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Abstract: The most commonly occurring malignant brain tumors are gliomas, and among them is
glioblastoma multiforme. The main idea of the paper is to estimate dependency between glioma
tissue and blood serum biomarkers using Raman spectroscopy. We used the most common model of
human glioma when continuous cell lines, such as U87, derived from primary human tumor cells, are
transplanted intracranially into the mouse brain. We studied the separability of the experimental and
control groups by machine learning methods and discovered the most informative Raman spectral
bands. During the glioblastoma development, an increase in the contribution of lactate, tryptophan,
fatty acids, and lipids in dried blood serum Raman spectra were observed. This overlaps with
analogous results of glioma tissues from direct Raman spectroscopy studies. A non-linear relationship
between specific Raman spectral lines and tumor size was discovered. Therefore, the analysis of
blood serum can track the change in the state of brain tissues during the glioma development.

Keywords: optical methods of tissue study; glioma tissue; Raman spectroscopy; machine learning;
U87 glioblastoma

1. Introduction

The most commonly occurring malignant brain tumors are gliomas, and among them
is glioblastoma multiforme (GBM), which accounts for 14.3% of all tumors and 49.1% of
malignant tumors [1–3]. GBM is the most aggressive, invasive, and undifferentiated type
of tumor, and has been designated grade IV by the World Health Organization [4,5]. GBM
is among the deadliest neoplasms.

One reason for the poor outcome of glioblastoma is a late-stage diagnosis, since most
of the existing methods of noninvasive diagnostics, such as magnetic resonance imaging
(MRI) [6–8] and computer tomography [9], are ineffective for diagnosing small-size tumors.
Optical methods, such as fluorescence imaging [10], multiphoton microscopy [11], photoa-
coustic imaging [12], optical absorption spectroscopy [13–15], Raman spectroscopy and
imaging [16,17], and terahertz (THz) imaging [18–20] are widely used for direct detection of
glioma tissues spectral fingerprints, including glioma’s molecular biomarkers, under cancer
tissue surgery resection. Similar methods are very sensitive to tissue chemical content,
but have too low a penetration depth to in vivo noninvasive glioma detection. Tissue
biopsies can be taken to study cellular and molecular composition. It is an invasive and
traumatic procedure.
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The tumor development leads to the release of various substances and tumor cells into
circulation [21]. Blood, similar to other body fluids, has been shown to contain circulating
tumor cells, extracellular vesicles, circulating tumor nucleic acids, proteins, and metabolites,
the analysis of which provides information about the cancer development [22]. The highest
concentrations of glioma markers are found in cerebrospinal fluid. The biomarkers have
also been found in other biofluids. The discovery of cancer biomarkers in biofluids is called
liquid biopsy, which has been intensively developed in recent decades [23,24]. Liquid
biopsy provides the opportunity to detect cancer instead of a standard biopsy. Control of
glioma molecular markers in body fluids has a potential to become equivalent to studying
glioma tissues. It is important that similar molecular markers can appear in biofluids at
the early stage, opening a way to an early diagnosis [25–28]. MicroRNAs and proteins
were shown to be the most promising glioma biomarkers [22]. Plasma concentrations of
alpha-2-glycoprotein, C-reactive protein, and C9 complement component show a significant
positive correlation with tumor size [29]. It was established that the following metabolic
pathways are disrupted in glioma: taurine/hypotaurine, D-glutamine/D-glutamate, ala-
nine/aspartate/glutamate, glycine/serine/threonine, and pyruvate metabolism [30]. Blood
plasma of patients with primary brain tumors exhibits similar changes in all tumor types:
increased glucose and pyruvate, decreased citrate, succinate, and glutamine, increased
creatine and decreased creatinine. Phenylalanine and tyrosine were both increased, es-
pecially in GBM patients [31]. In serum, cysteine was found at higher levels in GBMs,
while lysine and 2-oxoisocaproic acid showed higher levels in oligodendrogliomas [32].
Five metabolites (uracil, arginine, lactate, cystamine, and ornithine) allowed significant
distinguishing between high- and low-grade glioma patients [33]. Concentrations of 2-
hydroxyglutarate enantiomers, currently a recognized gliomas biomarker, are elevated
by orders of magnitude in gliomas harboring mutations in isocitrate dehydrogenase1/2
(IDH1/2) [34].

