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Abstract: Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment
of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic
monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive
aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant
to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in
the central nervous system. However, despite its broad activity, using voriconazole has limitations
related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity
according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based
drug delivery systems have successfully improved the physicochemical and biological aspects of
different classes of drugs, including antifungals. In this review, we highlighted recent work that has
applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and
deposition of voriconazole in target tissues from a controlled and sustained release in different routes
of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology
application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative
in the treatment of fungal infections.

Keywords: antifungals; sustained drug release; fungal infections; nanoparticles

1. Introduction

Fungal infections are a growing threat to global public health. Most of these fungal
infections are superficial, but some species can cause life-threatening illnesses. Immuno-
compromised patients are at higher risk for fungal infections, including organ transplant,
oncology, HIV/AIDS, and, more recently, SARS-CoV-2 patients [1–5]. It has also occurred
in immunocompetent patients as a secondary infection [6,7]. Systemic fungal infections
usually originate either in the lungs, after conidia inhalation (Aspergillus, Cryptococcus), or
from endogenous microbiota (Candida spp.) as a result of infected lines or leakage from
the gastrointestinal tract, and may spread to many other organs. These pathogens, under
certain circumstances, can spread, causing fatal infections responsible for more than one
million deaths worldwide each year. Thus, the systemic spread of fungi is a critical step in
developing these deadly infections. These infections are associated with high morbidity
and mortality rates, especially in some hospital settings [8–11]. If appropriate therapy is
delayed, systemic fungal infections are medical emergencies with high mortality rates.

The distribution of mycoses varies according to several factors, including the re-
gion and the epidemiological conditions, and may be classified as superficial [12], cuta-
neous [13–15], subcutaneous [16], and systemic [17]. Among the most common fungal
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infections prevails in order of importance infections by Cryptococcus sp. [18], Candida sp. [19],
and Aspergillus sp. [20]. These infections are cited in a document published this year as
belonging to the critical priority group, these based not only on prevalence or incidence,
but also considering multicriteria decision analysis [21].

Treatment for these infections involves four main antifungal classes targeting different
fungal cell structures [22]. However, studies have shown a reduction in the susceptibility
of fungi compared to the available classes [23,24]. The main factors related to decreased
antifungal susceptibility are drug target overexpression, efflux pumps, and amino acid
substitution [25,26]. In addition, another limitation to the use of current antifungals is the
presence of adverse effects, the main ones being nephrotoxicity and hepatotoxicity [27,28].

Voriconazole (VCZ) is an antifungal of the azole class, resulting from a structural
modification of fluconazole with a broad spectrum of activity, and is commonly used for
prophylaxis and treatment of invasive fungal infections [29–33]. VCZ requires therapeutic
monitoring and maintenance dosages for a prolonged period due to the recurrence of
infection [34–36]. The main limitation of VCZ therapy is the inter-individual variation of
its plasma levels due to factors such as liver function, polymorphisms in cytochrome P450
isoenzymes [37,38], drug interactions, liver disease, and cancer [39–41]. Toxicity occurs
when serum levels are in the supratherapeutic range, especially in prolonged treatments,
including phototoxicity, hallucinations, hyponatremia, and others [42,43]. VCZ has been the
second alternative because it has less favorable pharmacological properties. To overcome
these features is necessary to develop a new approach as nanostructured systems that could
be excellent carriers for antifungal drugs, reducing toxicity and targeting their action. The
application of nanostructured systems for antifungal therapy began in the 1990s with the
development of lipid formulations of amphotericin B [44].

Nanoparticles have been studied for antifungal therapy, and results show evident im-
provements in drug aspects such as solubility and stability in water, increased bioavailabil-
ity, and tissue penetration, which result in increased efficacy and reduced toxicity [45–47].
Moreover, due to the prolonged drug release profile, nanoparticles can maintain drug
plasma levels balanced in the therapeutic range, which is especially important for anti-
fungals with a low therapeutic index or that present non-linear pharmacokinetics, such as
VCZ [44]. Also, drug-loaded nanoparticles can improve the fungal inhibition profile even
in lower concentrations compared to plain antifungals [48,49].

Therefore, this review presents the main nanotechnology-based systems developed for de-
livering VCZ and discusses their effectiveness as a new avenue for treating fungal infections.

2. Fungal Infections
2.1. Pulmonary Aspergillosis

Pulmonary aspergillosis is caused by the conidial saprophytic fungus Aspergillus,
found in the soil and the air, dust from civil construction, and medical dispositive, which
affects immunocompromised patients or those with pre-existing lung disease [20,50]. The
main pathologies related to pulmonary aspergillosis are allergic bronchopulmonary as-
pergillosis (ABPA), chronic pulmonary aspergillosis (CPA), and invasive pulmonary as-
pergillosis (IPA), the determinant of these infections being the interactive relationship
between the fungus and the host [51].

Currently, 446 species of Aspergillus are described in the literature; however, only 20 are
related to fungal infections [52–54]. The main species that cause invasive and pulmonary
infections are A. fumigatus, A. flavus, A. niger, A. terreus, A. nidulans, A. calidoustus, A. sydowii,
and A. versicolor [51]. Studies compared Aspergillus species isolated from respiratory
samples of CPA patients with those from colonization. The species that were most often
isolated from patients were A. fumigatus (48.3%), A. niger (29.2%), A. flavus (8.3%), A. terreus
(2.5%), and A. nidulans (0.8%) [55].
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2.1.1. Allergic Bronchopulmonary Aspergillosis (ABPA)

ABPA is characterized by inflammation in the lung due to hypersensitivity to the
fungus Aspergillus sp. It is related to patients with asthma and cystic fibrosis, some pa-
tients with tuberculosis [56], or who suffer from chronic obstructive pulmonary disease
(COPD) [57].

The most common symptoms are chronic cough, wheezing, and recurrent pulmonary
infiltrates, with a chest X-ray showing dilatation of the bronchi with phlegm (bronchiectasis).
However, patients with ABPA may present nonspecific symptoms that are like other pre-
existing pulmonary pathologies, reporting symptoms such as productive cough, wheezing,
fever, chest pain, sweating, weight loss, blood expectoration (hemoptysis), and golden-
brown mucus secretion is characteristic of this pathology [56].

The diagnosis is based on three criteria: predisposition due to the presence of asthma
or cystic fibrosis; the mandatory criterion, a positive skin test for Aspergillus or elevated IgE
against A. fumigatus (total IgE > 1000 UI/mL); and finally, at least two of the three support
criteria—recent eosinophil count in patients without the use of corticosteroids (>500 cell/L),
radiographic characteristics of ABPA how the bronchiectasis, and serum precipitins or IgG
against A. fumigatus [58,59].

Treating asymptomatic patients with controlled asthma has no clear benefits; however,
careful monitoring of patients is necessary to define treatment. The main point of treating
ABPA is suppressing the hyperimmune response and reducing the mycological load, using
glucocorticoids and antifungals, such as itraconazole, as the first-choice treatment. If the
pathological picture does not improve, the second-choice treatment involves using VCZ
orally or posaconazole [60]. Biologic therapies have recently shown promising results with
omalizumab and mepolizumab [61,62].

2.1.2. Chronic Pulmonary Aspergillosis (CPA)

CPA is a chronic progressive pulmonary disease commonly caused by Aspergillus
fumigatus and affects immunocompromised patients and those with pre-existing lung dis-
ease [63,64]. The most usual form among most patients is chronic cavitary pulmonary
aspergillosis (CCPA) [65]; however, if treatment does not occur or is inadequate, it can
progress to chronic fibrosing pulmonary aspergillosis (CFPA) [20]. Conditions that pre-
dispose to CPA are ABPA, COPD, lung cancer, asthma, pneumonia, and fibrocavitary
sarcoidosis [55].

