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Abstract: PROteolysis TArgeting Chimaeras (PROTACs) offer new opportunities in modern medicine
by targeting proteins that are undruggable to classic inhibitors. However, due to their hydrophobic
structure, PROTACs typically suffer from low solubility, and oral bioavailability remains challenging.
At the same time, due to their investigative state, the drug supply is meager, leading to limited
possibilities in terms of formulation development. Therefore, we investigated the solubility enhance-
ment employing mini-scale formulations of amorphous solid dispersions (ASDs) and liquisolid
formulations of the prototypic PROTAC ARCC-4. Based on preliminary supersaturation testing,
HPMCAS (L Grade) and Eudragit® L 100-55 (EL 100-55) were demonstrated to be suitable polymers
for supersaturation stabilization of ARCC-4. These two polymers were selected for preparing ASDs
via vacuum compression molding (VCM), using drug loads of 10 and 20%, respectively. The ASDs
were subsequently characterized with respect to their solid state via differential scanning calorimetry
(DSC). Non-sink dissolution testing revealed that the physical mixtures (PMs) did not improve
dissolution. At the same time, all ASDs enabled pronounced supersaturation of ARCC-4 without
precipitation for the entire dissolution period. In contrast, liquisolid formulations failed in increasing
ARCC-4 solubility. Hence, we demonstrated that ASD formation is a promising principle to overcome
the low solubility of PROTACs.

Keywords: PROTAC; ARCC-4; amorphous solid dispersion; vacuum compression molding; dissolu-
tion; supersaturation; solubility enhancement

1. Introduction

The emerging technology of PROteolysis TArgeting Chimeras (PROTACs) represents a
bearer of hope to revolutionize drug discovery in the future [1]. PROTACs are two-headed
small molecule drugs that bring an E3 ligase, part of the cell’s deposal system, close to a
disease-causing protein. By inducing the proximity of these two partners, the target gets
ubiquitinated and finally degraded by the proteasome system. Because proteins are entirely
depleted from the cell rather than inhibited in their enzymatic functions, PROTACs possess
advantages over inhibitors. These advantages may result in drugs that can control proteins
that were otherwise thought to be undruggable [2].

However, due to their intrinsic high molecular weight and associated unfavorable
physicochemical properties, it is commonly noted that PROTACs suffer from low solubility,
a critical factor in obtaining oral exposure [3]. Still, classical medicinal chemistry principles
(reduced molecular weight, number of rotatable bonds, and hydrogen bond donors) apply
to this novel drug class. This was impressively demonstrated by the frontrunner drug
ARV-110 (Figure 1), derived from compact cereblon binders and relatively simple target
protein ligands. In contrast, oral bioavailability remains limited for PROTACs derived
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from other E3 ligase handles, such as von Hippel-Lindau (VHL) binders. For instance, the
optimized SMARCA2 degrader ACBI2 was still limited in oral bioavailability and aqueous
solubility (Figure 1) [4]. However, to fully unlock the enormous potential of PROTACs,
especially in chronic diseases, peroral applications are the yet unmet goal to increase the
compliance of patients [5]. Thus, investigations of orally administered PROTACs are of
great interest.
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As poor aqueous solubility is the main limiting factor contributing to the low bioavail-
ability of lipophilic drugs in peroral formulations, developing strategies to overcome the
low solubility is necessary [6,7]. In the case of solubility-enhancing peroral applications
of PROTACs, recent studies focused on self-emulsifying drug delivery systems [8]. For
instance, Rathod et al. developed PROTAC-loaded self-nano emulsifying preconcentrate
using ARV-825 as PROTAC molecule (ARV-SNEP) and significantly enhanced solubility in
aqueous and biorelevant media [9].

Generally, in terms of successful oral delivery of poorly soluble drugs, the preparation
of amorphous solid dispersions (ASDs) is a well-known technique that embeds the drug
amorphously into a polymer matrix [10–13]. As most drugs provide crystalline character,
the molecular structure is converted into a higher state of energy. Hence the amorphous
form needs to be stabilized by the polymer matrix to prevent recrystallization [14,15]. The
absence of a melting point and the presence of a single glass transition temperature (Tg)
of the processed ASD indicate the formation of a homogenous single-phased amorphous
system without a crystalline residual [16].