Each type of biological tissue has an individual molecular composition and, thus, a
unique spectral profile [14,15,35]. A set of such individual states of functional groups of nu-
cleic acids, proteins, lipids, and carbohydrates makes it possible to characterize the specific
tissues, which ultimately makes it possible to isolate disease markers. Vibrational spec-
troscopy methods include infrared (IR) absorption spectroscopy and Raman spectroscopy.
IR spectroscopy and Raman are complementary techniques, which differ in the way the
molecular vibrations are excited and detected [15]. Significant progress has been made in
the diagnosis of human gliomas by IR spectroscopy of blood serum [14,36–41]. However, it
was shown that Raman spectroscopy can provide a more precise chemical composition of a
biological sample and can be more effective than IR spectroscopy due to the higher sensi-
tivity to C–C, C=C, and C≡C bonds [42,43]. A high number of carbon functional groups
was observed in biological tissue and fluids. Raman spectroscopy allows for the discovery
of different compounds present in a biological sample by the characteristic frequencies
of individual chemical groups of these molecules. It is a powerful analytical technique
that can be applied in the diagnosis of cancer, including gliomas [15,17,44,45]. Depending
on the stage of tumor development, the greatest changes in tissues’ Raman spectra are
observed in the fingerprint spectral region (600–1800 cm−1), and in the high-wavenumber
spectral region (2400–3800 cm−1). The first region is associated with the contribution of
the vibration of molecular group of proteins, nucleic acids, amino acids, and lipids, and
the second, mainly proteins and lipids, and also allows for determining the water content,
which varies significantly in carcinogenic samples.

Raman spectroscopy of blood serum combined with advanced chemometrics pro-
vides the discrimination between samples of breast cancer patients and healthy volun-
teers [46,47], and between samples from cirrhotic patients with and without hepatocellular
carcinoma [48]. A comparison of Raman spectroscopy data of cancer tissues, cancer patient
serum, and cancer cell lines was carried out for ovarian, prostate, pancreatic, and breast
cancer [44]. The identical spectral features corresponding to specific cancer biomarkers had
been found in tissues and serum. Similar results for gliomas have not been presented yet.
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In this work, we are establishing a link between glioma’s tissues’ molecular markers
and the similar markers in blood serum, using Raman spectroscopy and machine learning.

2. Materials and Methods
2.1. Samples

Mouse blood serum was used for spectroscopic measurements. The study was con-
ducted on 60 male mice of the immunodeficient SCID line at the age 6–7 weeks. The
model of orthotopic xenotransplantation of the U87 human glioblastoma cells into mice
was used [49,50]. A total of 5 µL of the U87 MG cell suspension (500,000 cells per one
injection) was introduced in the subcortical brain structure through a hole in the animal’s
cranium. Animals from the control group were injected in a similar manner with 5 µL
of the culture medium. The tumor size was measured using a horizontal 11.7 Tesla MRI
tomograph (Biospec 117/16; Bruker, Billerica, Waltham, MA, USA) [49]. Each experimental
group had a corresponding control group. There were 10 mice in each group. The animals
were removed from the experiment by decapitation on days 7, 14, and 21 after injection.
Blood samples were collected, serum was separated, and frozen at −80 ◦C. The study
was carried out in accordance with the EU Directive 2010/63/EU and the ARRIVE 2.0
guidelines, and approved by the Inter-Institutional Commission on Biological Ethics at the
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
(Permission #78, 16 April 2021).

2.2. Raman Spectroscopy

DXR Raman microscope (Thermo Fisher Scientific, Waltham, MA USA) with a magni-
fication of 10×, excitation wavelengths of 532 nm, and range 80–4000 cm–1 was used. Each
sample of blood serum was a droplet with a volume of 10 µL placed on a special aluminum
plate [51,52]. This plate had identical holes in the form of a funnel with a diameter of 5 and
a depth of 2 mm (see Figure S1). This form of the plate leads to a uniform distribution of the
sample upon drying. We can assume that the distribution of samples in each well and the
film thickness of the sample after drying will be the same. The measurements were carried
out after complete drying of the sample, which took place for 20 min at room temperature.
The Raman spectrum of dried blood serum was recorded at three points in the center of the
well and averaged (see Figures S2 and S3). Each spectrum was averaged over 300 scans to
remove cosmic ray noise.

