inhibition of DNA replication and transcription [48,49,52–59]
AMPs such as Buforin II [52], a histone-derived antimicrobial peptide with a length of 21
amino acids, translocate across lipid membranes without affecting membrane permeability,
and they trigger antimicrobial activity by binding to DNA/RNA [60]. Conversely, the AMP
indolizidine, which displays antimicrobial activity against multi-drug resistance pathogens,
has been shown to kill bacteria via the inhibition of DNA synthesis by penetrating mem-
branes without inducing cell lysis. Anionic AMPs such as P2, isolated from Xenopus
Leavis skin, was found to inhibit bacterial growth via interaction with microbial genomic
DNA [61]. Other AMPs, such as PR-39, a proline/arginine-rich AMP isolated from the small
intestine of pigs, has been reported to kill bacteria by penetrating the outer membranes of
bacteria [62]. The entry of PR-39 into the cytoplasm was found to be associated with the
inhibition of protein synthesis and acceleration of the ubiquitination of proteins, which are
essential for DNA synthesis [63]. Proline-enriched AMPs have been reported to exert their
antimicrobial activity through the interference of protein synthesis machinery by binding to
ribosomes [63]. The N-terminal (1–25) and (1–31) residues of the non-lytic proline-rich AMP
(PrAMP) Bac 5, for example, bind to the tunnel of ribosomes and prevent the translation
process [64]. The proline-enriched AMP oncocin inhibits mRNA translation by binding
the 70S ribosome, whereas apidaecin inhibits 50s ribosome assembly [65]. Api137, an
apidaecin-derived peptide, binds to the ribosomes of E. coli and trap release factors 1 (RF1)
or 2 (RF2) to trigger translation termination [66].
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The inhibition of microbial pathogens’ intracellular enzymes has also been reported to
be a mechanism through which some AMPs exert their antimicrobial activity. Pyrrhocoricin
binds to the bacterial heat shock protein DnaK and subsequently inhibits ATPase action [25].
Microcin J25, a ribosomal synthesized and post-translationally modified AMP, binds to
the secondary channel of the RNA polymerase, blocking the entry of substrates through
the channel [61]. LL-37 inhibits the activity of palmitoyl transferase PagP [57,58]. Pag
P is an enzyme located in the outer membrane of Gram-negative bacteria and facilitates
membrane permeability via activated lipid A acylation [67]. Finally, NP-6, isolated from
Sichuan pepper seeds, inhibits E. coli β-galactosidase activity [67].

The inhibition of bacterial cell wall synthesis is a common therapeutic strategy to treat
pathogenic bacteria infection. The anti-leishmanial drug candidate, human neutrophil
peptide-1 (HNP-1), inhibits bacterial cell wall synthesis by penetrating the outer and in-
ner membranes of E. coli and suppresses the synthesis of DNA, RNA, and proteins [68].
HNP1′s antimicrobial activity is mediated by its interaction with lipid II. HNP1 binds to
a highly conserved non-peptide motif of peptidoglycan precursor (lipid II) and teichoic
acid precursor (lipid III) [61], resulting in the inhibition of cell wall synthesis and subse-
quent lysis. HNP1 has excellent activity against a wide range of Gram-positive bacteria,
including multi-drug resistant organisms, such as Methicillin-resistant Staphylococcus aureus
(MRSA), Vancomycin Intermediate S. aureus (VISA), Vancomycin-resistant enterococci
(VRE), Clostridium difficile, Streptococcus pneumoniae, and Mycobacterium tuberculosis [23].
Finally, teixobactin is a cyclic dipeptide containing an unusual amino acid, enduracidi-
dine [68]. This AMP is a member of a new class characterized by their specific action on
unique targets in cell wall synthesis.

4. Therapeutic Potential of Antimicrobial Peptides

Human infections are typically polymicrobial and stem mainly from oral infections,
surgical wounds, diabetic foot ulcers, cystic-fibrosis-related lung infections, urinary tract
infections, and otitis media infections [69–71]. Therefore, the treatment of polymicrobial
infection is more challenging when compared with monomicrobial infections. In contrast to
traditional antibiotics, AMPs are characterized by their ability to target both monomicrobial
and polymicrobial infections without the development of cross-resistance [72]. Thus, the
advantage of AMPs over traditional antibiotics is their ability to act directly on the bacterial
membrane when compared to their indirect action on the intracellular targets. Other advan-
tages of AMPs over conventional antibiotics involve the actions mediated by their different
characteristics, including their ability to function against both antibiotic-resistant and -
sensitive microbial pathogens and their ability to target monomicrobial and polymicrobial
infections without the development of cross-resistance [64,73]. However, the therapeutic
success of AMPs in the treatment and prevention of bacterial infection may result from
their ability to act directly on the bacterial membrane, rather than their indirect action on
intracellular targets [74]. Furthermore, the ability of a single AMP to exert its antimicrobial
activity via multiple mechanisms, and through different pathways [75], suggests the clinical
relevance of AMPs in the treatment and prevention of microbial pathogens. However,
the establishment of novel, clinically relevant therapeutic approaches that target multiple
pathogens in mixed populations, thereby replacing traditional antibiotics, is tangible.

