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1. Stability of probe 13 at pH 7.5 and 6.5 using the spectrofluorometric assay.

Principal: CTG's fluorescence is reversibly quenched or shifted to another wavelength when
the phenol group is conjugated to the pH-sensitive linkers. Upon cyclization of the linker and
the release of the free phenol, the fluorescence will be restored (on-mode). Fluorescence can

be measured to follow the release of the payload, which is the fluorophore itself.

The optical properties of the free fluorophore were measured in 50% DMSO/buffer at pHs 7.5,
and 6.5. CTG gave a strong absorbance at 490 — 516 nm at both pHs with a maximum peak at
510 nm, as shown in Figure S1 (A). Also, it emits strongly between 515 — 560 nm after
excitation at 500 nm at pHs 7.5 and 6.5, as shown in Figure S1 (B, C). Since the fluorescence-
based assay depends on the difference in fluorescence properties between the free fluorophore
and its conjugates, the excitation wavelength must be carefully chosen. The ideal wavelength
for exciting the free fluorophore and its conjugates must meet certain criteria. First, the
fluorophore should be excited only at this wavelength without great excitation of the
fluorophore conjugates. Secondly, the wavelength that gave a reasonable absorbance rather
than maximum absorbance should be chosen to avoid exceeding the detector limits. Finally,
a long distance between the excitation and emission wavelengths is preferable to minimize
the background fluorescence. Accordingly, the in vitro tests were conducted by measuring the
fluorescence at 555 nm after excitation of the probes at 500 nm, as this wavelength achieved

the previous requirements.
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Figure S1. (A) Absorbance spectra of CTG (100 uM) in PBS/DMSO (1:1 v/v, pH=7.5, 37 °C),
PB/DMSO (1:1 v/v, pH= 6.5, 37 °C); Fluorescence spectra of CTG at 555 nm after excitation at
500 nm in (B) PBS /DMSO (1:1 v/v, pH="7.5, 37 °C), (C) PB/DMSO (1:1 v/v, pH = 6.5, 37 °C) at
different concentrations.

Then, the optical properties of probe 13 were measured in DMSO. Probe 13 exhibited a
maximum absorbance peak at 457 nm, and the absorbance started to drop off at 500 nm, as
shown in Figure S2 (A), therefore 500 nm was the best wavelength to use for excitation. Probe
13 was then excited at 500 nm, and the fluorescence spectra were recorded at different
concentrations (200 — 10 uM). The results showed that probe 13 demonstrated considerable

fluorescence quenching at all the concentrations tested, as presented in Figure S2 (B).
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Figure S2. (A) Absorbance spectra of probe 13 in DMSO at different concentrations (37 °C);
(B) Fluorescence spectra of probe 13 in DMSO at different concentrations (37 °C) (ex: 500 nm,
em: 555 nm).

Since the sensing properties of probe 13 were measured in DMSO and compared to the optical
properties of CTG that dissolved in buffer/DMSO solution, it was deemed inappropriate to
judge based on that comparison. Therefore, a negative control was required to simulate the
probe's optical properties in buffer solution without being cleaved to determine whether this
was accurate enough. CTG-CHs (27) was synthesised to use as a negative control as described
in Scheme S1. Then, the absorbance spectra were taken from CTG-CHs after dissolving in 50%
DMSO/PBS with a pH of 7.5, revealing a shift in absorbance from 510 nm to a new maximum
peak at 457 nm, as shown in Figure S3 (A). The absorbance of CTG-CHs in 50% PBS/DMSO
was similar to the absorbance of probe 13 in DMSO. Following this, CTG-CHs was excited at
500 nm after dissolving in 50% DMSO/buffer solutions of pHs 7.5, and 6.5. Results showed a
significant decrease in the fluorescence of the negative control compared to CTG of a similar
concentration, as shown in Figure S3 (B). These results indicated that the quenching effect

was real, and alkylating the fluorophore at the phenol position turned off the fluorescence.



