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Abstract: For the selective elimination of deleterious cells (e.g., cancer cells and virus-infected cells),
the use of a cytotoxic gene is a promising approach. DNA-based systems have achieved selective
cell elimination but risk insertional mutagenesis. Here, we developed a synthetic mRNA-based
system to selectively eliminate cells expressing a specific target protein. The synthetic mRNAs
used in the system are designed to express an engineered protein pair that are based on a cytotoxic
protein, Barnase. Each engineered protein is composed of an N- or C-terminal fragment of Barnase,
a target protein binding domain, and an intein that aids in reconstituting full-length Barnase from
the two fragments. When the mRNAs are transfected to cells expressing the target protein, both
N- and C-terminal Barnase fragments bind to the target protein, causing the intein to excise itself
and reconstitute cytotoxic full-length Barnase. In contrast, when the target protein is not present,
the reconstitution of full-length Barnase is not induced. Four candidate constructs containing split
Barnase were evaluated for the ability to selectively eliminate target protein–expressing cells. One of
the candidate sets demonstrated highly selective cell death. This system will be a useful therapeutic
tool to selectively eliminate deleterious cells.

Keywords: mRNA; intein; nanobody; selective cell elimination

1. Introduction

Cytotoxic genes can be used to eliminate deleterious cells, such as cancer or virus-
infected cells. However, the expression of the cytotoxic gene in healthy cells can cause
undesirable off-target cell death. Therefore, selective cell elimination systems are needed to
target and eliminate only deleterious cells. In previous studies, cell-selective transcriptional
regulatory sequences have been used to make selective cell elimination systems. Despite
the success of such DNA-based systems in achieving selective cell elimination [1], the
risk of genomic integration limits their applicability. Alternatively, the development of
mRNA-based systems improves this safety concern [2,3]. Some mRNA-based systems
achieve selective elimination after recognizing microRNA (miRNA) specific to a target
cell type [4–6]. Although these miRNA-detecting systems successfully worked in certain
situations, detecting intracellular proteins seems to be a more practical approach as there
are abundant intracellular proteins specifically expressed in deleterious cells (e.g., cancer
antigens and viral proteins).

Therefore, we developed a synthetic mRNA-based intracellular protein-detecting
system to achieve selective cell elimination. This system is composed of two mRNAs
encoding fusion proteins, which consist of N- or C-terminal fragments of Barnase (Bn), a
cytotoxic protein [7]; caged inteins that can excise themselves from the host protein and
join the flanking regions through a peptide bond once in proximity [8,9]; and nanobodies,
which are antigen-binding domains of camelid-derived single-chain antibodies [10]. In
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this system, they force the N- and C-caged inteins into proximity by tethering them to a
target protein. When the mRNAs encoding the engineered proteins are transfected into
cells expressing the target protein, a binding event occurs, causing the intein to excise
itself and reconstitute full-length Bn. The selective reconstitution of Bn enables target
protein–responsive cytotoxicity (Figure 1).
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Figure 1. Mechanism of selective cell elimination using mRNA encoding split Bn. (A) Schematic
diagram of selective cytotoxicity after transfecting the mRNA encoding target protein-responsive
cell elimination protein. (B) Schematic diagram of mRNAs used in the target protein-responsive cell
elimination system. All mRNAs were capped with CleanCap AG (3′ OMe).

2. Materials and Methods
2.1. pDNA Construction

The human codon-optimized Barstar-Barnase DNA was synthesized by GeneArt High-
Q strings (ThermoFisher Scientific K.K., Tokyo, Japan). PrimeSTAR Max DNA Polymerase
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(Takara Bio Inc., Shiga, Japan) was used for the polymerase chain reaction (PCR), to prepare the
inserts by using human codon-optimized Barstar-Barnase as template DNA. Primers for each
of the split Bn were designed using Primer3Plus [11]. Vectors digested by restriction enzymes
and inserts were purified using the Monarch PCR & DNA Cleanup Kit (New England BioLabs
Japan Inc., Tokyo, Japan). The cloning reaction was performed using the In-Fusion HD Cloning
Kit (Takara Bio Inc.). Further, pDNAs were amplified in E. coli strain HST08 and extracted
using the Monarch Plasmid Miniprep Kit (New England BioLabs Japan Inc.).