The most frequent symptoms are chronic productive cough, weight loss, fever [66],
dyspnea [55], hemoptysis with nodules, cavities, and fungi balls [67]. The persistence of
symptoms for more than three months helps its diagnosis [68].

Diagnostic criteria are related to the consistent appearance in clinical and radiological
aspects, an immune response to Aspergillus sp., being culture positive for Aspergillus sp.
for sputum or bronchoscopy samples and/or detectable galactomannan and/or positive
Aspergillus sp. DNA by PCR polymerase chain reaction [63,69,70].

The VCZ treatment is the first choice, followed by posaconazole, which demonstrates
fewer side effects [71]. Antifungal treatment intravenously can be used in the event of
failure with previous therapies, but its response is slow, and its use is indicated for at least
six months [72].

2.1.3. Invasive Aspergillosis (IA)

Invasive aspergillosis includes invasive pulmonary aspergillosis (IPA), Aspergillus
sinusitis, disseminated aspergillosis, and several types of the single organ [70]. Invasive as-
pergillosis (IA) in hematology/oncology patients presents as a primary or rupture infection,
which can become refractory to antifungal treatment and has a high associated mortality.
Other risk groups of emerging patients include patients in intensive care with severe respi-
ratory viral infections, including COVID-19 [73]. The size of the conidia, thermotolerance,
hydrophobins, and melanin on the conidial surface, adaptability to the host environment,
and angioinvasive nature all contribute to pathogenicity [74]. The global prevalence of as-
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pergillosis reaches an estimated 3,000,000 cases per year of chronic pulmonary aspergillosis
and 300,000 cases per year of IA [75].

IPA is the most severe evolutionary form of this pathology characterized by the growth
of Aspergillus sp. hyphae in the lung, and it affects immunocompromised patients with a
high mortality rate [76]. Tracheobronchitis is an infection limited to the tracheobronchial
region and is an exclusive form of IPA [77,78]. Invasive rhinosinusitis is also recognized
as another form of pathology [59]. The progression of the IPA is rapid, from days to
weeks, with a mortality rate between 30% and 85%, with A. fumigatus being the most
frequent cause of IPA [76]. There are several risk factors related to IPA, such as prolonged
profound neutropenia, human immunodeficiency virus (HIV) infection, acute leukemia,
hematopoietic stem cell transplantation, and diabetes mellitus, among others [20,79].

Acute symptoms can cause intravascular thrombosis and pulmonary hemorrhagic
infarction [80]. Clinical manifestations that are more common are cough, fever, chest or
pleuritic pain, dyspnea, and hemoptysis [77]. This form may be confused with bacterial
pneumonia [8].

Invasive pulmonary aspergillosis is an opportunistic mycosis, challenging to diagnose
due to environmental Aspergillus. Current recommendations suggest that epidemiological,
radio-clinical, and biological data support the diagnosis of aspergillosis, as well as early
computed tomography (CT) scans to identify the two main features, angioinvasive and
invasive airway aspergillosis. Although CT findings are not entirely specific, they usually
allow for early initiation of therapy before mycological confirmation of the diagnosis.
Confirmation is based on microscopy and culture of respiratory specimens, histopathology
in case of biopsy, and, most importantly, detection of Aspergillus galactomannan using
an immunoassay in serum and bronchoalveolar lavage. Histology allows proving the
diagnosis of aspergillosis, but biopsy is not always possible in immunosuppressed patients.

New antifungal agents have been developed in the last two decades: new azoles (VCZ,
posaconazole, and isavuconazole), lipid formulations of amphotericin B (liposomal ampho-
tericin B, and amphotericin B lipid complex), echinocandins (caspofungin, micafungin, and
anidulafungin). Thus, medical imaging and serum galactomannan antigen currently form
the basis of the screening approach, although both have some limitations in specificity.

The first-choice treatment for IPA is VCZ, which should be administered once the
diagnosis is confirmed to reduce patient mortality [81]. The therapy is initially administered
intravenously until the patient shows improvement and then substitutes for oral therapy.
Alternative therapies in IPA treatment are liposomal amphotericin B, isavuconazole, itra-
conazole, and echinocandins, which can be used as a combination therapy with other
antifungals. The duration of treatment with an antifungal is around six to twelve weeks,
but it can take months for up to over a year [80]. For the treatment of invasive aspergillosis
(IA), the most recently used therapy has been isavuconazole, showing a high efficacy
in the treatment of aspergillosis in immunocompromised patients, a lower potential for
Drug–Drug Interactions (DDIs), and no risk of QT prolongation (heart rhythm disturbance)
that can cause a rapid and chaotic heartbeat [82–84].

2.2. Candida Infections

Several species can cause Candida infections, but the most common is Candida albicans.
Among the most common clinical manifestations of Candida sp. are invasive candidiasis,
oral candidiasis, denture stomatitis, and candidemia neonatal [85–87]. Invasive candidiasis
is one of the most aggressive forms of this disease, and affects immunocompromised pa-
tients, those who have undergone some organ transplant or are undergoing chemotherapy
treatment, with a mortality rate above 70% in the latter group [88–90]. Candida spp. are
common commensal organisms in the skin and gut microbiota, and disruptions in the
cutaneous and gastrointestinal barriers (for example, owing to gastrointestinal perforation)
promote invasive disease [90].

There are more than 15 species of Candida sp. capable of causing infections in humans;
however, the five most common species that cause infections are C. albicans, C. glabrata, C.
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tropicalis, C. parapsilosis, and C. krusei, where C. albicans is responsible for 40 to 60% of cases
worldwide [91–94]. Another species that has drawn attention is C. auris. Infections and
outbreaks caused by this species in hospital settings have recently increased. Difficulty in
its identification, multidrug resistance properties, the evolution of virulence factors, high
associated mortality rates in patients, and long-term survival on surfaces in the environment
make this species particularly problematic in clinical settings [95–97]. Associated with the
increase in COVID-19 infections, a trend toward bacterial, fungal, and viral superinfection
has been observed. An important co-infection agent is C. auris due to its multidrug-resistant
nature and easy transmissibility. Patients with comorbidities, immunosuppressive states,
and intubated and mechanically ventilated patients are more likely to contract the fungal
infection; therefore, being placed in the critical group of human pathogenic fungi by the
WHO [21,98,99].

Risk factors for candidemia are using the venous catheter, admission to the intensive
care unit, broad-spectrum antibiotics, abdomen surgery, parenteral nutrition, neutropenia,
acute renal failure, malignancy, and burns [11].

Candidemia symptoms are related to the risk factors predisposing to this type of
infection. However, clinical manifestations such as blood infections related to catheter use,
septic shock, and eye involvement are observed [92].

The diagnosis is based on the detection of Candida sp. by the culture method, which in
turn has low sensitivity, and other tests are frequently requested, such as the detection of
antigen (1,3)-β-D-glucan, tube antibodies C. albicans, and techniques based on molecular
biology such as PCR, RT-PCR and MALDI-TOF MS [100–102].

The treatment protocols use four different classes of drugs: polyenes, triazoles,
echinocandins, and flucytosine [103,104]. The first-choice medicine for treating candidi-
asis and invasive Candida infections is echinocandins; however, other protocols are used
and consider the species causing the infection and the associated clinical conditions [105].
Monotherapy protocols are amphotericin B, in the traditional or liposomal form, anidula-
fungin, caspofungin, micafungin, fluconazole, and VCZ. However, the combined therapies
of amphotericin B and fluconazole or amphotericin B and flucytosine also apply [106,107].