Scheme S1. (a) (i) Cs2COs, DMF, 0 °C, 1 h; (ii) iodomethane, rt, 2h; (b) TFA/dichloromethane,
rt, 1 h.
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Figure S3. (A) Absorbance spectra of 100 uM of CTG, CTG-CHs in PBS /DMSO (1:1 v/v, pH =
7.5, 37 °C), probes 13 in DMSO, (B) Fluorescence spectra of CTG-CHs (100 uM) in PBS /DMSO
(1:1v/v, pH=7.5, 37 °C), PB/DMSO (1:1 v/v, pH= 6.5, 37 °C).

Method: Probe 13 was dissolved in DMSO to make a stock solution of 200 uM concentration.
Then, 20 nM concentration was prepared by serial dilution method. From this solution, 100
uL was taken and then added to a black-walled, 96-well microplate with each well containing
100 pL of the respective buffer solution to give a final concentration of 10 nM. Similarly, CTG
fluorophore dissolved in 50% PBS/DMSO (pH 7.5), 50% PB/DMSO (pH 6.5), and DMSO and
was used as a positive control. CTG-CHs (27) in DMSO, 50% PBS/DMSO (pH 7.5), and 50%
PB/DMSO (pH 6.5) were prepared and used as a negative control. Furthermore, probe 13 was
dissolved in DMSO at 10 nM concentration and added as an additional control to assure the
stability of the probe in the absence of buffer solutions. The microplate was incubated at 37
¢C, and the fluorescence (em: 555 nm, ex: 500 nm) was recorded at every time point until the

full release of CTG was obtained.



Results: The fluorescence of probe 13 was low in DMSO and remained consistent over the
analysing period, indicating that this probe was stable in DMSO and any increase in the
fluorescence would be due to adding the buffer solution, as shown in Figure S4. It is worth
noting that the negative control (27) had its fluorescence quenched in buffer solutions of pHs
7.5 and 6.5, thereby confirming the switch-off mode of the fluorophore when the phenol group
was conjugated, as shown in Figure S4. CTG gave a high fluorescence in 50% PBS/DMSO and
50% PB/DMSO at pHs 7.5 and 6.5, respectively. Also, it exhibited a high fluorescence in DMSO
but is lower than at pHs 7.5 and 6.5. DMSO is a highly polar solvent with non-bonded
electrons and should exhibit basic characters and as reported in the literature, sulfuric and
hydrochloric acids are completely dissociated in DMSO. The basic strength of DMSO is
comparable to that of H2O. CTG has a low pKa (4.33), which permits it to partially dissociates

in DMSO, resulting in high fluorescence.

Adding buffer solutions of pHs 7.5 and 6.5 to probe 13 caused an immediate increase in the
fluorescence intensity that reached the same fluorescence level as the positive control (CTG)
after 3 min. We believed that probe 13 cyclizes immediately due to the short distance between
the amine and the carbonate group, allowing five-membered ring formation. The CTG release
from probe 13 was almost the same at both pHs, as shown in Figure S4 (A, B).
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Figure S4. Fluorescence (ex: 500 nm, em: 550 nm) of probe 13 (10 nM ) when incubated in (A)
PBS /DMSO (1:1 v/v, pH = 7.5, 37 °C), (B) PB/DMSO (1:1 v/v, pH = 6.5, 37 °C), respectively.
Values were recorded in triplicate. Error bars are S.E.M
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2. The stability of probe 16 at pHs 7.5 and 6.5 using a fluorometric

assay.

