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Abstract: The antiretroviral drug, the total level of viral production, and the effectiveness of im-
mune responses are the main topics of this review because they are all dynamically interrelated.
Immunological and viral processes interact in extremely complex and non-linear ways. For reliable
analysis and quantitative forecasts that may be used to follow the immune system and create a
disease profile for each patient, mathematical models are helpful in characterizing these non-linear
interactions. To increase our ability to treat patients and identify individual differences in disease
development, immune response profiling might be useful. Identifying which patients are moving
from mild to severe disease would be more beneficial using immune system parameters. Prioritize
treatments based on their inability to control the immune response and prevent T cell exhaustion. To
increase treatment efficacy and spur additional research in this field, this review intends to provide
examples of the effects of modelling immune response in viral infections, as well as the impact of
pharmaceuticals on immune response.
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1. Introduction

Humans can contract a variety of viruses that have serious negative effects on their
health and economy. Acute infections are caused by viruses, such as the rhinovirus, and
influenza A or B viruses [1], whereas chronic infections are caused by others, such as the
human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and hepatitis C virus
(HCV) [2]. Various disease etiologists and levels of severity of viral infections exist, ranging
from asymptomatic to fatal. Additionally, several viruses, including those that cause cancer,
autoimmune diseases, and Alzheimer’s disease, such as EBV, human papillomavirus
(HPV), or herpes simplex virus (HSV), may put a host at risk for coinfection with other
pathogens [3].

In comparison with other pathogens, it is difficult to control viral-associated disorders
because there is no one, all-encompassing method to control viruses due to the tremen-
dous diversity in viruses’ epidemiology and pathogenicity. Even when prophylactic or
therapeutic alternatives are available, inducing protective immunity may not always be suc-
cessful and there may be decreased, time-dependent efficacy in single- or multi-pathogen
infections. A lack of understanding of how host defense mechanisms restrict viral spread,
how different viral components counteract these defense mechanisms, and how these
relate to illness outcomes has impeded the development of new preventative and thera-
peutic measures. Numerous quantitative data have been generated recently because of
improvements in multiparameter flow cytometry, high-throughput technologies and the
SARS-CoV-2 pandemic, which pushed forward a lot of knowledge. These advancements
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have also brought attention to the need for new theoretical models that can explain complex
biological interactions. Mathematical models have been developed to assess the several
aspects of viral infection, since infection kinetics, to virus replication, mechanisms of viral
persistence and control by host immune responses, as well as evaluate the clinical potential
of various antiviral therapies [4,5]. These models have been curated and applied to in silico
experiments to develop the creation of new hypotheses. Additionally, clinical dose-efficacy
response and pharmacokinetic/pharmacodynamic (PK/PD) studies can be assisted using
modelling and simulation platforms, which provide simulations for both viral dynamics
and treatment efficacy [6]. This review aims to exemplify the impact of modulating the
immune response in viral infections to improve drug efficacy.

2. Therapeutic Options for Viral Infections

For most viral infections there is no treatment to fight the virus, the patient can only
hope for their immune system to fight back, and treatments can only take care of the
symptoms. However, there are some antiviral medicines for some viruses and vaccines
that help prevent harmful diseases [7]. Even though each virus has a unique biology
that underlies infection, they all share several essential stages that can be used as targets
for drug development. For instance, viral entrance is the first stage of viral infection.
Specific receptors or attachment factors bind to and interact with proteins on the viral
exterior, which may be proteins, glycans, or lipids (capsid or envelope) [8]. Through
endocytic pathways, followed by trafficking through endosomes and lysosomes or by
fusing at the plasma membrane, virus particles are frequently absorbed by the body as a
result of these interactions. To infect cells productively, viruses need to escape from their
vesicles (either endosomal escape or viral fusion can accomplish this). The genome is copied,
translated (typically into intricate polyproteins that are processed by viral or host proteases),
and, if necessary, transcribed into mRNA. Although some viruses also make use of host
polymerases, many recently found RNA viruses have their own polymerases encoded.
Although viral translation is controlled differently from cell translation, viruses always use
host translation machinery. After the creation of structural proteins and genomes, viral
particles are put together, which is then followed, for example, by cell lysis, at which time
the cycle restarts. These stages in the overall viral life cycle can all be targeted by different
drugs [9].

Table 1 presents different types of antiviral drugs used to fight viruses. Direct-acting
antivirals, such as receptor decoys, nucleoside analogues, viral protease inhibitors, viral
translation inhibitors, and antibodies, focus on the virus itself. The parts of the host cell
necessary for a successful viral infection are targeted by host-factor antivirals, such as:
antibodies that bind the receptor, endocytosis inhibitors, host protease inhibitors, lipidomic
reprogramming medicines, and kinase inhibitors. Both direct-acting and host-factor treat-
ments can be widely used if the antiviral targets conserved genes/motifs within a virus
family or if several virus family members co-opt the same host pathways to promote virus
replication and/or pathogenesis [10,11]. However, due to the biological pathways in both
infected and healthy cells being disrupted, host-factor therapies may be more hazardous.

Viral infection treatments can work in a variety of ways. For instance, monoclonal
antibodies and interferons can enhance and upregulate immune responses, respectively.
Drugs can minimize the severity of symptoms caused by infection or a hyper-immune
response as well as stimulate cellular responses for the more efficient clearance of virus-
infected cells [12]. Antibodies and small chemicals can also directly interfere with the
viral life cycle (e.g., by locating host kinases to target, kinase inhibitors alter the cellular
environment). Multiple treatment modalities at various stages of infection may be needed
to create medicines that reduce the length and severity of sickness. The selection of
medications, as well as their dosing and timing, may need to be individualized due to
patient-to-patient variability. Therefore, a way to select the best therapeutic option is
understanding the innate immune response to viral infection, followed by disease severity
of disease.
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Table 1. Different types of antiviral drugs and treatments for viral infections.