The production of endogenous AMPs by multicellular organisms constitutes a host
defense mechanism against pathogenic microbes. Based on the broad spectrum of their
antimicrobial activity, AMPs are promising therapeutic agents for infection control [25].
In addition to their antimicrobial activities against various pathogens, including bacteria
(Gram-positive and Gram-negative bacteria), fungi, and viruses [76], many AMPs are
effective against multi-drug resistant (MDR) bacteria and have low propensity for the
development of resistance [77]. AMPs are also involved in the promotion and regulation of
the innate immunity system [78]. Finally, the use of AMPs against biofilm formation has
been widely reported over the last few decades [79]. Many AMPs kill cells in biofilms and
inhibit biofilm formation via the interference with the abundant extracellular polymeric
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substances (EPSs) of microbial cells. These EPSs are known to be functionally responsible
for the protection of microbial cells from the surrounding environment [80].

Despite the potential therapeutic benefits of AMPs when compared with existing
antibiotics, AMPs have some limitations that hinder their development for clinical use [81].
Most natural AMPs are characterized by poor absorption, distribution, metabolism, and
excretion, in addition to their short half-life and low permeability and solubility [82].
Moreover, AMPs have a high production cost and a degree of toxicity, particularly in oral
administration. All these properties are considered as major hindrances for the develop-
ment of novel AMP-based treatments. To overcome these AMP limitations that hamper
clinical application, several studies are urgently needed to improve the functional proper-
ties of AMPs, such as their absorption, distribution, metabolism, excretion, cytotoxicity, and
proteolytic stability. An improvement in the functional properties of AMPs may involve
the alteration of the peptide composition and the modification of their post translation
of AMPs.

To that end, several technical procedures have been proposed to improve the functional
properties of AMPs. These include the modification of the chemical structure of AMPs via
the introduction of unusual amino acids, such as D-form amino acids, or by the acetylation
or amidation of the terminal regions of AMPs. As widely reported, the modification of
the chemical structure of AMPs was found to improve the stability of their peptides and
prevent their proteolytic degradation [83]. Similarly, the delivery of AMPs using liposome
encapsulation was found to preserve the stability of AMPs and to reduce their toxicity [84].

AMPs are an essential component of the innate skin defense mechanisms and are
considered to be a first-line barrier providing protection against microbial pathogens [85].
AMPs are closely associated the with innate skin immunity and are known to regulate
immunity by interacting with various immune cells and linking innate and adaptive im-
mune responses during infection. These AMPs include, β-defensins (BD) [86], cathelicidins
(human hCAP18/LL37) [87], RNase 7 [88], and secretory leukocyte protease inhibitor
(SLPI) [89]. Apart from their significant role in the regulation of innate skin immunity,
AMPs such as defensins and cathelicidins have also been reported to play a key role in
the regulation of the innate immunity of the lung [86,90]. To that end, both defensins
and cathelicidins belong to a family of AMPs, which are mostly detected in the secretion
of airways [87]. The exogenous administration of defensins and cathelicidins has been
reported as an effective strategy in the prevention and treatment of infection. In par-
ticular, tachyplesin III, a β-sheet peptide isolated from the hemocytes of the horseshoe
crab, has been evaluated for antimicrobial activity in lung polymicrobial co-infection
pneumonia [89,91].

Naturally produced AMPs in the oral cavity play key roles in the maintenance of
microbial homeostasis and oral cavity health stasis [91,92]. These AMPs are characterized
by their antimicrobial activity against oral bacteria, which has been evaluated against oral
infections, as widely reported in several studies [91,92]. D-Cateslytin (D-Ctl), an AMP
derived from L-Cateslytin, has been observed to have therapeutic potential against
bacterial infection in combination with several antimicrobials [92,93] and has been
reported to be an antifungal agent in the treatment of oral infections associated with
Candida albicans [94].

The most important advantages of AMPs over conventional therapeutics are attributed
to the potential of AMPs to offer innovative and effective solutions to the treatment of
mixed populations with polyinfections and to differentiate between pathogenic bacteria
and protective normal flora. Therefore, the development and evaluation of AMPs with the
ability to target multiple pathogens in mixed populations without the destruction of the
protective normal flora represents an important public health issue.

5. Conclusions

AMPs are characterized by their broad spectrum of antimicrobial activities and are
powerful regulators of innate immunity. AMPs have a strong cell-killing efficiency on
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microbial pathogens, particularly MDR bacteria. In addition, AMPs offer an alternative ap-
proach to overcome the antibiotic resistance of most microbial pathogens. Although AMPs
may be able to overcome the limitations of current antibiotics due to their antimicrobial
activity, their shortcomings include poor stability, toxicity, and unexplored adverse effects,
which limit their clinical application. However, continued development and evaluation of
functional AMPs may allow for the modification of natural AMPs, thereby facilitating the
production of new AMPs with clinically desirable characteristics. Some AMPs have been
approved for clinical application, while others remain under investigation in clinical trials.
Therefore, the development and evaluation of AMPs with the ability to target multiple
pathogens in mixed populations without the destruction of the protective normal flora
represents an exciting antimicrobial therapeutic strategy.
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