The optical properties of DCM-OH were first evaluated at pHs 7.5 and 6.5. Upon dissolving
DCM-OH in the 50% DMSO/buffer, purple colour was immediately formed which was
recognizable by the naked eye. DCM-OH exhibited one prominent band in the visible region
at 564 nm, as shown in Figure S5 (A). However, there was ~7-fold loss in the DCM-OH
absorbance at pH 6.5 at a concentration of 200 uM compared with the absorbance measured
at pH 7.5. This due to the small amounts of DCM-O- that were likely to be formed at pH 6.5.
The pKa value of DCM-OH is reported to be 7.21 [36], therefore, decreasing the pH will
decrease the DCM-OH ionization potential. On the other hand, a new prominent peak
appeared at 448 nm at pH 6.5. This was likely due to the unionized form of DCM-OH, as
shown in Figure S5 (A). A strong emission band was observed at 687 nm after excitation of
DCM-OH at 564 nm at both pHs, as shown in Figure S5 (B, C). Also, there was about a ~3-
fold loss in the fluorescence of DCM-OH at pH 6.5 compared with that measured at pH 7.5 at

a concentration of 200 uM, as shown in Figure S5 (B).
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Figure S5. (A) Absorbance of DCM-OH (200 uM) when incubated in PBS/DMSO (1:1 v/v, pH=
7.5, 37 °C), PB/DMSO (1:1 v/v, pH= 6.5, 37 °C); Fluorescence spectra of DCM-OH in (B)
PBS/DMSO (1:1 v/v, pH="7.5, 37°C), (C) 50% PB/DMSO (1:1 v/v, pH = 6.5, 37°C) (ex: 564 nm,
em: 687 nm).

DCM-CHs (29) was used as a negative control and has been synthesised via reacting
compound 28 with 4-methoxy benzaldehyde as described in Scheme S2. Results showed that
probe 16 and DCM-CHs had no absorbance at 564 nm and another prominent band appeared
at 448 nm, Figure S6 (A, B). Also, they showed no fluorescence at 687 nm (<1000 RFUs) after
excitation at 564 nm, as shown in Figure S6 (C). This confirms that the conjugation at the

phenolic position was able to quench the fluorescence.

28 29
Scheme S2. (a) 4-methoxy benzaldehyde, piperidine, acetonitrile, reflux, 4 h.
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Figure S6. Absorbance spectra of (A) probe 16 in DMSO (37 °C), (B) DCM-CHswhen incubated
in 50% PBS/DMSO (1:1 v/v, pH = 7.5, 37 °C), 50% PBS/DMSO (1:1 v/v, pH = 6.5, 37 °C), (C)
Fluorescence spectra of probes 16 in DMSO (37 °C), and DCM-CHs when incubated in 50%
PBS/DMSO (1:1 v/v, pH = 7.5, 37 °C), PBS/DMSO (1:1 v/v, pH = 6.5, 37 °C) (ex: 564 nm, em:
687 nm).

Method: Stock solution of probe 16 was prepared in DMSO (20 uM) by serial dilution
technique and then from this solution, 100 uL was added into 96-well microplate with wells
containing 100 uL of PBS/DMSO (pH 7.5) to achieve 10 uM concentration. Similarly, 200 uL
of the negative control (DCM-CHs) as well as the positive control (DCM-OH) were added at
10 uM concentration, then the samples were incubated at 37 °C. The fluorescence was
measured at every time point for the tested solutions until the full fluorophore release was
achieved.

To study the release of the fluorophore from probe 16 at pH 6.5, 100 pM concentration was
used to overcome the decrease in the fluorescence of DCM-OH at this pH and method was

the same as pH 7.5.