2.2. Preparation of mRNAs by In Vitro Transcription

Template DNAs were prepared by PCR using PrimeSTAR Max DNA Polymerase
(Takara Bio) and the primers listed in Table S1, and the Monarch PCR & DNA Cleanup Kit
(New England BioLabs Japan Inc.) was used to purify the PCR products. Template DNA
sequences used in this study are shown in Table S2. The MEGAscript T7 Transcription Kit
(Thermo Fisher Scientific K.K.) was used to transcribe mRNAs from the template DNAs.
Additionally, 6 mM GTP, 6 mM CTP, and 6 mM ATP were used from the MEGAscript T7
Transcription Kit (Thermo Fisher Scientific) with 6 mM N1-methyl-pseudoUTP (TriLink
Biotechnologies, San Diego, CA, USA) and 4.8 mM CleanCap Reagent AG (3′ OMe) (TriLink
Biotechnologies). After transcription, template DNAs were digested using TURBO Dnase
(Thermo Fisher Scientific), and transcribed mRNAs were purified using Agencourt RNA-
Clean XP (Agencourt Bioscience Corporation, Beverly, MA, USA). Next, the mRNAs were
dephosphorylated using Quick CIP (New England BioLabs Japan) and purified using
the RNeasy Mini Kit (Qiagen K.K., Tokyo, Japan). The mRNAs were quantified using
NanoDrop One (ThermoFisher Scientific K.K.), and their sizes were confirmed using the
Agilent RNA 6000 Nano Assay and the Agilent 2100 Bioanalyzer (Agilent Technologies
Japan Ltd., Tokyo, Japan).

2.3. Cell Culture

HeLa cells were cultured in Dulbecco’s modified Eagle’s medium (4500 mg/L glu-
cose, L-glutamine, sodium pyruvate and sodium bicarbonate) (Sigma Aldrich Japan K.K.,
Shinagawa, Tokyo) containing 10% fetal bovine serum (Biosera, Tokyo, Japan) and 1%
penicillin-streptomycin (Sigma Aldrich Japan K.K.).

2.4. The mRNA Transfection and Cell Viability Assay

HeLa cells were seeded at a density of 1 × 104 cells/well in a 96 well plate. Approxi-
mately 24 h later, cells were transfected using 0.2 µL/well of Lipofectamine MessengerMAX
(Thermo Fisher Scientific K.K.). Cell viability was measured 24 or 48 h after transfection
using the Cell Counting Kit-8 Assay (Dojindo Laboratories, Kumamoto, Japan).

3. Results
3.1. Construction of Split Bn Genes

To successfully reconstitute Bn from the N- and C-terminal split parts, different candi-
date split Bn genes were constructed. By following previous studies using split versions of
Bn [12], one split Bn gene candidate was split at the 36th amino acid (Bn-36). Next, Split
Protein rEassembly by Ligand or Light (SPELL) [13] predicted a suitable split site at the
21st amino acid (Bn-21). The remaining split sites were selected because of their positions
in the middle of long, unstructured regions within the Bn protein (Bn-65 and Bn-81), which
would theoretically allow for optimal full-length protein reconstitution [14]. Escherichia
coli dihydrofolate reductase (eDHFR) was used as a target protein for this system because
of the strong performance of eDHFR-binding nanobodies in previous studies [15,16]. In
order to bind the N-terminal Bn fragments to eDHFR, the fragments were fused with an
eDHFR α epitope-targeting nanobody Nb113, and the C-terminal Bn fragments were fused
with eDHFR β epitope-targeting nanobody CA1698. Further, the caged Nostoc punctiforme
(Npu) DnaE intein [8,9,17] was inserted between the split Bn and nanobody portions of
the engineered mRNAs. The caged Npu DnaE intein was used to mediate fast protein
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trans-splicing, which reconstitutes full-length Bn from the N- and C-terminal split frag-
ments when the N- and C-caged inteins are in proximity. This split intein requires the
first amino acid of the C-extein to be cysteine [18], so we inserted a cysteine codon into
the splice junction of the C-extein. Then, we transfected these split Bn mRNA pairs to
evaluate their selective cell elimination capability. Because we previously confirmed the
high mRNA transfection efficiency in HeLa cells [16], we selected HeLa cells to demonstrate
this systems’ proof of concept.

3.2. Selective Cytotoxicity after Cotransfecting Split Bn Fragments

Each of the mRNAs encoding split protein fragments were transfected into HeLa
cells, and the cell viability was measured 24 h after transfection. All split Bn mRNAs
reduced the cell viability compared with the untransfected condition (Figure 2A). However,
there were differences in the performance between each of the split Bn constructs. The
fold change between the on-target condition, which expressed the target protein, and the
off-target condition, which lacked the target protein, were calculated. Bn-81 showed a
4.8-fold change between the on- versus off-target conditions, the highest of any split Bn set.
This indicated highly selective cell elimination in response to the dimerizing target protein,
eDHFR. In contrast, Bn-65 had high cytotoxicity for both the on- and off-target conditions
and eliminated approximately 95% of cells. Bn-21 showed the lowest overall cytotoxicity.
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Figure 2. Cell viability assay results comparing the selective cytotoxicity of each candidate split Bn
set. (A) Cell viability 1 day after transfecting candidate split Bn sets. HeLa cells were cotransfected
with each of the N- and C-terminal split Bn sets (45 ng/well of each) and eDHFR mRNA (10 ng/well).
Full-length Bn (90 ng/well) was used as a positive control. (B) Cell viability 2 days after transfecting
candidate split Bn sets.
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Although Bn-81 showed the highest fold change in cytotoxicity between the target
protein-positive and -negative cells, more than 80% of cells were eliminated even when there
was no target protein. In particular, 48 h after transfection, most of the cells died, regardless
of target protein expression (Figure 2B). As such off-target cell death is undesirable for
therapeutic applications, we investigated how to prevent it.