2.3. Cryptococcosis

Cryptococcosis is a systemic fungal infection caused by Cryptococcus spp., the main
species are Cryptococcus neoformans, and Cryptococcus gattii can affect both immunocompe-
tent and immunosuppressed patients in the pulmonary, extrapulmonary, and disseminated
form through the Central Nervous System (CNS), causing meningoencephalitis and rarer
cases of cutaneous or transplant-associated mycosis [108]. Cryptococcal meningitis has
become an infection of global importance reaching 1 million new infections per year; de-
spite both species having many characteristics in common, there are some differences
regarding geographic distribution, environmental niches, host predilection, and clinical
manifestations that should be emphasized [109,110].

Cryptococcosis was recently highlighted by the world health organization as the first
highest-priority microorganism, surpassing even C. auris, more recently described and of
worldwide concern due to its resistance. Inserting new therapies for mycoses, especially
those referred to here, is essential in this context, according to the number of deaths from
HIV associated cryptococcol meningitis, an estimated 181,000 cases worldwide represent
15% of all AIDS-related deaths [1,21].

The pathogenic species of Cryptococcus sp. are divided into five different serotypes
subdivided into different molecular types described in Table 1.
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Table 1. Classification of Cryptococcus species.

Species and Varieties Serotype Molecular Types

C. neoformans var. grubii 1 A VN I, VN II

C. neoformans var. neoformans D VN IV

C. neoformans AD VN III

C. gattii B VG I, VG II, VG III, VG IV

C. gattii C VG I, VG II, VG III, VG IV
1 Variety responsible for most cases worldwide. Adapted from [110–113].

Cryptococcus spp. virulence is associated with the polysaccharide capsule, which
increases pathogenicity, modulates the immune response, and protects against oxidative
stress [114–116]. The presence of melanin in the cell wall protects against antifungal
drug attacks at elevated temperatures and contributes to the modulation of the immune
response [117,118]. Furthermore, the secretion of enzymes, such as urease, has played a
significant role in fungal metabolic pathways [119,120].

The transmission occurs from inhaling desiccated airborne yeast cells, or possibly
sexually produced basidiospores, into the lungs from the feces of pigeons in the environ-
ment or different tree species [121]. Risk factors for Cryptococcus spp. infection are HIV,
rheumatic diseases, solid organ transplantation, corticosteroid or immunosuppressive ther-
apies, chronic decompensated liver disease, diabetes mellitus, sarcoidosis, kidney problems,
use of monoclonal antibodies, lymphoid diseases, and overexpression syndrome IgE and
IgM [1,110,122].

Patients with pulmonary infection caused by Cryptococcus spp. are usually asymp-
tomatic and account for a third of the number of cases, and the diagnosis is made by the
presence of nodules on radiographic examination [113]. Some patients also have symptoms
like pneumonia and can progress quickly to acute respiratory distress syndrome even
without CSN involvement [110]. According to authors [113], the most common symptoms
are fever and dry cough, but the patient may have dyspnea, chest pain or discomfort,
malaise, or no symptoms.

There are some options to diagnose Cryptococcus sp, isolation of the fungus in bio-
logical fluids using culture and identification, histopathology, serological detection of the
cryptococcal capsular polysaccharide antigen (CrAg), and molecular methods [122].

Treatment of patients with cryptococcosis considers risk factors or other pathologies
that affect the patient concurrently being categorized by the host’s immune status, organ
involvement, and respiratory cryptococcosis with or without CNS problems [1]. The
treatment is based on using antifungal agents or drainage of cerebrospinal fluid and
surgical resection [123].

The first-choice treatment of cryptococcosis is using Amphotericin B, despite the
reported hepatotoxic and nephrotoxic effects [124]. Following the use of fluconazole,
mainly because it has a lower cost, some studies indicate a reduction in susceptibility
to this class of antifungals [125]. In addition, Cryptococcus sp. has intrinsic resistance to
echinocandins [126]. In this sense, the treatment of cryptococcosis is a challenge, and
the search for new alternatives has grown in recent years [127], such as the combination
of antifungal drugs [128], the use of nanotechnology, and the search for new molecular
targets [129–131].

3. Voriconazole
3.1. General Aspects

VCZ (Vfend®. by Pfizer®, via tablet and IV) is an antifungal agent belonging to the
azole class, derived from a structural modification of fluconazole and approved by the
Food and Drug Administration (FDA) in 2002 [132,133]. It has low solubility in water
(0.098 mg/mL), log P 1.82, and pKa 2.01 and 12.7 [134]. VCZ acts by inhibiting cytochrome



Pharmaceutics 2023, 15, 266 7 of 32

P450 (CYP 450)-dependent 14α-lanosterol demethylation, an important step in cell mem-
brane ergosterol synthesis by fungi [135,136]. It is fungicidal against most molds, except
Mucorales. It is active against all species of Aspergillus, including A. terreus, which is gener-
ally resistant to amphotericin B, hyaline fungi, including Fusarium spp. and members of the
Scedosporium apiospermum complex, except S. prolificans [137–139]. VCZ is fungistatic, like
all azoles, against Candida spp. Species that are inherently resistant to fluconazole, such as C.
krusei, are susceptible to VCZ and some C. glabrata that are resistant to fluconazole are sus-
ceptible to VCZ, but many strains develop resistance to fluconazole also become resistant
to VCZ [140,141]. Candida albicans was the predominant species, causing up to two-thirds
of all cases of invasive candidiasis. However, a change to Candida spp. non-albicans, such
as C. glabrata and C. krusei, with reduced susceptibility to commonly used antifungals, have
been recently observed. On the other hand, Candida auris, an emerging pathogen, is highly
tolerant to azoles and often resistant to several drugs [142,143]. VCZ shows good in vitro
activity against other yeasts, including Cryptococcus neoformans, Trichosporon asahii, and
Saccharomyces cerevisiae [144,145]. Finally, VCZ has activity against Blastomyces dermatitidis,
Coccidioides spp., Histoplasma capsulatum and Paracoccidioides brasiliensis, but it is not active
against Sporothrix schenckii [146–148].

Although it is still widely used in the treatment of invasive aspergillosis, the conse-
quences of the non-linear pharmacokinetics of VCZ are one of its main limitations [53,149].
Since dosages have wide interpersonal variation, they can reach subtherapeutic or toxicity
levels [150,151]. Antifungals of the same class, such as posaconazole and isavuconazole,
have been used as an alternative in risk groups for treatment with VCZ [152,153].

3.2. Pharmacokinetics

VCZ is a class II drug with low solubility and high permeability [154–156]. Low water
solubility makes it difficult to administer by different routes of administration [157]. VCZ
is commercially available in tablets, oral suspension, and intravenous solutions [158–160].
An essential point of the VCZ pharmacokinetics is that they are non-linear, presenting wide
inter-individual variability according to cytochrome P450 polymorphisms [161].

3.2.1. Absorption

VCZ is rapidly absorbed, and its plasma levels depend on body weight, age, route of
administration, presence of polymorphisms, and inflammation, among other factors [162–165].
After oral administration, the maximum plasma concentration occurs within 1 to 2 h,
reaching about 96% [166]. However, a wide variation of absorption (35% to 83%) appears in
clinical studies associated with the high or low activity of the CYP2C19 enzyme [167–169].

3.2.2. Distribution

The estimated volume of distribution is between 2 to 4.6 L/kg, suggesting intravascular
and extravascular distribution [41]. Binding to plasma proteins has not been defined yet,
despite efforts to measure it through in vitro and in vivo studies. The binding proteins
reported are albumin and glycogen-α-1-acid [170,171].