Type Antiviral Drug Therapeutic Indication Mechanism of Action

Direct acting
antiviral

Convalescent plasma Commonly used to treat viral infections
such as influenza and COVID-19

tHe exact mechanisms of action of convalescent plasma
will depend on the specific virus and the specific
immune responses that are being targeted. It works by:

1. Neutralizing the virus
2. Enhancing the immune response
3. Modulating the immune response

Nucleoside analogs

Acyclovir: Used to treat herpes simplex
virus infections, including genital herpes
and cold sores.

It is converted into its active form, acyclovir
triphosphate, inside infected cells. Once inside the
cells, acyclovir triphosphate inhibits the activity of a
viral enzyme called herpesvirus-specific DNA
polymerase, which is responsible for replicating the
herpesvirus’s DNA. By inhibiting this enzyme,
acyclovir helps to prevent the virus from replicating
and spreading to other cells.

Lamivudine: Used to treat HIV and
hepatitis B virus infections.

It is converted into its active form, lamivudine
triphosphate, inside infected cells. Once inside the
cells, lamivudine triphosphate inhibits the activity of a
viral enzyme called reverse transcriptase, which is
responsible for replicating the HIV virus’s RNA into
DNA. By inhibiting this enzyme, lamivudine helps to
prevent the virus from replicating and spreading to
other cells.

Tenofovir: Used to treat HIV and hepatitis
B virus infections.

It is converted into its active form, tenofovir
diphosphate, inside infected cells. Once inside the cells,
tenofovir diphosphate inhibits the activity of a viral
enzyme called reverse transcriptase, which is
responsible for replicating the HIV virus’s RNA into
DNA. By inhibiting this enzyme, tenofovir helps to
prevent the virus from replicating and spreading to
other cells.

Valacyclovir: Used to treat herpes simplex
virus infections, including genital herpes
and cold sores.

It is converted into its active form, tenofovir
diphosphate, inside infected cells. Once inside the cells,
tenofovir diphosphate inhibits the activity of a viral
enzyme called reverse transcriptase, which is
responsible for replicating the HIV virus’s RNA into
DNA. By inhibiting this enzyme, tenofovir helps to
prevent the virus from replicating and spreading to
other cells.

Zidovudine: Used to treat HIV infections

It is converted into its active form, zidovudine
triphosphate, inside infected cells. Once inside the
cells, zidovudine triphosphate inhibits the activity of a
viral enzyme called reverse transcriptase, which is
responsible for replicating the HIV virus’s RNA into
DNA. By inhibiting this enzyme, zidovudine helps to
prevent the virus from replicating and spreading to
other cells.

Monoclonal
antibodies

Palivizumab: Used to prevent respiratory
syncytial virus (RSV) infections in
high-risk individuals, such as premature
infants and individuals with compromised
immune systems.

It is directed against a specific protein called the F
protein, which is found on the surface of the
respiratory syncytial virus (RSV). Palivizumab binds to
the F protein and prevents the virus from attaching to
and infecting cells in the respiratory tract. This helps to
prevent the development of RSV infection and its
associated complications.

Remdesivir: Used to treat COVID-19.

It is converted into its active form, remdesivir
triphosphate, inside infected cells. Once inside the
cells, remdesivir triphosphate inhibits the activity of a
viral enzyme called RNA-dependent RNA polymerase,
which is responsible for replicating the viral RNA. By
inhibiting this enzyme, remdesivir helps to prevent the
virus from replicating and spreading to other cells.
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Table 1. Cont.

Type Antiviral Drug Therapeutic Indication Mechanism of Action

Direct acting
antiviral

Monoclonal
antibodies

Casirivimab/imdevimab: Used to
treat COVID-19.

Are monoclonal antibodies that are directed against a
specific protein called the spike protein, which is found
on the surface of SARS-CoV-2, the virus that causes
COVID-19. Casirivimab and imdevimab bind to the
spike protein and prevent the virus from attaching to
and infecting cells in the respiratory tract. This helps to
prevent the development of COVID-19 and its
associated complications.

Peginterferon lambda: Used to treat
hepatitis C virus infection.

Interferons are proteins that are produced by the
body’s immune system in response to viral infections.
They help to stimulate the immune system to fight the
virus and also inhibit the replication of the virus.
Peginterferon lambda is a long-acting form of
interferon that is given by injection once a week. It is
thought to work by stimulating the production of
proteins that inhibit the replication of HCV and by
activating immune cells to attack the virus.

Fusion inhibitors
Enfuvirtide: Used to treat HIV infections

It works by binding to a specific protein called gp41,
which is found on the surface of the HIV virus and is
involved in the process of viral fusion. By binding to
gp41, enfuvirtide helps to prevent the virus from
fusing with and infecting host cells.

Maraviroc: Used to treat HIV infections

It works by binding to a specific protein called CCR5,
which is found on the surface of host cells and is used
by the HIV virus to enter cells. By binding to CCR5,
maraviroc helps to prevent the virus from fusing with
and infecting host cells.

Polymerase inhibitors
Ribavirin: Used to treat hepatitis C virus
infections and certain types of respiratory
virus infections.

It works by inhibiting the activity of viral polymerases,
which are enzymes that the virus uses to replicate its
genetic material. Ribavirin is thought to work by
inhibiting the synthesis of the virus’s genetic material,
which helps to prevent the virus from replicating and
spreading to other cells.

Oseltamivir: Used to treat influenza
virus infections.

Is a prodrug, meaning that it is converted into its active
form, oseltamivir carboxylate, inside infected cells.
Once inside the cells, oseltamivir carboxylate inhibits
the activity of a viral enzyme called neuraminidase,
which is responsible for releasing newly formed
viruses from infected cells. By inhibiting this enzyme,
oseltamivir helps to prevent the virus from spreading
to other cells.

Zanamivir: Used to treat influenza
virus infections.