2.3. Machine Learning Pipeline

The implemented machine learning pipeline is shown in Figure 1.
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Figure 1. The implemented machine learning pipeline for Raman spectra analysis.

At preprocessing step, Raman spectra were normalized by maximal value, in order to
be able to compare spectral intensities. Also, we applied adaptive iteratively reweighed
penalized least squares method to remove background noise [53]. A Python library Base-
lineRemoval contains several methods to remove the noise, caused by fluorescence in
Raman spectra, and according to our previous findings [54], the airPLS algorithm [51] has
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a good performance. Principal component analysis (PCA) was used to extract informative
features [55,56].

Support vector machine (SVM) [57], random forest (RF) [58], and XGboost [59] were
used to build prediction data models. The ten-fold cross-validation was used [60]. The
prediction data model performance was estimated using a confusion matrix (see Table 1
for reference), where true positive is the number of correctly diagnosed U87 mice, true
negative is the number of control mice labeled as healthy, false negative and positive values
are respective errors of classification.

Table 1. Confusion matrix.

Positive (Model Prediction) Negative (Model Prediction)

Positive (expert label) True positives (TP) False negative (FN)
Negative (expert label) False positive (FP) True negative (TN)

The matrix members can be combined using receiver operating characteristic–area
under curve (ROC AUC) based on true positive rate (TPR) versus false positive rate (FPR)
values [61]. Here, TPR = TP/(FP + TN), and FPR = FP/(FP + TN). The ROC curve is
a plot of TPR (vertical axis) versus FPR (horizontal axis). Whenever the area under the
ROC curve is close to 1 or 0, the data model has a perfect quality. If it is close to 0.5, then
the performance is equal to random guessing. Combination of k-fold cross-validation and
ROC AUC analysis can visualize mean and standard deviation of ROC curve [60].

3. Results
3.1. Characteristics of Experimental Animals

In the dynamics of the U87 glioblastoma development, the tumor size was 2.6 ± 0.4,
10.6 ± 1.8, and 89.6 ± 11.5 mm3 (means ± standard error) on days 7, 14, and 21 after tumor
cells’ injection, respectively. Figure 2 shows that there is a non-linear increase in tumor size
from day 7 to day 21 of the experiment.
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Figure 2. Tumor volume, measured on the 7th, 14th, and 21st day of the experiment.

3.2. Raman Spectra Analysis

Below, in Figure 3, we present preprocessed Raman spectra of U87 and control groups
for all weeks of the experiment.
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Figure 3. Mean and standard deviation of Raman spectra of U87-1, U87-2, U87-3, and control groups
for first (a), second (b), and third (c) weeks of the experiment. Subtracting standard deviation from
the mean may lead to negative values, which were then removed.

As depicted in the Figure 3, standard deviation of Raman spectra decreases over time,
and this can be related to the tumor growth [50,52]. The major changes in brain tissue
metabolism are associated with tumor growth in U87-3 groups, hence, we expect to see
regular, rather than random, peaks on the Raman spectra (see Figure 3c).

The groups’ separability was visually estimated by PCA method. Thorough analysis
is required to plot all possible combinations of more than 3000 principal components (PCs)
(see Figure S4 in Supplementary Materials). Therefore, we focus only on 10 principal
components, which cover more that 75% of variance. The visualization of the best group’s
separability by PCA is presented in Figure 4.

As shown in Figure 4, the tumor and control groups differ, yet have intersections.
Interestingly, Raman data groups are separated in principal components planes with low
explained variance. That points to the minor difference in relative intensity. Also, for the
second week of the experiment, there is a good separability, yet some samples are closer to
the control group. We believe that the progression of the glioma is lower for them.

Next, we tested separability of the tumor group versus control group for each week by:
SVM, RF, and XGBoost with and without application of PCA. The results for the third week
of the experiment are presented in Figures 5–7. The results for the first and second weeks
of the experiment are presented in Figures S5–S10 of Supplementary Materials. Table 2
shows the total data for all groups and methods.
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Table 2. Mean and standard deviation of AUC for SVM, RF, XGBoost.