3.2.3. Metabolism

VCZ is extensively metabolized in the liver by enzymes of cytochrome P450 (CYP450),
comprising CYP2C19, CYP3A, and CYP2C9 subfamilies [38], which may present genetic
polymorphism and their expression is affected, resulting in a phenotype of poor, inter-
mediate, or rapid metabolizers [172]. CYP2C19 enzymes convert VCZ into its inactive
metabolite, VCZ-N-oxide [173].

Factors such as pre-existing diseases and the presence of CYP450 polymorphisms
are responsible for the non-linear metabolism of the VCZ, resulting in dose-dependent
auto-inhibition and saturation of metabolism [161,174–176]. In addition, polymorphisms
can lead to unwanted interactions with other drugs [177].
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3.2.4. Excretion

Only 2% VCZ is excreted unchanged in the urine, with an elimination half-life of
approximately six hours [178,179].

3.3. Toxicity and Drug Monitoring Therapeutics

Therapeutic monitoring has been suggested in clinical practice to reduce adverse
effects and increase the therapeutic efficacy and safety of VCZ [180,181]. Its unpredictable
nonlinear pharmacokinetics, with wide variation in serum levels between individuals,
makes therapeutic regimens difficult due to the polymorphisms associated with its primary
metabolism, drug interactions, and oral bioavailability [135,182].

An investigation conducted by Zonios with 95 patients at a medical center, about
7 to 18% of patients treated with VCZ experienced adverse effects, including hallucina-
tions, visual disturbances, photosensitivity, and hepatotoxicity [183]. Among the adverse
effects in patients with prolonged therapy, hepatotoxicity and neurotoxicity were fre-
quent [42,184,185]. In another study carried out by Epaulard, phototoxicity was present in
8% of patients treated in 61 case reports [186].

Therapeutic monitoring of VCZ levels has been investigated due to the effects of
its non-linear pharmacokinetics, especially in children [187], the elderly [37], patients in
Intensive Care Units (ICU), and for hematological and inflammatory diseases [188,189]. The
central monitoring measures have been the evaluation of CYP2C19 polymorphisms [190]
and plasma drug concentration [189,191], in addition to the evaluation of liver function
and other measures [192,193]. Monitoring VCZ plasma concentrations is carried out with
well-standardized Liquid Chromatography coupled with Mass Spectrometry and High-
Performance Liquid Chromatography methods [194,195].

It has been observed an increase in clinical efficacy, reduction in adverse effects [196–198],
and reduction in intra and inter-individual variability [199] with dose monitoring, being a
safe alternative for using VCZ in the treatment of invasive fungal infections [200].

4. Nanotechnology-Based Voriconazole Delivery Systems

The interest in studying nanostructured systems has been maintained over the years
due to their numerous advantages for developing of science and society. In pharmaceutical
and biomedical fields, the application of nanoparticles has modified the way drug trans-
porting in the body [201]. Hydrophilic or hydrophobic molecules, with highly variable
molecular weight, labile (proteins, nucleic acids, vaccines) or not, can be carried by nanos-
tructures and safely transported to exert their pharmacological activities [202,203]. The
modification of several drug parameters has already been reported after their nanoencap-
sulation, such as the improvement in solubility [204], controlled release, improvement in
pharmacokinetics [205], protection against degradation [206,207], and targeting to specific
tissues [208]. Furthermore, these systems can be used as diagnostic [209] and therapeutic
tools [210].

Nanoparticles are mainly classified according to their composition, and depending on
the method used to obtain them, different supramolecular structures are obtained. A variety
of materials has been used to obtain organic nanoparticles, such as polymers (natural or
synthetic), lipids, surfactants, or proteins (animal or vegetable) [211]. These materials re-
quire biocompatibility, biodegradability, and specific mechanical and/or thermal properties.
Based on these parameters, structures such as nanocapsules, nanospheres, liposomes, solid
lipid nanoparticles, nanostructured lipid carriers, nano and microemulsions, cyclodextrins,
and others can be developed [212,213]. The different supramolecular arrangements give
these nanostructured systems differences in size, shape, drug loading capacity, drug release
profile, biological half-life, interaction with cells and biodistribution [214]. The material’s
chemical composition confers different electrical charge characteristics to the surface of the
particles, which interferes with its physical and biological stability and interaction with
cells and tissue internalization. The surface of nanoparticles can be chemically modified by
interaction and cellular targeting [215].
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Considering all limitations regarding the use of VCZ, nanotechnology-based delivery
systems represent an excellent approach. Furthermore, the loading of VCZ in nanoparticles,
in addition to improving the physicochemical and biological aspects of the drug in the
conventional routes of administration (oral and parenteral), could propose alternative
routes (topical, intranasal, pulmonary, ocular, vaginal, and others), as can be represented in
Figure 1. Table 2 lists some studies of nanoparticle formulations containing VCZ. We briefly
present the composition of formulations, preparation methods, route of administration,
and the in vitro and in vivo results.
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Table 2. Some aspects of studies on nanoformulations containing voriconazole in recent years.

Composition Method of Preparation Route of Administration Size Toxicity In Vitro In Vivo Reference

Chitosan, Sodium Lauryl
Sulfate, Poloxamer,

Benzalkonium Chloride

O/W Solvent
Emulsification Technique Ocular 219.3 nm

A study on egg chorioallantoic
membrane indicated

nanoparticle is not irritating

In C. albicans there was a reduction in
MIC compared to free VCZ; NPs loaded
in situ gel had MIC at 0.06 µg/mL over

1 µg/mL of free VCZ.
Mucoadhesion was increased with

nanoparticles and prolonged release for
up to 8 h.

An Ex vivo study revealed increased
permeation of the VRC from the

nanoparticles in the cornea.

[216]

Chitosan, sodium lauryl sulfate,
propylene glycol, Polyethylene

glycol-4000
Spray Dryer Topical 160–500 nm

There was greater retention in the skin
and low retention in the stratum

corneum. The nanoparticles showed
even greater inhibitory activity on C.

albicans than on free VCZ, with an
inhibition halo of 17.55 mm for the

nanoparticle and 9.25 mm for free VCZ.

[217]

Chitosan, Sodium
Tripolyphosphate (TPP), di-

palmitoylphosphatidylcholine
(DPPC)

Ionic gelation Pulmonary 228–255 nm

Cell viability and uptake
studies showed

cytocompatibility in A549 and
Calu-3 lung epithelial cells.

Higher efficacy in Candida sp. and
Aspergillus sp. about free VCZ in

laboratory strains and equal inhibition in
clinical isolates.

Pharmacokinetic study showed
an increase of almost 5, 4, and
3 times in the area under the

curve, Tmax, and residence time
in the lungs.

[218]

Eudragit RS 100
PVP (Polyvinylpyrrolidone)

PVA (Polyvynil Alcohol)

Quasi-emulsion solvent
evaporation Ophthalmic 138 nm

The system showed a higher inhibitory
effect on C. albicans at lower

concentrations than VCZ injection.

Increased corneal permeability
in rats [219]

Glyceryl monooleate
Glyceryl monostearate

Maisine

High Shear
Homogenization and

Ultrasonication
Vaginal 322.72 nm

Normal morphological features
on histopathology, with results
similar to the negative control

The in vitro release profile compared the
aqueous suspension of VCZ and the
optimized formulation and verified a

sustained release profile, where 70% was
released after 8 h.

The reduction of fungal load in
Wistar rats was higher when
using the nanoparticle about

the VCZ suspension.