It works by inhibiting the activity of a viral enzyme
called neuraminidase, which is responsible for
releasing newly formed viruses from infected cells. By
inhibiting this enzyme, zanamivir helps to prevent the
virus from spreading to other cells.

Sofosbuvir: Used to treat hepatitis C
virus infections.

It works by inhibiting the activity of a viral enzyme
called NS5B polymerase, which is responsible for
replicating the HCV virus’s RNA. By inhibiting this
enzyme, sofosbuvir helps to prevent the virus from
replicating and spreading to other cells.

Receptor decoys Maraviroc: Used to treat HIV infections The mechanisms of this drugs are described above.
Receptor decoys and fusion inhibitors are similar in
that they both work by blocking the interaction
between a virus and its target cell. Receptor decoys are
a class of direct-acting antiviral drugs that work by
blocking the interaction between a virus and its target
cell. They do this by providing a “decoy” receptor that
the virus can bind to, which prevents the virus from
attaching to and infecting the target cell. Fusion
inhibitors are a class of direct-acting antiviral drugs
that work by inhibiting the process of viral fusion

Enfuvirtide: Used to treat HIV infections
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Table 1. Cont.

Type Antiviral Drug Therapeutic Indication Mechanism of Action

Host-factor
antiviral

Endocytosis
inhibitors

Amantadine: Used to treat influenza
virus infections

It works by inhibiting the activity of a viral enzyme
called M2, which is responsible for releasing newly
formed viruses from infected cells. By inhibiting this
enzyme, amantadine helps to prevent the virus from
spreading to other cells.

Rimantadine: Used to treat influenza
virus infections

Oseltamivir: Used to treat influenza
virus infections

Oseltamivir is a prodrug, meaning that it is converted
into its active form, oseltamivir carboxylate, inside
infected cells. Once inside the cells, oseltamivir
carboxylate inhibits the activity of a viral enzyme
called neuraminidase, which is responsible for
releasing newly formed viruses from infected cells. By
inhibiting this enzyme, oseltamivir helps to prevent
the virus from spreading to other cells.

Interferons

Alpha interferon (IFN-α) is produced by
leukocytes (white blood cells) and is
effective against a wide range of viruses,
including herpesvirus, hepatitis B and C
viruses, and human
papillomavirus (HPV).

Interferons (IFN) work by activating interferon
receptors on the surface of infected cells, which
triggers a signaling pathway that leads to the
production of proteins called antiviral effectors. These
effectors inhibit the replication of viruses by blocking
the production of viral proteins, disrupting viral
assembly and release, and activating the immune
system to clear the infection.

Beta interferon (IFN-β) is produced by
fibroblasts (a type of cell found in
connective tissue) and is effective against
certain viruses, including herpes simplex
virus and HIV.
Gamma interfero (IFN-γ) is produced by
immune cells called T cells and natural
killer cells, and is effective against a
variety of viruses, including HIV and
hepatitis C virus.

Kinase inhibitors

Maraviroc is an HIV-1 entry inhibitor
Targets the CCR5 co-receptor on immune cells. It
blocks the interaction between HIV-1 and CCR5,
preventing the virus from entering the cell.

Selzentry (maraviroc) is an HIV-1
entry inhibitor

Targets the CCR5 co-receptor on immune cells. It
blocks the interaction between HIV-1 and CCR5,
preventing the virus from entering the cell.

Acyclovir is an antiviral drug that is
effective against herpesvirus infections.

It works by inhibiting the viral enzyme thymidine
kinase, which is required for the synthesis of
viral DNA

Ganciclovir is an antiviral drug that is
effective against cytomegalovirus
(CMV) infections.

It works by inhibiting the viral enzyme DNA
polymerase, which is required for the synthesis of
viral DNA

Valganciclovir is a prodrug of ganciclovir
that is used to treat CMV infections.

It is converted to ganciclovir by the enzyme
valacyclovir hydrolyase, which is expressed in
infected cells

Raltegravir is an HIV-1 integrase inhibitor
Blocks the integration of HIV-1 DNA into the host
genome. It works by inhibiting the activity of the
HIV-1 integrase enzyme

Lipidomic drugs

Amantadine is an antiviral drug that is
effective against influenza A virus.

It works by blocking the ion channel M2, which is
required for the release of viral particles from
infected cells.

Oseltamivir is an antiviral drug that is
effective against influenza A and
B viruses.

It works by inhibiting the viral enzyme neuraminidase,
which is required for the release of viral particles from
infected cells.

Zanamivir is an antiviral drug that is
effective against influenza A and
B viruses.

It works by inhibiting the viral enzyme neuraminidase,
which is required for the release of viral particles from
infected cells.

Remdesivir is an antiviral drug that is
effective against a wide range of RNA
viruses, including SARS-CoV-2 (the virus
that causes COVID-19).

It works by inhibiting the viral RNA polymerase
enzyme, which is required for the synthesis of
viral RNA.

Favipiravir is an antiviral drug that is
effective against RNA viruses including
influenza A and B viruses and Ebola virus.

It works by inhibiting the viral RNA polymerase
enzyme, which is required for the synthesis of
viral RNA.

Sofosbuvir is an antiviral drug that is
effective against hepatitis C virus (HCV).

It works by inhibiting the viral NS5B RNA polymerase
enzyme, which is required for the synthesis of
viral RNA.
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Table 1. Cont.

Type Antiviral Drug Therapeutic Indication Mechanism of Action

Direct-acting and
host-factor
antiviral

Protease inhibitors

Saquinavir is an HIV protease inhibitor

Blocks the protease enzyme, which is required for the
processing of viral proteins.

Ritonavir is an HIV protease inhibitor
Nelfinavir is an HIV protease inhibitor
Lopinavir is an HIV protease inhibitor
Boceprevir is an HCV protease inhibitor
Telaprevir is an HCV protease inhibitor
Camostat mesilate is an antiviral drug that
is effective against a variety of viruses,
including influenza A and B viruses,
respiratory syncytial virus, and norovirus.