3.3. Prevention of Off-Target Cell Death by Cotransfection of Barstar mRNA

Despite Bn-81 showing the highest fold change between the on- and off-target condi-
tions, only approximately 5% of cells in the off-target condition lacking the target protein
were not eliminated (Figure 2B). We speculated that a small portion of split Bn was recon-
stituted into full-length Bn by the target protein-independent protein splicing and that
the off-target cytotoxicity results from such reconstituted full-length Bn. To reduce this
off-target cytotoxicity, we cotransfected Bn-81 with Barstar, a protein sterically inhibits Bn
by forming a one-to-one, noncovalently bound complex (Figure 3A) [19–21].
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Figure 3. Reduction of off-target cytotoxicity by cotransfection of Barstar. (A) Schematic diagram
showing reduced off-target cytotoxicity by cotransfection of Barstar. A small portion of split Bn
can be reconstituted into full-length Bn even in nontarget cells (indicated with a red arrow), which
causes undesirable off-target cytotoxicity. The cotransfection of a small amount of Barstar can
sufficiently inhibit the full-length Bn in nontarget cells. In contrast, owing to high protein splicing
efficiency in target cells, such a small amount of Barstar is insufficient to inhibit on-target cytotoxicity.
(B) Cell viability assay results from cells transfected with Bn-81 and Barstar mRNA. Cell viability was
measured 2 days after cotransfecting HeLa cells with Bn-81 (45 ng/well of both N- and C-terminal
split Bn-81), eDHFR (10 ng/well) and Barstar mRNA (3, 2, or 1 ng/well). Firefly luciferase mRNA
(90 ng/well), Barstar mRNA (90 ng/well), and the transfection reagent without mRNA were used as
negative controls. Full-length Bn (90 ng/well) was used as a positive control.
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The smallest amount of Barstar mRNA necessary to reduce off-target cytotoxicity
was evaluated. Cotransfection of 3, 2, or 1 ng of Barstar mRNA with Bn-81 resulted
in nearly 100% viability of target protein-lacking cells, while high cytotoxicity was still
observed in the target protein-expressing cells, especially when 1 ng of Barstar mRNA
was used (Figure 3B). These results demonstrate the superiority of Bn-81 in its ability to
selectively eliminate cells that are expressing the target protein while it maintains limited
off-target cytotoxicity.

3.4. Relationship between Amount of Target Protein and Cell Elimination Efficiency

To investigate the sensitivity of this system for detecting different amounts of intra-
cellular protein, Bn-81 was cotransfected with 3, 2, 1, or 0.5 ng of eDHFR mRNA. There
was a dose-dependent relationship between the amount of eDHFR mRNA transfected and
cell viability. When 0 ng of eDHFR mRNA was used, the cell viability was similar to the
transfection reagent-only condition (Figure 4). Only 2 ng of eDHFR mRNA was necessary
for approximately 50% of the cells to be eliminated, and 3 ng of eDHFR mRNA eliminated
approximately 80% of the cells. Therefore, this system demonstrates high sensitivity and
that it selectively eliminated cells in a target protein-dependent manner.
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Figure 4. Relationship between the amount of transfected eDHFR mRNA and reconstitution of Bn
protein, as measured by cell viability. Cell viability was measured 2 days after cotransfecting Bn-81
mRNA (45 ng/well of both N- and C-terminal Bn-81), Barstar mRNA (1 ng/well), and eDHFR mRNA
(3, 2, 1, 0.5, or 0 ng/well). The transfection reagent without mRNA was used as a negative control,
and full-length Bn mRNA (90 ng/well) was used as a positive control.

3.5. Generality of Protein-Responsive Selective Cell Elimination

Lastly, we used a different intracellular protein, EGFP, to check the generality of
this system. The regions encoding anti-eDHFR nanobodies were changed to Lag16 [22]
and the GFP enhancer nanobody [23] (Figure 5A). We chose this nanobody combination
because these nanobodies bind to different epitopes of EGFP and therefore do not inhibit
each other’s binding [16,24]. As in the case of eDHFR-responsive Bn-81, selective cell
elimination occurred only in the target conditions where EGFP was present (Figure 5B).
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Figure 5. EGFP-targeting Bn-81 selectively eliminates target cells. (A) Schematic diagram of EGFP-
targeting mRNAs used. All mRNAs were capped using CleanCap AG (3′ OMe). (B) Cell viability
2 days after cotransfecting HeLa cells with EGFP-targeting Bn-81 (45 ng/well of both N- and C-
terminal split EGFP-targeting Bn-81), EGFP (10 ng/well), and Barstar mRNA (0.75, 0.5, or 0 ng/well).
Full-length Bn (90 ng/well) was used as a positive control.