[220]

Chitosan, Tween 80, Sodium
tripolyphosphate Ionic gelation Topic 199–232 nm

A skin irritation study was
performed in albino rabbits,

and no signs of skin irritation
and inflammatory cell

infiltration were observed.

The release profile was slower in PBS
medium pH 7.4 compared to pH 5.5,

releasing 82% VCZ in 24 h at the most
acidic pH. The ex vivo test using mouse
skin (mice) demonstrated that a limited

amount of VCZ permeated in the
receptor medium, higher for the film

with suspended VCZ than the film with
VCZ-polymeric nanoparticles. The latter
presented higher deposition (15.05%) in

the stratum corneum concerning the
other formulations and the deposition of
54.76% in the epidermis and dermis. In

the antifungal test, the film based on
VCZ-PNPs showed the highest retention

zone against Candida sp. (20 mm) and
Aspergillus sp. (17 mm).

The histological study
confirmed its safety, which

makes it suitable for
topical application.

[221]
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Table 2. Cont.

Composition Method of Preparation Route of Administration Size Toxicity In Vitro In Vivo Reference

Surfactant, cyclodextrin Micellization
thermodynamic Topic 13–16 nm

A 24-h dialysis membrane release test
was performed with different

formulations and the release varied from
72 to 75%. The model that best explained

the release was the first-order model
(r2 = 0.99).

[222]

Sodium taurodeoxycholate Emulsification Topic 21–24 nm

The Franz cell release test had performed
for 10 h, and the amount released

corresponded to 30% of the formulation’s
VCZ. The kinetic model that best

explains it was Higuchi’s (r2 = 0.9842).
The permeation test was performed on
hulls for 24 h, and no amount of VCZ
was detected in the receiving medium.

The concentration found in the hull
increase 10×.

[223]

Monoolein, Pluronic
F127, chitosan

Cubosomes by Melt
dispersion emulsification Ocular 109–243 nm

The release test had performed in a
dialysis bag for 24 h. The cubosomes

showed a biphasic release profile, with a
burst effect at 30 min followed by a

sustained release for 24 h.

Pharmacokinetic was
performed in albino rabbits by
ocular instillation. The results

showed that the
chitosan-coated cubosomes

showed higher Cmax than the
VCZ-suspension (4.44 and 3.52

ng/mL, respectively; p <
0.0001). A similar performance

had obtained for parameters
AUC0–8 and AUC0-∞ .

[224]

Isopropyl myristate, PEG 400,
Tween 80®, Span 80®.

Self-nano emulsifying Ocular 21 nm

Ex vivo: nanostructured VCZ
formulation demonstrated an increase in
VCZ transcorneal permeation compared

to the commercial formulation.

[225]

IPM, PEG 400, Tween 80®,
Span 80®.

Self-nano emulsifying
(SNEDDS) Ocular 21 nm

Eye irritation and damage tests
were performed on rabbits. The

findings demonstrate that the
VCZ nanoformulation was well

tolerated and capable of
ocular delivery.

When comparing VCZ marketed
formulation and VCZ SNEDDS the

antifungal activity (MIC) showed similar
results for Candida sp. and significantly
lower MIC (p < 0.001) for A. fumigatus.

The pharmacokinetic
evaluation was superior to the
commercial one, presenting the

following results: AUC0–8 h:
16,200 µg/mL; Tmax: 2 h; Cmax:

5577 µg/mL.

[226]

Polaxâmero 188, Dodecilsulfato
de sódio, cloreto de
cetiltrimetilamônio

Nanospray dryer Oral 421 nm

Subacute treatment with
API-NP up to a concentration
80 mg/kg of body weight did

not cause adverse toxicological
effects in the organs evaluated.

Improved solubility, dissolution, and
release of VCZ in the aqueous medium.

API-NP showed improved in
pharmacokinetic parameters

(AUC, Cmax) compared to API
tablets and VFEND®.

Increased bioavailability,
sustained release, and less
inter-individual variability.

[227]

Kolliphor® HS 15, Sulfobutyl
ether-β-Cyclodextrin Self-assembly method 13–15 nm [228]
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Table 2. Cont.

Composition Method of Preparation Route of Administration Size Toxicity In Vitro In Vivo Reference

L-α-Fosfatidilcolina,
Polissorbato 80, Witepsol W35,

Ácido esteárico e Compritol
888 ATO

High-pressure
homogenization Ophthalmic 182 nm

The dialysis release test demonstrated
that the SLNs were able to release VCZ.

The formulation demonstrated
antifungal efficacy against Aspergillus

flavus and Candida glabrata.

[157]

Chitosan, EUD RS 100 Spontaneous
Emulsification Topic 217 nm

Desired physicochemical characteristics
of the formulation for administration in

mucosa showing mucoadhesion and
release mechanism by dialysis and

constant diffusion in vitro.

[229]

Chitosan, PLGA, PVA Multiple emulsion by
solvent evaporation Pulmonary 154–277 nm

After six hours, a greater
accumulation of VCZ was

detected in the liver than in the
urine, suggesting that urinary

clearance decreases.

Both formulations, PLGA-NP, coated or
not with chitosan, showed sustained

VCZ release after 24 h and followed the
Korsmeyer–Peppas kinetic model.

Both formulations showed
uniform distribution in the

alveoli and sustained release up
to 72 h, about free VCZ. VCZ

levels were detected in the lung
and plasma after

administration. The Cmax was
achieved earlier by the

chitosan-coated formulation,
but the time required was the

same when compared.

[230]

Albumin nabTM-technology Parenteral 81 nm Up to 2× increase in VCZ solubility. [231]

NLC (Tween 80, capric caprylic
triglycerides, Span 85,

cetylpyridinium chloride (CPC),
Compritol 888 ATO)

Microemulsion Ocular 250 nm The weak irritant in HET-CAM
irritation test.

Therapeutic delivery after 30 min in ex
vivo permeability assessment. [232]

SBE-β-CD Electrospinning Parenteral *
It demonstrated ease in promoting rapid

dissolution for reconstitution of the
pharmaceutical form.

[233]

Mannitol (MAN) Thin Film Freezing (TFF) Pulmonary 3 µm

The VCZ nanoaggregates 95:5
formulation showed better in vitro

performance in the aerosol performance
test, FPF 73.6%, and in dissolution test.

[234]

Compritol 888 ATO, Miglyol
812N, Gelucire 44/14, Solutol

HS 15 e Tween 80.

Melt High-Pressure
Homogenization 45 nm

There was no difference in MIC for
VCZ–NLC and free VCZ. However, at

low concentrations, the inhibition rate of
planktonic cells of C. albicans was higher
for VCZ–NLC; there was also a reduction

in the biofilm cell density. There is an
increase in the efficiency of the VCZ.

[235]
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Table 2. Cont.

Composition Method of Preparation Route of Administration Size Toxicity In Vitro In Vivo Reference

HP-β-CD + P407, P188 Spray drying Vaginal *
The addition of mucoadhesive polymers
increases mucoadhesion and sustained

drug release of VCZ.

VCZ uptake was higher when
administered in the VCZ

HP-β-CD formulation, whose
Cmax was 7.13 µg/g at two h

post-dose, an increase 3.4×
greater than HP-β-CD or VCZ

in dispersion.

[236]

Mannitol, TBA
(tert-Butyl alcohol) Spray freezes drying Pulmonary 2–4 µm All test formulations showed complete

dissolution within the first 5 min.

V8 (intratracheal) had a higher
concentration of VCZ in the

lungs when compared to
VFEND®(IV). After 30 min, the

concentration of VCZ was
lower in the liver and spleen,
and there was no significant

difference in the kidneys.