It works by inhibiting the protease enzyme trypsin,
which is required for the release of viral particles from
infected cells.

Fosamprenavir is an HIV protease
inhibitor that is converted to its active
form, amprenavir, by the
enzyme CYP3A4.

It blocks the protease enzyme, which is required for the
processing of viral proteins

Indinavir is an HIV protease inhibitor
That blocks the protease enzyme, which is required for
the processing of viral proteins

Nelfinavir is an HIV protease inhibitor
Ritonavir is an HIV protease inhibitor
Saquinavir is an HIV protease inhibitor

Translation inhibitors

Efavirenz is an HIV reverse transcriptase
inhibitor that blocks the synthesis of viral
DNA from viral RNA.

Blocks the synthesis of viral DNA from viral RNA. It
works by inhibiting the activity of the HIV reverse
transcriptase enzyme, which is required for the
synthesis of viral DNA from viral RNA.

Emtricitabine is an HIV reverse
transcriptase inhibitor

Blocks the synthesis of viral DNA from viral RNA. It
works by inhibiting the activity of the HIV reverse
transcriptase enzyme, which is required for the
synthesis of viral DNA from viral RNA.

Tenofovir is an HIV reverse transcriptase
inhibitor that blocks the synthesis of viral
DNA from viral RNA.

It works by inhibiting the activity of the HIV reverse
transcriptase enzyme, which is required for the
synthesis of viral DNA from viral RNA.

Zidovudine is an HIV reverse
transcriptase inhibitor

It works by inhibiting the activity of the HIV reverse
transcriptase enzyme, which is required for the
synthesis of viral DNA from viral RNA.

Baricitinib is an antiviral drug that is
effective against a variety of RNA viruses,
including influenza A and B viruses,
respiratory syncytial virus, and norovirus.

It works by inhibiting the translation of viral mrna into
viral proteins. It does this by inhibiting the activity of
the ribosomes, which are the cellular machinery that
reads the genetic code in mrna and synthesizes
proteins based on that code.

Ruxolitinib is an antiviral drug that is
effective against a variety of RNA viruses,
including influenza A and B viruses,
respiratory syncytial virus, and norovirus.

It works by inhibiting the translation of viral mrna into
viral proteins. It does this by inhibiting the activity of
the ribosomes, which are the cellular machinery that
reads the genetic code in mrna

A better framework for drug development, repurposing, clinical trial design, and
therapeutic optimization and personalization is required, as the SARS-CoV-2 pandemic
has shown. Mechanics-based computational models may be crucial in creating these
frameworks. The mechanisms of cellular immune responses to the virus, viral distribution
and replication, and patient-to-patient heterogeneity in responses will be further discussed.
Mechanistic models, which consider viral entry, replication in target cells, viral spread in
the body, immune response, and the complex factors involved in tissue and organ damage
and recovery, can also shed light on these mechanisms.

3. Mechanistic Models

Mechanistic models are useful to untangle the complex system of virus, cytokines,
and immune cells by considering several factors, such as viral entry, replication in target
cells, viral spread in the body, immune response, and other complex factors involved in
tissue/organ damage and recovery. Temporal interactions coexist with time-dependent
risk factors and patients multimorbidity, which must also be accounted for as infection
progresses. Since all this needs to be modelled, it is necessary to separate each model and
then integrate everything into a multiscale model [13].

Clinical studies of viral load performed on individual patients’ blood samples, im-
mune cell or cytokine profile all provide snapshots of the viral infection [14], and we can



Pharmaceutics 2023, 15, 167 7 of 17

recognize typical patterns of infection progression when we combine these data. The depth
and frequency of these measures, however, are frequently insufficient to accurately predict
everyone’s immune response and thus maximize the effectiveness of individualized treat-
ments. We still have a limited knowledge of the mechanisms underlying why some people
react to a virus with minor symptoms while others experience severe sickness, or why some
people recover fully while others experience long-term effects like post-polio syndrome or
long-COVID [15]. This is because we are unable to foresee how an individual’s immune
response and immunological-viral interactions would develop. As a result, we cannot cur-
rently reliably forecast how a given patient will react to therapy with immune modulators
or antiviral medications, whether for endemic circulating viruses like seasonal flu or novel
viruses brought on by pandemics. However, it is nearly impossible to anticipate immune
system behavior using qualitative models because parameters such as: cytokine levels and
immune cell profiles can change in complex ways over time and geographically [16].

The complexity of viral infection and immune response has led to the development of
mechanistic computational models, which differ in the mathematical and computational
representation of components, interactions, levels of spatial detail, and the time scales they
consider [17]. The model of infection is based on scientifically driven theories that identify
the essential physical elements of immune response and viral infection and how these
elements interact to produce infection (considering essential measurable and quantifiable
variables to best capture these elements and interactions). Moreover, it is important to know
how to translate the dynamic mechanistic model into a computer simulation to construct a
mechanistic computational model [4,18]. For instance, we must decide whether to charac-
terize individual virions or viral concentrations, or whether changes occur continuously
over time or as stochastic events. Finally, we must consider that there are time limits on the
windows for successful therapies, and some treatments might only be effective when used
as prophylactic measures or in the early stages of infection [19].

Interplay of Viral Infection Dynamics and the Immune System on Modelling

The development of mathematical immunology modelling has been influenced by
the complexity of understanding the immune response to HIV infection. The target-cell-
limited model, initially, proposed to understand the dynamics of HIV infection provided a
foundation for within-host modelling [20]. This framework was afterwards expanded in
numerous ways and applied to other viral illnesses. Three factors make up the straightfor-
ward target-cell-limited model: the viral load, infected virus-producing cells, and cells that
are sensitive yet not infected. The lifespans of infected target cells and virus particles could
be estimated by fitting this model to the viral-load data [21]. It also permitted assessment
of the pace at which infected cells produce virions. These early models laid the foundation
for the subsequent creation of far better HIV medicines.