Results: It was observed that the purple color was formed immediately in the case of probe
16 at pH 7.5 and 6.5. The color change from yellow to purple permits the colorimetric detection
of the probe by the naked eye, and was invoked by a 119 nm red shift in the absorption
spectrum. The results showed that DCM-OH was released immediately from probe 16 at pH

7.5 and 6.5 with a minor increase over the first 2 min as shown in Figure S7 (A, C).
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Figure S7. The correlation of fluorescence with respect to time for 10 uM and 100 uM of probe

16 when incubated in (A) PBS /DMSO (1:1 v/v, pH = 7.5, 37 °C); (B) PB/DMSO (1:1 v/v, pH =
6.5, 37 °C), respectively (ex: 564 nm, em: 689 nm).
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3. Procedure for the synthesis of the negative controls (27 and 29)

Tert-butyl 4-(6-methoxy-3-oxo-3H-xanthen-9-yl)-3-methylbenzoate (26). A mixture of
compound 25 (0.10 g, 0.25 mmol) and Cs2COs (0.24 g, 0.75 mmol) in 15 mL DMF was stirred
at 0 °C for 1 h. Then, iodomethane (0.45 g, 0.63 mmol) was added dropwise, and the reaction
was monitored by TLC (5% MeOH in dichloromethane). After 2 h, compound 25 was
completely consumed, the reaction was quenched with saturated brine, and the crude product
was extracted with ethyl acetate. Then, the combined organic layers were washed with water,
dried over MgSOs, and concentrated under reduced pressure. The product was purified by
column chromatography using 30% EtOAc in pet. spirits, and obtained as an orange solid (62
mg, 60%). 'H NMR (400 MHz, CDCls): 6 8.03 (s, 1H), 7.99 (dd, ] =7.9, 1.1 Hz, 1H), 7.24 (s, 1H),
7.00 (d, ] = 2.3 Hz, 1H), 6.96 — 6.89 (m, 2H), 6.79 (dd, | = 8.9, 2.3 Hz, 1H), 6.67 — 6.56 (m, 2H),
3.95 (s, 3H), 2.12 (s, 3H), 1.65 (s, 9H); *C NMR (101 MHz, CDCls): 6 179.2, 165.3, 164.7, 158.9,
154.9, 148.5, 136.9, 136.8, 133.4, 131.6, 130.5, 130.3, 129.4, 129.2, 127.3, 118.3, 114.0, 113.78, 106.2,
100.7, 81.8, 56.2, 28.4, 19.7; LRMS (ESI+) m/z: 417.2 [M+H]"; HRMS m/z (ESI) calcd. for C2sH240s
[M+H]* 417.1697, found 417.1702; HPLC: tr= 6.70 min (> 99%) at 254 nm.

4-(6-Methoxy-3-0x0-3H-xanthen-9-yl)-3-methylbenzoic acid (27).

Compound 26 (50 mg, 0.06 mmol) was stirred with 2 mL of TFA/ dichloromethane (1:1) at rt.
The reaction was monitored by TLC using 10% MeOH in dichloromethane and when
completed it was concentrated under reduced pressure to give the desired product as an
orange solid (30 mg, 87%). 'H NMR (400 MHz, DMSO-ds): 6 8.06 (s, 1H), 7.98 (d, ] = 7.9 Hz,
1H), 7.44 (d, ] =7.9 Hz, 1H), 7.33 (d, ] = 1.0 Hz, 1H), 7.99 - 6.93 (m, 3H), 6.56 (dd, ] =9.6, 1.8 Hz,
1H), 6.43 (d, ] =1.8 Hz, 1H), 3.95 (s, 3H), 2.08 (s, 3H); *C NMR (101 MHz, DMSO-de): 6 182.5,
166.9, 165.1, 158 .4, 154.6, 150.0, 136.4, 136.4, 132.0, 131.2, 130.6, 129.5, 129.4, 128.8, 127.0, 117.2,
114.5,113.7, 104.5, 100.8, 56.5, 19.0; LRMS (ESI+) m/z: 361.1 [M+H]"; HRMS m/z (ESI) calcd. for
C2H160s [M+H]* 361.1071, found 361.1073; HPLC: tr = 5.00 min (>99%) at 254 nm.

(E)-2-(2-(4-Methoxystyryl)-4H-chromen-4-ylidene)malononitrile (29).