[237]

Solid Lipid (Compritol 888 ATO
or Stearic Acid), Span 80/60,

Tween 80

High-shear
homogenization followed
by probe ultrasonication

286 nm

VCZ-SLN reduced the MIC50 value for
all the tested Aspergillus fumigates
(susceptible and resistant) about

free VCZ.

[238]

Phosphatidylcholine,
cholesterol, α-tocopherol

Lipid-film hydration
followed by extrusion Intravenous 95 nm

Accumulation of VCZ in the
liver and kidneys was lower in

the liposomal form.

Candida sp. was more susceptible than
strains of Aspergillus sp., but there was
no difference between VCZ liposome

and VFEND®.

There was a difference in the
pharmacokinetic parameters for

liposome and VFEND®.
Liposome reduced the

deputation by half; the AUC0–24
increased 2.5× and reduced the

volume of distribution of
the VCZ.

[239]

Phosphatidylcholine
(Liposomes) Compritol,

Miglyol, Tween 80 e Span
85 (NLC)

Film hydration followed
by extrusion (Liposomes)

and microemulsion (NLC)
Topic 114 nm

The percentage of VCZ release was
higher for NLC (40%) than for liposome

(15%) after six hours. The gel formulation
showed significant accumulation only

with liposomes. Liposome deposition in
the follicle produces the greatest amount
in the stratum corneum. While NLC has

a faster and deeper release. The MIC50 to
Trichophyton rubrum result was similar for

both formulations.

[240]

Tween 80, ethanol and
oleic acid. Microemulsion Topic 10 nm

In the pork skin permeation test, the
accumulation of VCZ in the stratum
corneum and the rest of the skin was

higher for the microemulsion concerning
the commercial formulation. The

antifungal activity was better for the
microemulsion containing VCZ

compared to the one without VCZ in
Candida sp.

[241]
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Table 2. Cont.

Composition Method of Preparation Route of Administration Size Toxicity In Vitro In Vivo Reference

PVA, SA (Sodium Alginate) Electrospinning Topic 242–542 nm
Cell viability of rat fibroblast

cells was higher after
crosslinking VCZ nanofibers.

There was a release of 38% of VCZ in 30
min and 89% in 8 h for the nanofibers.

The kinetic model that explains the
release was from Higuchi. Crosslinked or

not with the nanofibers was more
effective in promoting penetration into

the skin layers than the control.
After cross-linking, there was a reduction

in the MIC value for Candida sp.

[242]

Compritol 888 ATO, Palmitic
Acid, Stearic Acid, Glycerol,
Soy Lecithin, Pluronic F-68,

Sodium Tauracholate.

Emulsification Solvent
Evaporation Ocular 139–344 nm

In vitro studies of corneal
hydration, histopathology and

HET-CAM suggested a
non-irritating property of

the formulation.

Sustained release > 60% in 12 h of study.

Sustained release compared to
VCZ suspension. A

significantly lower amount of
the drug was also observed in

the plasma, suggesting
nasolacrimal drainage.

[243]

Lecithin, Cholesterol Film hydration Ocular * Eye irritation studies in rabbits
showed no irritation. In vitro sustained release. [244]

Soy Phosphatidyl-
choline, Cholesterol Thin film hydration Ocular 116 nm

HET-CAM irritability study
indicated a non-irritating

formulation, therefore, safe.

Mucin permeation study showed a good
affinity with the mucous layer of the eye,

showing ophthalmic viability.
[245]

Pluronic F-127 and F-68,
Sodium Alginate In situ gelation Ocular *

Antifungal activity in C. albicans and A.
fumigatus depends on increased VCZ
release from the gel. The formulation

showed prolonged stability.

[246]

Chitosan, Silver, and
Graphene Oxide Electrostatic Interaction Ocular *

A study performed with
corneal cells did not show

cytotoxicity to the cells,
demonstrating biocompatibility.

Sustained release of VCZ was observed
through the hydrogel. The hydrogel
showed inhibitory activity against

Fusarium solani and A. fumigatus with
MIC of 2.5 µg/mL and 2.5–5.0 µg/mL.
The matrix activity of the contact lenses

produced was also evaluated and
presented a MIC of 1.25 µg/mL,

suggesting an increase in therapeutic
efficacy and a synergistic effect of the

matrix with the hydrogel.

Clinical evaluation of rats
treated with the lenses

containing the VCZ hydrogel
exhibited a reduction in fungal

keratitis during the
treatment period.

[247]

PLGA Multiple Emulsion and
Solvent Evaporation Pulmonary 300 nm

In PBS medium, the drug release was
limited by the dissolution rate of the

drug particles, while in SLF medium, the
release occurred by the

diffusion/erosion mechanism.

There was variation in the
concentration of VCZ in the

pulmonary lobes of the animals
during treatment with
intravenous injection, a

situation that did not occur
with pulmonary administration.

In addition, there was greater
retention of VCZ in lung tissue

from the nanoparticles.

[248]
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Table 2. Cont.

Composition Method of Preparation Route of Administration Size Toxicity In Vitro In Vivo Reference

Polietilenoimina, Stearic acid,
sodium deoxycholate Emulsification Pulmonary 353 nm

Cytotoxicity in human lung
carcinoma cells (A549) was

dependent on
polyethyleneimine

concentration.

From the results of the mass mean
aerodynamic diameter, the use of VCZ in

the form of
aerosols from agglomerates or

nanoparticles can result in better
pulmonary deposition than with the use

of pure powder.

[159]

Carbopol 934, stearic acid,
Tween 80

Ultrasonication and
Microemulsion Ocular 234–288 nm

The corneal hydration level
remained between 76% and

79%, causing no damage to the
corneal tissue.

Formulation using ultrasonication
allowed controlled release for 12 h and

prolonged stability.
An Ex vivo transcorneal permeation

showed controlled release in the cornea.

[46]

Jojoba Oil, Brij 97 and Sorbitol Microemulsion Topic *

Microemulsion showed higher
therapeutic efficacy than supersaturated

VCZ solution against C. albicans
ATCC 90028.

[249]

Precirol ATO 5, Labrafil 1944
CS, Tween 80

High Pressure
Homogenization Topic 210 nm

Sustained and controlled Release of VCZ
for 24 h. The hydrogel formulation
showed a higher amount of VCZ

permeated in 12 h.

[160]

* Not mentioned.
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4.1. Lipid Nanoparticles

Lipid nanocarriers are potential drug delivery systems because they allow a controlled
and specific target release [250,251]. The main lipid nanocarriers are the liposomes, solid
lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) [252,253].

Liposomes are spherical vesicles formed by one or more phospholipid bilayers, sur-
rounded by an aqueous compartment. Hydrophilic drugs can be loaded in the aqueous
core while hydrophobic drugs are trapped into the lipid bilayer [254].

SLNs consist of carriers composed of a solid lipid core surrounded by a surfactant layer.
The lipid is presented as a solid at room temperature and is smelt at higher temperatures.
Hydrophobic drugs are better loaded in SLNs than hydrophilic ones. This first generation of
SLNs presented limitations such as low physical stability, limited encapsulation efficiency,
and expulsion of the drug during storage. It occurs due to the formation of a perfectly
crystallized lipid matrix after solidification of the lipid. The second generation of SLNs are
the NLCs, the core of which is constituted by a solid lipid and a liquid lipid (oil), forming a
disordered lipid arrangement, avoiding the drawbacks of SLNs [255].

Among the solid lipids commonly used for SLNs are those with a low melting point
and solidity at body temperature, in addition to surfactants and co-surfactants [256]. The
development of SLN has improved the encapsulation efficiency and stability of drugs using
a mixture of liquid, solid lipids, and surfactants [257,258].