For example, the innate immune system’s first line of defense is the interferon (IFN)
family of proteins, which block viral replication inside infected cells and stop host cells
from becoming infected. The importance of innate immune response feedback loops in
influencing how diseases develop in people has been discussed in recent models [22].
Moreover, the simple target-cell-limited model could not explain observed primary HIV
dynamics in an infected host after the initial acute viral-load peak, raising the possibility
that cytotoxic T lymphocytes (CTLs) and cytokine-suppressive viral replication may be
involved in regulating viral load [20].

Insights with significant therapeutic utility have been revealed by models that in-
corporate the adaptive immune response. For instance, the “post-treatment control” of
HIV viral load observed in some HIV patients was explained by an effector-cell response
and exhaustion model [23], and it was suggested that therapeutic vaccination to boost
effector-cell response before stopping antiretroviral therapy might increase the likelihood
of post-treatment viral load control. Models were developed to optimize the duration of
the therapy and minimize cost and toxicity of direct-acting antiviral (DAA) medication.
Viral-kinetic models can forecast the length of DAA therapy required to reach a cure in
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patients infected with HCV and thus tailor the treatment [23]. These models can be applied
to early viral-kinetic data under drug treatment. Besides the model could suggest the one
patient who relapsed would have benefited from taking sofosbuvir + ledipasvir for an
additional week [24]. By assuming that HCV RNA in serum contains both infectious and
non-infectious viruses, Goyal et al. expanded these models [25], which helps to explain
why some people can be cured by ultrashort DAA therapy.

According to Baral et al., the viral reduction brought on by DAAs during chronic
HCV treatment may have prevented CTL depletion, allowing the virus to be eliminated
after treatment. The model was able to estimate the required length of DAA therapy for
each patient and, as a result, tailor the treatment by defining a good response for specific
patients [26].

The length of infection Influences both the rate at which viral particles are produced
and the mortality rate of infected cells and age-structured models with detailed submodels
of the viral life cycle can be used for the systematic exploration of new drug targets [14,27].
All viruses replicate in the same way: they establish contact with a target cell in the host,
release genetic material into the cell, use the machinery of the cell to replicate, assemble
new viral particles, and release those particles from the infected cell [28]. Which of these
steps should be blocked for the quickest and most efficient therapies can be determined by
mechanistic models? Models, for instance, can investigate how the number of infections
impacts the viral replication rate. Model simulations can also predict the impact of drug-
based perturbations when viral replication pathways involve both positive and negative
feedback [29].

We may anticipate that the best course of action in situations when we have a highly
powerful antiviral would be to seek treatment as soon as possible following either infec-
tion or diagnosis. Delaying antiviral medication increases the danger of immunological
reactions and virus-induced tissue damage. Early antiviral therapy, however, may prevent
the adaptive immune response from being activated and, as a result, the development of
long-term protective immunity [30]. This adjustment was studied in a model by Stromberg
et al., who suggested a short window following infection during which antiviral therapy
could lessen disease symptoms without obstructing the development of long-term immu-
nity, ensuring that those infected receive the benefits of vaccination with a lower risk of the
disease [31].

The immune system’s cells react to a wide range of signals, many of which arrive at
the same time. We can investigate the biochemical mechanisms underlying such reactions
with the aid of computational models using signaling pathways and cellular behavior,
particularly when those models strive to include molecular specifics of intracellular re-
action networks [15,32]. Such detailed models may focus on the interactions between
molecule binding domains and how these interactions are influenced by elements such
as post-translational modifications or steric restraints in multi-molecular complexes. The
mechanistic immunological hypotheses can then be formalized and tested through quanti-
tative simulations [33]. However, we need to be aware that comprehension of multi-signal
cellular responses and their interaction at the tissue level is the most difficult challenge we
face in our quest to understand immune cell function because it can be too reductionist [34].
Learning how to employ drugs to understand, strengthen and replicate immune system
function may be preferable to trying to simulate all the intricacies mentioned above.

Table 2 shows that there are a number of mathematical models that have been de-
veloped to understand the dynamics of HIV, Influenz and SARS-CoV-2 infection and the
effects of antiretroviral therapy (ART) on the different diseases. These models typically
involve the use of differential equations to describe the interations between the virus and
the immune system, as well as the effects of ART on the virus. These types of models can
be used to simulate the course of infection and the effects of different ART regimens on the
virus, and can provide insights into how to optimize treatment strategies. However, it’s
important to note that these models are simplified representations of complex biological
systems, and their predictions may not always be accurate in real-world situations.
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Table 2. Types of the most severe and prevalent diseases caused by virus infections that can be cured
by modulating the immune response.

Disease How It Can Be Modulated?

Acquired immunodeficiency syndrome (AIDS), which
is caused HIV

Example 1: HIV-1 immune dynamics model, which was developed by
Nowak and May in 1996 [35]. This model describes the interactions
between HIV, CD4+ T cells, and antiviral drugs. The model includes
equations that describe the rate of HIV replication, the rate of CD4+ T cell
production and loss, and the rate at which antiviral drugs inhibit
HIV replication.
Example 2: HIV-1 treatment intensification model, which was developed
by Guedj et al. in 2007 [36]. This model is based on the HIV-1 immune
dynamics model and incorporates additional equations to describe the
effects of different ART regimens on the virus.