SVM
no PCA

SVM
with PCA

RF
no PCA

PF
with PCA

XGBoost
no PCA

XGBoost
with PCA

U87-1 0.72 ± 0.38 0.91 ± 0.17 0.81 ± 0.29 0.78 ± 0.21 0.92 ± 0.13 0.87 ± 0.19

U87-2 0.80 ± 0.28 0.68 ± 0.32 0.73 ± 0.22 0.78 ± 0.29 0.82 ± 0.0.18 0.72 ± 0.27

U87-3 0.80 ± 0.31 0.85 ± 0.25 0.92 ± 0.20 0.92 ± 0.16 0.95 ± 0.11 0.83 ± 023

We can see from Table 2 that SVM shows the best value for the U87-1 and U87-3
groups with the application of PCA, and for the U87-2 group without the application of
PCA. For RF, we can see opposite patterns for the U87-1 and U87-2 groups compared to
SVM. Application of PCA does not affect ROC AUC analysis for XGBoost.

3.3. Informative Feature Selection

The results of the informative feature selection for the third week of the experiment
are shown in Figure 8. The same results for the first and second weeks can be found in
Supplementary Materials (Figures S11 and S12).

All methods point to the Raman shifts near 1000 cm−1 and another one near 3000 cm−1,
yet RF and XGBoost marks 600 cm−1 and 2600 cm−1, respectively. The variation can be
explained by a high dimensionality of the data, so it should be verified by the respective
mean spectra.

It should be noted that molecule or molecular band identification requires both central
line position and band height/width parameters, and a good important feature selection
algorithm should choose both. From this perspective, SVM feature ranking is reasonable,
because Raman shifts near the central line are also significant. There is a special point
about feature selection in random forests and extreme gradient boosting methods [62]. If
variables are highly correlated, which is the case for the central line and surrounding band,
the algorithm either chooses randomly between them (RF) or focuses on of them (XGBoost).
What we can see in Figure 8 is not incorrect results, but specifics of the method, which
should be taken into account, which is that is a variation of the central line position is
possible. Additionally, we have filtered out features with low information gain for better
representation.

We also measured tumor volume growth during the experiment (see Figure 2). As
we can see, the change in volume is a non-linear function, so we applied a non-linear
regression model based on RF (Python module sklearn.ensemble.RandomForestRegressor
with default parameters except regularization parameter ccp_alpha was set to 0.015 to avoid
overfitting), with Raman spectra as independent and tumor volume as dependent variable.
The quality of RF regressor was estimated by mean and standard deviation of absolute
error (MAE) and determination coefficient (R2). Validation was performed by repeating
ten-fold CV 20 times. This method also allows selecting the most informative features (see
Figure 9). To avoid plotting more the 3000 features with importance values, we select only
those with an absolute value greater than 0.02. Such a small value of importance is due to
the large number of features. The results are the following: MAE = 25.3 ± 7.4, R2 = 0.919.
Informative Raman shifts are: 417, 420, 818, 1746, 2807, 3039, 3212, and 3563 cm−1. Table 3
shows the correspondence between the Raman shifts for the constructed regression model,
molecular vibrations, and the corresponding substances [44,63–75].
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Table 3. Raman spectral peak position and assignments of molecular vibrations.

Raman Peaks (cm−1) Assignments

This Paper
Blood Serum Glioma Brain tissues Modes Molecules References

417
420

391
Protein, lipids

Cholesterol/cholesterol ester

[63]
419 [64]
431 [65]

818

754 CC, CN2, CH2 rock Nucleic acids, DNA, Trp,
[66]
[67]
[65]
[65]
[68]

Nucleoproteins, Cyt
800 C-C stretching L-Tryptophane
817 Collagen
826 Tyr, proline

825–827 O-P-O stretch DNA

1746

1736

C=O

Lipids [66]
1737 Cholesterol [69]
1739 Cholesterol ester [69]
1740 Protein [63]

2807 2850 CH2 Lipids, fatty acids [44,66,70]

3039

3040
-OH
CH3

CH3

Water [71]
2930 Proteins and DNA [44]
2985 Lactate [72]
2932 Lipoprotein [66]
2939 Lactate, lipoprotein [66]