4. Discussion

In this study, we developed a synthetic mRNA-based system to selectively eliminate
target protein-expressing cells. Here, mRNA encoding Bn, a cytotoxic protein, was split into
two parts and fused with genes encoding a nanobody and caged intein for intracellular pro-
tein recognition and full-length protein reconstitution from the split parts. Four candidate
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split Bn genes were designed, and Bn-81 showed a 4.8-fold change between target protein-
expressing cells and target protein-lacking cells, which was the highest of the candidate
genes (Figure 2A). However, there was undesirable cytotoxicity even in the target protein-
lacking cells, which were the off-target condition. Because of this off-target cytotoxicity, the
cell viability in the off-target condition was only approximately 11% and 5% 1 and 2 days
after transfection, respectively (Figure 2). Therefore, to reduce this off-target cytotoxicity,
we cotransfected Barstar, an inhibitor of Bn (Figure 3A), with Bn-81 and achieved nearly
100% cell viability (Figure 3B).

Compared with the recently reported mRNA-based selective cancer cell elimination
systems, our split cytotoxic protein system is relatively simple [25,26]. Nevertheless, the
need to cotransfect mRNA encoding an inhibitor protein, Barstar, to reduce off-target cyto-
toxicity complicates this system. As Bn is a highly cytotoxic protein, even inefficient target
protein-independent spontaneous protein splicing may be sufficient to induce undesirable
off-target cytotoxicity. Using other cytotoxic proteins, such as Bim [4] or Bax [5], may
simplify this system because these proteins might not cause off-target cytotoxicity without
an inhibitor. Further optimizing the used caged inteins may likewise decrease the off-target
cytotoxicity by decreasing the target protein–independent protein splicing.

There are several limitations to this system. First, as Bn can eliminate only the cells it
is transfected into, it is not capable of inducing bystander effects. Therefore, eliminating
all deleterious cells in vivo using only this system is challenging, especially in the case
of solid tumors with hypoxic regions, because transfecting all target cells with mRNAs
is difficult. Developing the split version of prodrug-converting enzymes (e.g., herpes
simplex virus thymidine kinase [27,28]) instead of Bn may overcome this limitation, but
their bystander effects can kill nontarget cells. Thus, there is a trade-off between high cell
selectivity and the bystander effect. Determining which of these considerations should be
prioritized depends on the purpose. Second, it is difficult to target proteins inside some
membranous organelles, such as lysosomes or peroxisomes. The localization of split Bn to
such organelles may be possible by fusing signal peptides. However, the reconstitution
of full-length Bn in such organelles seems to not efficiently induce cell death, because Bn
induces cell death by nonspecific RNA degradation, and RNAs are mainly localized in the
cytoplasm and nucleus.

The cytotoxicity that is due to reconstituted Bn is based on the presence of an intracel-
lular target protein, and the detection of the target protein depends solely on the nanobody.
Therefore, by changing the nanobody used, various cell-specific intracellular proteins can
be targeted. This enables the selective elimination of various deleterious cells expressing
specific proteins (e.g., cancer antigens or viral proteins). At present, there is a limited
number of nanobodies are available [29,30], which restricts this work to a model system.
However, new nanobodies that target endogenous cell-specific proteins can be obtained by
immunizing camelids. Alternatively, other customizable protein-targeting modules such
as DARPin [31,32], affibody [33], and anticalin [34] can be used to bring the inteins into
proximity and reconstitute the full-length cytotoxic protein. A noncustomizable protein,
such as a naturally occurring protein and binding pair, could also potentially be used [25].
The versatility of this system lends itself to various clinical applications. For example, using
a protein-targeting module that detects a cancer antigen may allow for this system to be
used for cancer therapy [25,26,35]. The ability of this system for such in vivo selective cell
elimination could be evaluated by using a tumor xenograft model. Additionally, it could
be used to aid regenerative medicine by eliminating undifferentiated cells in mixed-cell
populations before transplanting these cells [4,36]. Thus, this study shows a promising
proof of concept for using intracellular protein detection as a basis for an mRNA-based
selective cell elimination system.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/pharmaceutics15010213/s1, Table S1: List of primers used to prepare tem-
plate DNAs for in vitro transcription; Table S2: Full sequences of template DNAs for in vitro transcription.
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