Influenza caused by the influenza virus

Example 1: influenza transmission model, which was developed by
Ferguson et al. in 2005 [37]. This model describes the transmission of
influenza from person to person, as well as the effect of antiviral drugs on
the virus. The model includes equations that describe the rate of
influenza transmission, the rate of antiviral drug-induced reduction in
the number of infectious individuals, and the rate at which individuals
become immune to the virus.
Example 2: influenza vaccine effectiveness model, which was developed
by Thompson et al. in 2006 [38]. This model is based on the influenza
transmission model and incorporates additional equations to describe the
effects of vaccination on the virus and the immune system. The model is
based on the influenza transmission model, which was developed by
Ferguson et al. in 2005, and incorporates additional equations to describe
the effects of vaccination on the virus and the immune system. It’s
important to note that the model is based on a specific set of assumptions
and may not be applicable to all situations

Severe acute respiratory syndrome (SARS), which is
caused by the SARS-CoV-2 virus

Example 1: SEIR (susceptible-exposed-infectious-recovered) model,
which is a type of compartmental model that describes the transmission
of infectious diseases. The SEIR model includes equations that describe
the rate of transmission of SARS-CoV-2, the rate of recovery, and the rate
at which individuals become immune to the virus [39].
Example 2: SIR (susceptible-infectious-recovered) model, which is a
variant of the SEIR model that does not include an exposed compartment.
The SIR model has been used to study the effectiveness of various
interventions, such as antiviral drugs and vaccines, on the transmission
of SARS-CoV-2 [40].

Ideally, if patients were treated based on the knowledge obtained from their immune
status, drug response, and predictive models, therapy failure would be minimized, and
severe diseases could be better controlled. This would also improve our ability to forecast
how a given patient would react to the therapy. It is indeed true that virus infections can
be complex and can affect different tissues or organs, and that the choice of treatment can
depend on a number of factors, including the specific virus, the patient’s immune status,
and the severity of the infection.

One approach to developing a patient-specific antiviral therapy strategy is to use a
mathematical model that takes into account a panel of patient-specific parameters that may
be related to the virus or the host immune response. This type of model could be used to
forecast drug efficacy or to guide the selection of drugs for a particular patient.

There are a number of different approaches that could be used to build such a model,
depending on the specific goals of the treatment and the data available. For example,
the model could be based on data from clinical trials or observational studies, or it could
incorporate data on the patient’s specific genetic and immunologic characteristics.

It’s important to note that developing a patient-specific antiviral therapy strategy
based on a mathematical model is still a complex and challenging task, and more research is
needed to fully understand the factors that influence the effectiveness of different antiviral
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therapies. However, by using quantitative approaches like this, it may be possible to
optimize treatment choices and improve outcomes for patients with virus infections.

4. Strengthening the Immune System

Numerous infections alter the immune response, some of those modifications are time
dependent, and can lead to T-cell exhaustion. A strategy to deal with these phenomena is to
use immune-boosting drugs, since they are essential to track and treat viral infections [41].
The symptoms of viruses like HIV or HBV that can take months to appear, when detected
these infections are regarded as chronic. On the other side, acute infections like the flu begin
to manifest symptoms earlier, two days after exposure, and most patients recover from
the infection within seven days. For example, COVID-19 manifests itself 5 to 7 days after
exposure (however, for some people, the illness can last for weeks or even months) [42].

Intracellular production of IL-2, IFN-g, and TNF, and often severely reduced in per-
sistent viral infections, and T cells also express large numbers of inhibitory receptors,
including PD-1 (programmed cell death-1) and Lymphocyte-Activation Gene 3 (Lag-3).
These phenotypic alterations exhaust the functional T cell response, as does the immune
system’s inability to eliminate pathogens in chronic infection [43]. These largely encourage
terminally differentiated T cells while preventing CD8+ T cell memory development. Addi-
tionally, when PD-1 signalling is suppressed, CD8+ T responsiveness and antiviral activity
markedly increase. These results indicate a permanent cessation of the T cell immuno-
logical response. However, the molecular mechanisms underpinning the maintenance
of terminally differentiated T cells in persistent infections and the enhancement in T cell
responsiveness following checkpoint inhibition are still poorly understood [44].

Immune-activating strategies were the turning point to reduce cytokine storms. In
addition to targeting T cells, therapies that regulate pro-inflammatory factors, such as cy-
tokines, can also be used in the treatment of ARDS caused by respiratory viruses. Examples
of therapies that target pro-inflammatory cytokines are TNF inhibitors and interleukin
inhibitors. These therapies work by inhibiting the production or activity of specific cy-
tokines, which can help to reduce inflammation and improve outcomes in patients with
ARDS. It’s important to note that these therapies are typically used in combination with
other treatments, such as oxygen therapy, mechanical ventilation, and supportive care, to
manage the symptoms of ARDS [41]. However, conclusive evidence of their usefulness is
still not available, although IL-7 and anti-PD1/PDL1 therapies, have showed early signs of
dices in early clinical trials.

Moreover, numerous in vitro and in vivo studies reveal that different viruses can
cause a metabolic state like Warburg’s. These pathogens manipulate the metabolism of the
host cell to divert glycolysis and TCA toward the manufacture of amino acids, lipids, and
nucleotides, which is necessary for their survival and sustenance [45]. After viral infection,
the number of several glycolytic pathway intermediaries is considerably enhanced. Some
viruses cause metabolic changes to balance the ROS generated by the host during the
infection response or to aid in the reproduction of the virus [46]. Oncogenic viruses can
cause a Warburg-like effect or altered metabolic status, including the human HPV, HBV
and HCV, EBV, among others [47]. Cellular metabolism affects immune cell activation, the
release of cytokines, and antitumor or antiviral activity. As a result of viral infection, cells
frequently experience increased glucose metabolism (leading to aerobic glycolysis, or the so-
called Warburg effect), and their lipid metabolism typically shifts from fatty acid oxidation
(FAO) to fatty acid synthesis (FAS). Particularly for those viruses that are encapsulated,
more FAS is required. Only metabolically active cells are infected by some viruses, and the
infection frequently serves to downregulate one or more metabolic activities [46].