3039 3064 NH3 Nucleic acids/
protein, Trp [66]

3212
3174 NH, CH3 Amid B, L-glutamine [66]
3164 str (NH), str (OH) Amide, water [73]

>3200 str (OH) Water [74]

3563 3350–3550 OH Water [72,75]

4. Discussion

The main idea of this paper is to estimate dependency between glioma tissue and
biomarkers in blood serum, revealed by Raman spectroscopy. We used the most common
model of human glioma, when continuous cell lines such as U87, derived from primary
human tumor cells, are transplanted intracranially into the mouse brain [49,76]. This model
is characterized by rapid glioma growth following the injection of tumor cells into the
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subcortical structures of the brain. We have a controlled growth of the tumor and can trace
the change in blood composition in the dynamics of tumor development.

The modeling of glioblastoma with orthotopic transplantation of glioblastoma cells
in the brains of laboratory mice is associated with many traits of traumatic brain injury
syndrome [77,78]. It is especially clear in the first week of the experiment. The U87
cell suspension was introduced in the subcortical brain structure through a hole in the
animal cranium. Animals from the control group were injected in a similar manner with
5 µL of the culture medium. When injected, brain injury occurs and an inflammation
reaction develops, both in control and experimental mice. Therefore, in the first week of the
experiment, the development of the inflammation reaction prevails over the development
of the tumor [79,80]. The intensity of the characteristic peaks in the fingerprint range of
400–1700 cm−1 is higher in control animals and it is the same in high-frequency range of
2700–2950 cm−1 (see Figure 2a). Opposite trends are seen for the second and third weeks
of the experiment (see Figure 2b,c): the intensity of the Raman peaks is higher in U87 mice.

We study the separability of the experimental and control groups for different glioma
stages after the introduction of tumor cells by machine learning methods and try to discover
most informative Raman spectral bands for this separation. SVM, RF, and XGboost methods
were chosen because they have good generalization ability and additionally allow the
selection of informative features. Figures 5–7 and S5–S10, as well as Table 2, show that
SVM has a better generalization ability, so removing noise with PCA has a positive role for
SVM. For RF and XGBoost, on the contrary, the fewer the number of features, the worse
their learning. For group U87-3, quite good results are obtained with and without PCA,
because there are obvious differences and PCA does not have an influence on them.

We would like to focus on the principal component (PC) selection for visualization.
PCA sorts PCs in a descending order, so the first PCs correspond to the largest amount of
variance in data. It is not necessarily related to the groups’ separability [81]. In our case, the
first several PCs do not affect group separability, so we do not describe them thoroughly.

At the next stage, we identified informative spectral features, according to which
the experimental and control groups were divided at each stage of the experiment. The
use of three methods makes it possible to establish differences with the highest degree
of reliability (see Figure 8, Figures S11 and S12). As can be seen from the frequency
distribution, Raman spectroscopy makes it possible to follow the change in the contribution
of certain metabolites at each stage of the experiment with an increase in tumor size. It
is shown earlier that attenuated total reflectance Fourier-transform infrared (ATR-FTIR)
spectroscopy coupled with supervised learning methods allows for identifying glioma
patients with tumor volumes of 0.2 cm3 [40]. In our study, tumor volumes vary from 0.002
to 0.089 cm3 at different stages of the experiment, that is, several orders of magnitude lower
than in [40].