SLNs plays a significant role in improving pharmacokinetic characteristics and reduc-
ing the adverse effects of antifungals [259]. Amphotericin B was the first antifungal to be
commercialized in colloidal dispersion systems, lipid complexes, or liposomes to improve
drug solubility and reduce its adverse effects, [45,260].

The ability to improve drug solubility through lipid formulations has also been ex-
plored in VCZ delivery systems, to topical [160,232] and ocular administration [157]. In the
study carried out by Andrade, an NLS was developed with 75% encapsulation efficiency
that allowed safe release into ocular tissue in ex vivo tests [232].

In a study by Liu et al. (2023), a liposome containing voriconazole showed a greater
capacity for binding to the chitin of the fungal cell wall of C. albicans. Furthermore, the
in vivo study improved the delivery efficacy of voriconazole [261].

In vivo study of vaginal infections by candida albicans showed a significant reduction
in infection after 48 and 72 h compared to free voriconazole, indicating sustained release of
the drug [220].

In general, lipid nanoparticles containing voriconazole have been developed mainly
for ocular delivery and this is justified by the compatibility and permeation capacity of
these systems in this tissue, favoring a safe delivery of drugs. Studies with SLNs have
shown increased permeation, mainly ocular, and allowed controlled and sustained release,
increasing the therapeutic efficacy of these systems for VCZ delivery [46,243,244].

4.2. Polymeric Nanoparticles

Among the administration systems and targeted delivery of drugs and molecules,
polymeric nanoparticles play a prominent role in this scenario. The main feature is the ease
of interacting with pharmacokinetic parameters in administering these systems, such as
absorption, bioavailability, and excretion [262,263].

There are two types of biodegradable polymers used, with synthetic polymers such
as Poly (lactide) (PLA) [264], Poly (lactide-co-glycolic) (PLGA) [265], Poly (ε-caprolactone)
(PCL) [266], and natural polymers such as chitosan [267], zein [268], casein [269], algi-
nate [270], gelatin [271], and albumin [272].

The methods for obtaining nanostructured systems with polymeric nanoparticles
are based on two main techniques, dispersion and polymerization [273]. However, these
systems still present some challenges as drug delivery systems: the non-scalable procure-
ment methods, the safety and cost of development, and limitations as a system, such as
overcoming some biological and stability barriers [274].
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In this sense, several systems have been studied in different pathophysiological con-
ditions to overcome these challenges. Among the main diseases that have already been
approved and have effective results is cancer, in systems that release doxorubicin and pacli-
taxel, for example [275–277]. Studies also use neurodegenerative [278] and cardiovascular
diseases [279,280].

Despite the challenges, polymeric nanoparticles are promising for their use and de-
velopment advantages [281]. They provide the encapsulated molecule with protection
against degradation in some routes of administration, such as oral administration [282].
They enable the controlled release of the target-specific drug and surface modification with
the incorporation of ligands [283,284].

Some nanoparticles have also been explored for VCZ delivery. Chitosan-coated PLGA
nanoparticles were developed by Paul (2018) using the solvent evaporation emulsification
method to improve the bioavailability and release of VCZ through the pulmonary route.
The study obtained nanoparticles with 68.57% encapsulation efficiency and a sustained
and slow release in vitro and in vivo, which allowed the retention of VCZ in the lung and
plasma [230].

In another study by Rençber and Karavana (2018), chitosan nanoparticles were devel-
oped to carry VCZ by the emulsification method for topical administration. The nanoparti-
cles had almost 99% encapsulation efficiency. The release was characterized by diffusion,
and the method was considered promising for topical administration. The authors justify
the result by the association of chitosan, which has mucoadhesive properties [229].

Das (2015) was able to increase the bioavailability of VCZ via the pulmonary route
in PLGA nanoparticles developed by solvent evaporation emulsification, with an average
diameter of approximately 300 nm. The system allowed increased pulmonary deposition
and prolonged release, thus improving the pharmacokinetic characteristics of VCZ [248].
Another study with PLGA was developed by Sinha, Mukherjee and Pattnaik (2013), and the
system allowed more significant pulmonary deposition and prolonged release of VCZ [285].

The characteristic of allowing the incorporation of different molecules into the poly-
meric nanoparticle allows for an increase in the interaction of the nanostructured system
with the target tissue [229,283,284]. This has been explored in the literature with chitosan,
which is known to have a mucoadhesive property and allows the increase in the delivery
of VCZ in the target tissue [218,221,230,247].

4.3. Protein Nanocarriers

Protein nanoparticles are also described as polymeric nanoparticles, as they are clas-
sified as natural biopolymers. The main proteins used in developing these systems are
proteins of animal origin, such as albumin, gelatin, collagen, and fibroin, and proteins of
vegetable origin, such as zein and gliadin [286]. The procurement of nanoparticles occurs
through different techniques, such as emulsification, desolvation, complexation by coacer-
vation, electrospray deposition, and nanoprecipitation [287,288]. The protein nanoparticles
can be classified, according to composition, into several types: solid spherical nanoparticles,
plate-shaped nanoparticles, and nanogels [289]. Its applications involve different areas
such as drug delivery, nutrient and metabolite delivery, gene delivery, tissue engineering,
photodynamic therapy, growth factor delivery, vaccines, and cosmetics [288,290].

Human serum albumin nanoparticles containing VCZ were successfully developed by
nabTM technology. The aim of the investigation was to optimize critical process parameters
such as the homogenization pressure, the number of homogenization cycles, and the organic
solvent. After determining the critical parameters, the authors obtained nanoparticles in the
range of 35 to 85 nm, whose size was adequate for the proposed parenteral administration,
with an encapsulation efficiency of around 69%. After 6 h, the system had already released
85% of the encapsulated VCZ, which made this system promising for further studies [231].

In addition, nanoparticles for delivering voriconazole are promising, although their
application varies according to the need for the route of administration. It is possible
to see that lipid formulations seem to improve delivery by the ocular and topical route
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and protein and polymeric formulations were explored for oral and pulmonary deliv-
ery [217,222,234,237,240]. The physicochemical characteristics of nanoparticles are impor-
tant for the treatment of fungal infections, as they allow a better interaction between the
fungus and the nanostructure.

In general, using nanotechnology for voriconazole encapsulation and release is a strat-
egy to increase therapeutic activity since studies have reported increased tissue permeation
with reduced toxicity, mainly due to the observed sustained and controlled release [211,216].
In addition, it is possible to observe an improvement in the solubility and bioavailability of
VCZ [230,237].

Despite this, there is still a need for more comprehensive studies regarding the cyto-
toxicity and antifungal potential of these nanoparticles, mainly in in vivo studies.

5. Other Systems for Voriconazole Delivery
5.1. Cubosomes

Cubosomes are reversed bicontinuous cubic phase liquid crystalline nanoparticles
capable of transporting and releasing drugs at the specific target site and have a high rate
of encapsulation efficiency. These characteristics are due to the high surface area between
the hydrophilic and hydrophobic regions present in its structure. They are composed of a
lipid and surfactant/stabilizer, which extends in three dimensions and two nanochannels
interwoven, but not connected [291–293].

Recently, cubosomes have been studied to increase and control the bioavailability of
VCZ after ocular application. VCZ suspensions showed a low ocular residence time, which
leads to an increase in the frequency of applications, while VCZ-containing cubosomes
demonstrated a prolonged release profile compared to the suspension. Cubosomes were
also coated with chitosan, increasing transcorneal permeation and residence time at the
site [224].