In clinical research, it is usual to combine new metabolic modulators with immune
checkpoint inhibitors because it appears that anti-PD1/PD-L1 antibodies may help T cells re-
gain their metabolic fitness [48]. A widespread testing of combination immunometabolism
strategies has been made possible by immune checkpoint inhibitors’ good safety profile
(especially against PD1 and PD-L1). However, the combination of these drugs is not always
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beneficial or effective. This highlights the fact that this type of interventional target is not
easily modulated; they represent a significant challenge requiring carefully calibrated ap-
proaches, preferably based on reliable biomarkers and new technical strategies specifically
targeting TME [49].

4.1. Reverse T Cell Exhaustion

T cell fatigue is a condition of T cell malfunction that develops following numerous
long-term infections and malignancies (Figure 1). It’s transcriptional state is different from
that of functional effector or memory T cells, having extended expression of inhibitory
receptors, and low effector activity. The appropriate course of treatment for each patient
is determined by using functional assays to count the number of activated T cells in the
patient blood samples. This phenomenon is reported in cancer and infections such as HBV,
HCV, and HIV [44,50].
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ease severity.

Therapeutic immunological checkpoints for T-cell fatigue are co-inhibitory receptors,
this act during acute infections to dampen immune responses, which are down-regulated
once the pathogen is eradicated to restore homeostasis and memory T cell development
(Table 3) [51]. However, this arrangement changes with chronic infections, when co-
inhibitory receptors are more highly and persistently expressed [52]. The expression
patterns, ligands, and signaling motifs of co-inhibitory receptors differ, and the molecular
processes by which they regulate T-cell exhaustion are still poorly understood. However,
the identification of their significance in the dysregulation of cellular immune responses
in infected hosts has provided fresh opportunities for the development of therapeutic
molecules to reestablish the optimum immune response.

Table 3. Treatment approach and its targets to reverse T-cell exhaustion.

Treatment Approach Target

Antibody blockade PD-1/PD-L1

Altering metabolic pathways
PCK1
GLS1
Pyruvate kinase

Decrease PD-1 expression FoxOT
TOX

Improve TCR signaling
AKT
IL-10 or IL10R
IL.2R
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Due to its upregulation of these cells and decreased T cell function, the receptor PD1
is a crucial indicator of T cell exhaustion. By reactivating the anticancer immune response,
antibodies that target PD1, its ligand (PDL1), or CTLA4, another inhibitory surface receptor,
have changed cancer therapy. But the LCMV model was where PD1-targeting antibodies
first showed promise (an important model for studying viral pathogenesis and immune
responses). In HIV-infected individuals, PD1-blocking antibodies showed increased T
cell counts and function. [53]. PD-1 expression on HIV-specific CD8+ T cells is positively
correlated with elevated viral load, decreased CD8+ T cell activity, disease progression,
and decreased CD4+ T cell counts during HIV-1 infection. Antiretroviral therapy (ART)
can reduce the expression of PD-1 on virus-specific T lymphocytes in HIV-infected patients.
Long-term non-progressors (LTNPs) have lower levels of PD-1 expression on virus-specific
T cells, therefore these populations have multiple functions than T cells in progressors. [54].
By increasing the proliferative potential of T cells and stimulating cytokine production,
in vitro studies demonstrate that inhibiting the PD-1 pathway improves pathogen control
and restores T-cell functionality.

More recently, SIV infection therapy with PD-1 inhibitory antibody has boosted the
frequencies and functional quality of SIV-specific CD8+ T lymphocytes detectable in the
blood and gut, viral loads have dropped, and survival rates in infected macaques have
increased dramatically [55].

The changing aspects and importance of the PD-1 pathway have also been studied
in HBV and HCV infections, in addition to HIV. HCV-specific CD4+ and CD8+ T cell
responses were associated with reducing viral growth [56]. Curiously, PD-1 expression
on HCV-specific CD8+ T cells increased markedly in the liver, even though blocking PD-1
had no beneficial effect on the activities of these cells. This demonstrates that a variety of
factors must interact and regulate the maintenance of T-cell exhaustion and suggests that
the distribution and concentration of viral antigen as well as the compartmentalization of
the virus-specific T cells have a significant impact on the degree of exhaustion [57].

Moreover, the metabolism of active T cells and fatigued T cells differs. Redox stress
in T cells is caused by long-term viral infections or tumours, and it results in cell death
and lymphodepletion. In persistent LCMV infection, early effector CD8+ T lymphocytes’
glycolytic and mitochondrial metabolism are inhibited by PD-1 signalling [58]. A critical
metabolic regulator known as peroxisome proliferator-activated receptor gamma coactiva-
tor 1 (PGC1-alpha) was shown to be blocked by PD-1 signals. Interestingly, overexpressing
PGC1-alpha corrected some metabolic abnormalities in developing worn-out T cells and
improved effector function. [59]. Naive and resting T cells use fatty acid oxidation (FAO)
and the mitochondrial tricarboxylic acid (TCA) cycle to produce a sizable quantity of ATP
through oxidative phosphorylation (OXPHOS).

Furthermore, recent studies employing a mouse model demonstrated that mitochon-
drial activity was a need for the generation and maintenance of antigen-specific responses.
T cells triggered in this way change their metabolism to high rates of glycolysis even in the
presence of ample oxygen, supporting proliferation and effector function by supplying fast
energy and metabolites [46].

For example, OXPHOS was elevated by HIV-specific T lymphocytes since there was
more mitochondria. However, whether the growth in the number of functional mito-
chondria resulted from an increase in the number of functional mitochondria or from the
formation of a considerable number of non-functional mitochondria is uncertain [60,61].
Plus, a constitutive glucose transporter called GLUT1 is upregulated by the poorly func-
tioning PD-1hi T cell responses against HBV, according to recent research by Schurich
et al. [62]. They also demonstrated that, in contrast to the more capable CMV-specific T
cells, which were able to use OXPHOS in the absence of glucose, Glut1hi HBV-specific T
cells are dependent on glucose supply. In addition to being unable to convert to OXPHOS,
the tired HBV-specific T cells also had larger mitochondria and decreased mitochondrial
potential, all of which are signs of mitochondrial malfunction [62].
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The antiviral activity of worn-out HBV-specific CD8+ T cells is markedly improved by
mitochondrion-targeted antioxidants, indicating the crucial role of ROS in T-cell fatigue [63].
This findings show how we can used drugs to infer on the immune system dynamics, and
the crucial necessity to carry out further studies on (1) how mitochondrial biogenesis
influences T-cell exhaustion, and (2) how to treat chronic viral infection by focusing on the
mitochondrial metabolism of T cells. Additionally, epigenetic mechanisms directly control
the transcription of T cell exhaustion [64].