We applied a non-linear regression model to select the most informative Raman spectra
features associated with tumor growth (see Figure 9 and Table 3). As can be seen from
Table 3, the frequencies found by us are in good agreement with the Raman spectra of
glioma tissues presented by other authors [44,63–75]. It should be understood that the
Raman spectrum of a sample is a superposition of vibrations of all substances present in
the sample [15]. One vibration may be due to the contribution of several substances present
in the sample. Vice versa, one substance can correspond to a complete set of peaks [82].
The discrepancy in the identification of informative Raman shifts can be explained by two
reasons. First, it is computational. Machine learning uses optimization methods, hence,
an approximate solution is sought and there can be several solutions. The stability of
the approximate solution is improved by averaging. Such averaging can produce bias in
informative Raman shifts [83]. Second, it is physical. Different physical conditions [84]
and concentrations of substances, such as salt, can lead to changes in the position of
Raman shifts [85]. It has also been shown that, depending on the glioma grade, the tissue
microenvironment affects the shift of Raman bands by up to 38% [86].
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According to Figure 9 and Table 3, with the progression of the tumor, an increase in
the contribution of lactate, tryptophan, fatty acids, lipids, and water molecules is observed.
Using the method of THz spectroscopy, which is known to be sensitive to the state of water
in biological samples [87], we have previously shown that in the U87-3 group, the state of
water changes, and the contribution of bound water molecules increases [79]. The same
patterns are seen in the most informative Raman spectral features for each stage of the
experiment. Thus, we show that the analysis of blood serum can track the change in the
state of brain tissues during the development of glioblastoma.

The presented results confirm the possibility of glioblastoma detection by Raman
spectra analysis of blood serum. This study has several limitations. First of all, the number
of samples in each group is not large (10 per group). Though a proper validation of
constructed machine learning models is made, a comparison to a reference method is
required, namely, MRS, to determine metabolites in tumor and blood tests in order to find
the quantity of these metabolites in blood. Second, in our previous work [50], we show that
THz spectroscopy can be useful for the same task, so the combination of these modalities by
ensemble machine learning techniques can be performed. Third, interesting data separation
into groups of the mixed tumor and control samples can be seen on PCA visualization
figures. This can be caused either by physiological processes of tumor development or by
external factors, such as inflammation, due to the injection of the culture medium. The
reason for such behavior will be investigated in further research.

The strong sides of this study are the following. The conducted experiments with a
small animal glioblastoma model were performed in strict accordance with the research
protocol and can be reproduced. State-of-the-art machine learning methods were used
to verify the separability of the classes for each week of the experiment. The validity of
the obtained results is tested by k-fold CV techniques and ROC AUC analysis. Raman
spectra informative ranges were selected, which allowed us to speed-up further analysis.
We can focus only on narrow bands, which reduces spectra acquisition time. A non-linear
relationship between specific Raman spectral lines and tumor size was discovered. This
information coupled with THz spectroscopy data allows the possibility of pointing to a
metabolic profile associated with glioblastoma development.

5. Conclusions

The major goal of the work was discovering glioma through the detection of its
biomarkers in the blood by Raman spectroscopy. In the work, the dried blood serum of
mice was studied during the U87 glioblastoma development. It is a commonly accepted
laboratory model of human glioma implemented under controlled conditions. Machine
learning methods were applied to analyze the Raman spectra and identify the most infor-
mative frequencies. Thus, we show that the analysis of blood serum can track the change in
the state of brain tissues during the glioma development. Raman spectroscopy combined
with machine learning allows us to carry out label-free and real-time analysis of brain tissue
and blood serum, as well as the differentiation of glioma grades and rapid monitoring
of treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15010203/s1, Figure S1: Special aluminum plate:
(a) top view; (b) side view; Figure S2: The three original Raman spectra of different parts of dried blood
serum sample #17; Figure 3: The average Raman spectrum of dried blood serum sample #17: gray
line—spectrum #1; red line—spectrum #2; blue line—spectrum #3, magenta line—average spectrum
from spectra 1-3; Figure 4: PCA explained variance in dependence on the number of principal
components groups for first (a), second (b), and third (c) weeks of the experiment; Figure S5: ROC
AUC analysis for SVM, first week no PCA (a) and with PCA (b); Figure S6: ROC AUC analysis for
RF, first week no PCA (a) and with PCA (b); Figure S7: ROC AUC analysis for XGBoost, first week
no PCA (a) and with PCA (b); Figure S8: ROC AUC analysis for SVM, second week no PCA (a) and
with PCA (b); Figure S9: ROC AUC analysis for RF, second week no PCA (a) and with PCA (b);
Figure S10: ROC AUC analysis for XGBoost, second week no PCA (a) and with PCA (b); Figure S11:
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Informative feature selection for the first week of experiment for SVM (a), RF (b), and XGBoost (c)
methods; Figure S12: Informative feature selection for the second week of experiment for SVM (a),
RF (b), and XGBoost (c) methods.
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