Compound 29 was synthesised via refluxing compound 28 (0.30 g, 1.44 mmol) and 4-methoxy
benzaldehyde (0.21 g, 1.70 mmol) in the presence of piperidine. The pure compound was
obtained as a fluffy orange crystal (0.35 g, 74%). 'H NMR (400 MHz, DMSO-de) 6 8.74 (dd, | =
8.4, 1.4 Hz, 1H), 7.93 (m, 1H), 7.80 (dd, | = 8.5, 1.3 Hz, 1H), 7.78 — 7.69 (m, 3H), 7.62 (m, 1H),
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7.37 (d, ] = 16.1 Hz, 1H), 7.05 (d, ] = 8.9 Hz, 2H), 7.00 (s, 1H), 3.83 (s, 3H); 1*C NMR (101 MHz,
CDCL): 6 161.9, 158.1, 153.0, 152.5, 138.9, 134.7, 129.8, 127.6, 126.0, 118.7, 118.1, 117.1, 116.5,
116.0, 114.9, 106.4, 55.6; LRMS (ESI+) m/z: 327.0 [M+H]; HRMS m/z (ESI) calcd. for
CaiHuN202]M+H]* 327.1128, found 327.1122; HPLC: tr="7.54 min (> 99%) at 254 nm.

4. NMR spectra of compounds 27 and 29.
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5. Development of HPLC-based assay to study the stability of Msl
prodrugs.

Msl is a polar compound that exhibits amphoteric properties due to the presence of the
carboxylic group (—COOH pKa = 3), the aromatic amino group (-NHs* pKa = 6), and the
phenolic group (-OH pKa= 13.9) which complicate its extraction, separation, and detection
[44]. Literature survey reported several analytical methods to quantify Msl in pure drug,
pharmaceutical dosage forms, or biological samples using spectrophotometry [40, 41], HPLC
[42, 43], or ultra-performance liquid chromatography (UPLC) [43]. Literature methodologies
have been investigated to find a proper HPLC method for determining the amount of Msl
released. There were several reported HPLC methods with different mobile phases at
different wavelengths. Some of these methods include using methanol/water (1:1) at 220 nm
[38], methanol/water (1:1) at 230 nm, mixed phosphate buffer/acetonitrile (65: 35 v/v, pH 6.5)
at 258 nm, or phosphate buffer/methanol (60:40 v/v, pH 6.8) at 235 nm [39]. Nevertheless, none
of these methods are suitable to use in the current in vitro assay with different pH and
temperature conditions, and thus a new methodology has to be developed. Initially, the
absorbance of Msl was measured at different pHs using a microplate reader to find the ideal
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wavelength to run in the assay. Msl was dissolved in ethanol/(KCI/HCI) buffer (1:1, pH 1.2),
ethanol/acetate buffer (1:1, pH 5.0) ethanol/PB (1:1, pH 6.5), and ethanol/PB (1:1, pH 7.5) to
prepare a 100 uM concentration and then scanned within the wavelength region of 220-400
nm against the blank solution. The results indicated that the blank solution had a high
absorbance at 220-300 nm and its absorbance started to decrease after 300 nm and this may be
due to the plastic in the 96-well microplate absorbing at the UV region of 220-300 nm.
Therefore, it was decided to proceed with the in vitro tests by measuring the absorbance at
wavelength > 300 nm where there is no interference with the blank.

Msl showed a good absorbance at 300-350 nm at pHs 5.0, 6.5, and 7.5 with a maximum peak
at 331 nm while it had no absorbance at 331 nm at pH 1.2. Instead, it had a prominent
absorbance band at 304 nm at pH 1.2, as shown in Figure S14. These results are consistent
with those reported in the literature [41, 11]. A wavelength of 310 nm, at which Msl has a good
absorbance at all pHs, was chosen.