4.2. Measurement of Exhaustion and Prediction of the Drug Response by T Cell Subtype Profiling

The depletion of T cells impairs the antiviral T cells’ capacity to clear viruses from
the body. Exhausted T cells differ from usual effector and memory subsets. Five T cell
subtypes—naïve, activated, effector memory (EM), central memory (CM), and exhausted—
can be distinguished based on the activation and differentiation status of T cells [65].
These subtypes describe the immunogenic status of the T cell adaptive immune response
and, when measured separately, have provided insights into the response to anti-PD-1
therapy [66,67].

By profiling the different T cell subtypes, we would be able to predict the immune
response and forecast how a given patient will react to therapy with immune modulators
or antiviral medication [68]. In a recent paper, T Cell Subtype Profiling (TCSP), a technique
developed by Schillebeeckx et al., uses five RNA models to describe the prevalence of T cell
subtypes (TCSs) in FFPE tissues. This method is analytically validated and corroborates
associations between TCSs and clinical outcomes. Based on TCS estimates it was possible
to predict response to anti-PD-1 therapy in three different cancers and outperform the
indicated PD-L1 test, as well as Tumor Mutational Burden [69]. This model of exhaustion
has its origins in viral research and the authors investigated viral and tumour-induced
exhaustion in tandem, by performing TCSP on solid tumours with etiologies involving
persistent viral infection. Regardless of viral state, findings showed that fatigued T cells are
increased in at least some tumour types with concomitant viral infection, but this may vary
depending on the virus. TCS profiles were similar in both malignant and non-malignant
tissue. However, TCSP was able to detect elevated levels of weariness brought on by both
viral and tumor-induced exhaustion.

Understanding the patient’s T cell profile and the degree of exhaustion of T cells, treat-
ment can be guided by those profiles to mediate viral infection and immune response. For
example, Davis et al. concluded that ibrutinib has a protective effect on T cells in patients
with chronic lymphocytic leukaemia [70]. Therefore, short-term ibrutinib treatments could
be helpful to mediate immune response during viral infections. PD-1 plays a crucial role in
regulating T-cell exhaustion by increasing T-cell proliferative potential and fostering cy-
tokine production. Inhibiting the PD-1 pathway promotes pathogen control while restoring
T-cell functionality [44]. Cytokines can also reinvigorate exhausted T cells. The persistence
of viral infections like HCV, HIV, and EBV has been observed to be positively correlated
with IL-10, suggesting that viruses may employ this association to avoid host immune
systems. Blocking IL-10 in LCMV infection models seems to reduce viral persistence and
improve T-cell performance. In HIV infection, IL-10 blockage is also used, and it causes a
markedly enhanced release of IFN- by CD4+ T cells. However, combining IL-10 blockage
with PD-1 blocking only allows for the restoration of a small subset of T cell cytokines, such
as IL-2 [71,72].

Moreover, enhanced T Cell metabolism has its indicators. Increased numbers of
memory T cell subsets, enhanced cell proliferation, and decreased exhaustion indicators
were seen when glycolysis was inhibited when cultivating T cells, indicating that glycolysis
may be a significant component affecting T cell metabolism [73]. The transcriptional
coactivator can be inhibited by the interaction between PD-L1 and PD-1, which can also
control early glycolysis levels and mitochondrial alterations. By lowering aspartic acid
consumption, Metformin, an antidiabetic agent, seems to have extra valuable actions,
even on viral infections. Changes in metabolic reprogramming, which facilitates T-cell
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reinvigoration, are also brought about by anti-PD-1 inhibition. In contrast, anti-CTLA4
mABs cause the genes involved in the cell cycle and proliferation to become less active.
Pre-clinical research demonstrated that CTLA4 inhibition causes Treg numbers to decrease,
which increases the effectiveness of treatment against tumours. Additionally, anti-CTLA4
therapies increase functional reactivity by altering the TCR repertoire [73].

5. Conclusions

Antiretroviral drug administration, the prevalence of drug resistance, the overall
degree of viral generation, and the potency of immune responses are all dynamically
correlated. Viral and immunological processes interact in extremely complicated and non-
linear ways. Mathematical models can help characterize these non-linear interactions, in
addition to providing reliable analysis and quantitative forecasts. They can be used to
follow the immune system and create a profile of disease for each patient. Since SARS-CoV-
2 outbreak a huge number of models were made public, and it was noticeable the effort
to model viral infection in conjunction with the immune systems. Although mechanistic
computational models have a tremendous potential to advance the research and application
of antiviral medicines, their development and utilization requires we continue to work to
achieve new levels of knowledge. To increase our abilities to treat patients and identify
the individual differences in disease development, immune response profiling might be
useful. But if researchers and modelers don’t pose the correct questions, the solutions
provided by the models will address the wrong issues. Moreover, the information retrieved
from pharmacological use is also essential. The drugs interact with each individual, at the
different stages of viral proliferation and immune status can be elucidating in how to deal
with T cell fatigue, for example. This information in conjunction with mathematical models
can be quite beneficial and complementary. Therefore, efforts to embrace a multidisciplinary
approach to solve these issues are fundamental for use to advance. We need, create teams
of researchers with different backgrounds in science, and take advantage of the momentum
created by SARS-CoV-2 pandemic to connect and answer these questions. Building models
and information for the future.
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