5.2. Cyclodextrins

Cyclodextrins (CD) are cyclic oligosaccharides composed of six or more glucose units
formed from an enzymatic reaction on starch. The most important naturally occurring
forms are the a-, b-, and g- CD, whose structural shape resembles a cone, where the inner
cavity has hydrophobic characteristics and the outer part is hydrophilic. Among the
advantages of using DC in nanotechnology is its ability to improve drug solubility and
organoleptic properties, stability, and safety [294,295].

CDs were used to improve VCZ solubility, dissolution rate, and chemical stability
through complexation in an aqueous solution, followed by spray-dryer drying [294]. An-
other study carried out the complexation of CD and VCZ to produce a thermosensitive
gel based on Poloxamer 407 and Poloxamer 188 for vaginal application. VCZ formulation
complexed as CD showed greater uptake of the drug by the vaginal tissue compared to the
formulation that used dispersed VCZ [236].

One of the most recent studies involves CD to improve the solubility of VCZ and the
production of hydrogels for ophthalmic application since there is no formulation for this
purpose. The authors compared the residence time and ophthalmic safety of b- and g-
CD complexes compared to the control (VFEND). The results demonstrated good corneal
permeability of VCZ, longer residence time, and ophthalmic safety [296]. Therefore, the
use of DC to improve the performance of VCZ has shown promise.

6. Clinical Trials

Currently, on the Clinical Trials website, there are 189 records of studies with VCZ,
of which only two registered studies involve the evaluation of nanocarrier formulations.
The PHASE 2 study under registration NCT04110860 conducted by the Minia University of
Egypt evaluated the application of a nanoemulsion-based gel containing VCZ in patients
with tinea versicolor once or twice a day, compared to a placebo (nanoemulsion-based
gel without VCZ). The study included 30 volunteer patients aged between 10 and 60
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years, both sexes, with tinea versicolor, excluding pregnant women, nursing mothers, and
immunocompromised patients. Patients’ clinical improvement, satisfaction, and duration
of treatment were evaluated. Adverse effects were recorded, photographs of the lesions
were taken before the start of treatment, during and at the end, and the clinical improvement
criteria used by the physicians used a quartile rating scale. No results from this study have
been published on the Clinical Trials website [297].

The PHASE 1 study under registration NCT01657201 conducted by Samyang Bio-
pharmaceuticals Corporation of South Korea evaluated intravenous administration of
VCZ-loaded-PNP 200 mg versus Vfend 200 mg in 59 healthy male patients aged 20 to
45 years to assess pharmacokinetic parameters and safety. The study was randomized,
crossover, and an open intervention model; the pharmacokinetic parameters evaluated
during the 24 h of the study were AUClast, Cmax, AUCinf, Tmax, T1/2, and CL [298].
Through this brief research, we can conclude that studies involving the application of
nanostructured systems containing VCZ are still limited and that the studies carried out
are still in the initial stages of research.

7. Future Prospects

It was observed that advances in the production of nanostructures containing voricona-
zole with a focus on topical, ocular, and pulmonary administration are significant in relation
to other drug application routes. Despite the diversity of developed systems, there are still
limitations regarding efficacy and safety studies. Most of the studies compiled in this work
employ in vitro tests to demonstrate its performance, while in vivo tests are rarely explored.
The reduced applicability of in vivo tests and the lack of use of alternative models, both
used for toxicity and pharmacokinetic assessments, indicate the need for efforts in this
area. Another point is the development of new drugs using nanotechnology, where clinical
studies are rare, which indicates that there is still much to be done for research to proceed
and benefit the population. In this sense, the application of nanotechnology is encouraged
for better performance of fungal drugs, which allow a higher efficacy and safety for the
treatment of different fungal infections that explore the interaction of nanoparticles with
yeast and filamentous fungi, improving the prospective application of these nanoparticles.

8. Conclusions

The therapeutic management of opportunistic fungal infections such as aspergillosis,
candidiasis, and cryptococcosis is still a challenge, which is associated with pharmacokinetic
and toxicity limitations of currently available antifungals. Among them, VCZ has a wide
sub- and supratherapeutic variation due to its metabolism and CYP450 polymorphisms,
which reduce its therapeutic efficacy and amplify its adverse effects.

Nanocarrier systems loaded-VCZ offer numerous advantages. Among the results
demonstrated, we can highlight the improvement in solubility and dissolution rate of
VCZ in an aqueous medium. The release control presented different release profiles,
most of them allowing a prolonged or sustained release in the presence of an initial
burst effect. In addition, pharmacokinetic parameters improve the increase in mucosal
adhesion and safety for topical applications. The physicochemical characteristics change
according to the nanostructured system, and these data are verified according to widely
disseminated techniques for characterization. Nanotechnology applied to the use of VCZ
has the potential to improve parameters related to drug targeting, release, and therapeutic
effects for overcoming the biological and physicochemical hurdles.
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242. Esentürk, İ.; Balkan, T.; Özhan, G.; Döşler, S.; Güngör, S.; Erdal, M.S.; Sarac, A.S. Voriconazole Incorporated Nanofiber Formula-
tions for Topical Application: Preparation, Characterization and Antifungal Activity Studies against Candida Species. Pharm. Dev.
Technol. 2020, 25, 440–453. [CrossRef]

243. Kumar, R.; Sinha, V.R. Solid Lipid Nanoparticle: An Efficient Carrier for Improved Ocular Permeation of Voriconazole. Drug Dev.
Ind. Pharm. 2016, 42, 1956–1967. [CrossRef]

244. Pandurangan, D.; Bodagala, P.; Palanirajan, V.; Govindaraj, S. Formulation and Evaluation of Voriconazole Ophthalmic Solid
Lipid Nanoparticles in Situ Gel. Int. J. Pharm. Investig. 2016, 6, 56–62. [CrossRef]

245. De Sá, F.A.P.; Taveira, S.F.; Gelfuso, G.M.; Lima, E.M.; Gratieri, T. Liposomal Voriconazole (VOR) Formulation for Improved
Ocular Delivery. Colloids Surf. B Biointerfaces 2015, 133, 331–338. [CrossRef] [PubMed]

246. Pawar, P.; Kashyap, H.; Malhotra, S.; Sindhu, R. Hp-β-CD-Voriconazole In Situ Gelling System for Ocular Drug Delivery: In Vitro,
Stability, and Antifungal Activities Assessment. Biomed. Res. Int. 2013, 2013, 1–9. [CrossRef] [PubMed]

247. Huang, J.-F.; Zhong, J.; Chen, G.-P.; Lin, Z.-T.; Deng, Y.; Liu, Y.-L.; Cao, P.-Y.; Wang, B.; Wei, Y.; Wu, T.; et al. A Hydrogel-Based
Hybrid Theranostic Contact Lens for Fungal Keratitis. ACS Nano 2016, 10, 6464–6473. [CrossRef] [PubMed]

248. Das, P.J.; Paul, P.; Mukherjee, B.; Mazumder, B.; Mondal, L.; Baishya, R.; Debnath, M.C.; Dey, K.S. Pulmonary Delivery of
Voriconazole Loaded Nanoparticles Providing a Prolonged Drug Level in Lungs: A Promise for Treating Fungal Infection. Mol.
Pharm. 2015, 12, 2651–2664. [CrossRef] [PubMed]

249. El-Hadidy, G.N.; Ibrahim, H.K.; Mohamed, M.I.; El-Milligi, M.F. Microemulsions as Vehicles for Topical Administration of
Voriconazole: Formulation and In Vitro Evaluation. Drug Dev. Ind. Pharm. 2012, 38, 64–72. [CrossRef]
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