Absorbance of Mesalamine at different pHs
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e
S 014 pH 7.5
o
| 59
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® 0.0
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Figure S14. Absorbance spectra of 100 uM of Msl after blank subtracting in PB/ethanol (1:1
v/v, pH =7.5, 37 °C), PB/ethanol (1:1 v/v, pH = 6.5, 37 °C), acetate buffer/ethanol (1:1 v/v, pH
=5.0, 37 °C), and (KCI/HCI) buffer/ethanol (1:1 v/v, pH =1.2, 37 °C).

Then, to confirm that it was the appropriate wavelength to select in the HPLC method, 100
UM of Msl was injected in reversed-phase HPLC and was eluted via a gradient elution using
water/acetonitrile (5-100%) as the mobile phase in the presence of 0.1% of TFA as additive.
The flow rate was kept at 1.0 ml/min and the eluent was scanned using a photodiode array
detector at four wavelengths: 220 nm, 230 nm, 254 nm, and 310 nm. The results revealed that
Msl eluted at a retention time of 1.19 min with a higher absorbance at 220 nm and 230 nm
compared to 310 nm. However, 310 nm was the best wavelength to run in the assay as it is far
away from the UV cut-off wavelength of the mobile phase, and the reported value is > 260 nm
[23]. The results presented are compatible with the results that reported 0.37 and 0.25
absorbance of 0.1% of TFA in MeCN at wavelengths of 220 nm and 230 nm, respectively [23],
as shown in Figure S15.
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Figure S15. HPLC-ultraviolet photodiode array detector chromatogram of 100 uM of Msl in
ethanol/buffer (1:1) at pH 6.5.

After that, calibration curves of Msl were established to estimate the best concentration to be
used in the in vitro assays. Initially, a stock solution of Msl (2000 uM) was prepared by
dissolving it in ethanol and then diluting with the respective buffer to obtain different
concentrations: 1000 uM, 500 uM, 250 uM, 125 uM, 100 uM, 62.5 uM, 50 uM at different pHs.
Samples were then injected into HPLC under the previously mentioned conditions and
calibration curves were obtained by plotting the peak areas against their corresponding
concentrations. The regression equations for Msl at pHs of 7.5 and pH 6.5 were calculated to
be y=1.691x-8.387 and y= 1.447x-4.674, respectively. Furthermore, the correlation coefficients
(R?) were found to be 0.999, thus confirming the linearity of the used method under the
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specified measured concentrations, as shown in Figure S16 (A, B). It was decided to use a
concentration of 250 uM as it gave a good instrument response at the selected wavelength.

e . B
Calibration of Msl in PB/H,0 (pH 7.5, 1:1) Calibration of Msl in PB/H,O (pH 6.5, 1:1)
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Figure S16. Calibration curves of Msl when incubated in (A) PB/H:0 (1:1 v/v, pH =7.5, 37 °C)
and (B) PB/H20 (1:1 v/v, pH = 6.5, 37 °C).
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6. NMR spectra of all synthesised compounds .
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Figure S72.'H NMR spectrum of 20a in CDCls.
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Figure S73. *C NMR spectrum of 20a in CDCls.
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Figure S74. 'H NMR spectrum of 20b in CDCls.
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Figure S75. *C NMR spectrum of 20b in CDCls.
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Figure S76. '"H NMR spectrum of Msl prodrug 21 in MeOD.
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Figure S77.3C NMR spectrum of Msl prodrug 21 in MeOD.
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Figure S78. HRMS of Msl prodrug 21.

49




o) 7

12
/\OH
10 9
L Cl —
32Htl 2
26
30
| 2 24
| 27
Il
18 14
2 16 1

4

il

! \
1

[
ST ¥ z 'y T ekt RN
2a8g & a g A a48 & &§
T

Figure 579.'H NMR spectrum of Msl prodrug 22 in MeOD.
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Figure 580.°C NMR spectrum of Msl prodrug 22 in MeOD.
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Figure S81. HRMS of Msl prodrug 22.
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side-product 24 formation, which is supported by