However, it has been proven that in terms of increasing solubility and dissolution,
formulating ASDs is not only beneficial for crystalline drugs but also for poorly soluble
drugs of amorphous nature [17,18]. Numerous ASDs have been demonstrated to improve
dissolution properties by generating an aqueous supersaturated solution of the drug and
stabilizing this state for a sufficient time, causing an increase in the bioavailability [15,19–22].
As both the generation of a supersaturated solution and the stabilization of the supersaturated
state are attributed to specific interactions between the polymer and the drug, a rational
selection of the ASD-forming polymer for each drug is necessary [23–26].

An alternative approach for the solubility enhancement of poorly aqueous soluble
drugs is manufacturing liquisolid formulations [27,28]. Liquisolid formulations are easily
prepared, and only small amounts of drugs and excipients are needed. The technique refers
to the conversion of solutions or suspensions into a solid powder. The drug is dissolved
or dispersed in a non-volatile solvent and subsequently adsorbed on a suitable carrier. By
adding the solution to the carrier, the dissolved drug gets entrapped into the pores of the
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excipient, and a solid powder remains. Due to its large pore volume and surface area,
mesoporous silica represent optimal excipients for liquisolid formulations [29–31].

Despite their proven potential, to date, no study investigated the general suitability
of ASDs or liquisolid formulations with the new class of PROTACs concerning solubility
enhancement. We sought to select an exploratory VHL-based PROTAC molecule from
Arvina’s drug discovery campaigns for ASD and liquisolid formulations. ARCC-4 (Figure 1)
is a highly lipophilic (clogP = 7.16; MW = 1024 g/mol) androgen receptor (AR) targeting
PROTAC molecule [32]. Regarding the physiologically relevant pH range at the absorp-
tion site, it is an uncharged compound with very poor solubility in an aqueous medium
(clogS = −10.4). If successful, ASDs and/or liquisolid formulations could reduce the burden
for orally bioavailable PROTACs and accelerate in vivo experiments already during drug
discovery and pre-clinical development.

Due to their investigative state, drug supply was very limited; thus, conventional
ASD preparation methods, such as hot-melt extrusion (HME) and spray-drying (SD), were
not applicable. Therefore, preliminary studies for optimal polymer selection of commonly
used ASD polymers were conducted, and only the promising polymers were used for
ASD preparation via vacuum compression molding (VCM), a tool to process small disc-
shaped ASDs without product loss under heat and vacuum. To examine whether ASDs or
liquisolids enhance the solubility of ARCC-4 and may represent potential approaches for
formulating oral applications of poorly soluble PROTACs, non-sink dissolution experiments
in 0.05 M phosphate buffer (pH 6.8 medium, simulating the intestinal pH for systemic
resorption) were performed.

2. Materials and Methods
2.1. Materials

The PROTAC ARCC-4 was synthesized in-house in our laboratories. Based on previ-
ously gathered knowledge on the development of AR-targeting PROTACs, we could design
a new synthetic route towards a gram-scale synthesis of the desired PROTAC ARCC-4 (for
experimental details, see Supplementary Materials) [32–34]. The obtained material was
used in all the subsequent experiments conducted in this study.

HPMCAS (L Grade) was obtained from Shin-Etsu Chemical (Tokyo, Japan), Eudragit®

L 100-55 (EL 100-55) from Evonik (Darmstadt, Germany), Copovidone from BASF (Lud-
wigshafen, Germany), and HPMC HME 15 LV was sent from DuPont Pharma & Nutrition
(Luzern, Switzerland). HPC-SSL was kindly donated by Nippon Soda Co., Ltd. (Tokyo,
Japan). Silsol 6035 was received from Grace GmbH (Worms, Germany). Propylencar-
bonat (PC) was purchased from Carl Roth GmbH (Karlsruhe, Germany), and N-Methyl-2-
Pyrollidon (NMP) was obtained from VWR International S.A.S. (Rosny-sous-Bois, France).
Dimethyl sulfoxide (DMSO, ≥99.9%) was purchased from Fisher Scientific (Geel, Belgium).
Di-sodium hydrogen phosphate dihydrate and sodium dihydrogen phosphate dihydrate
were obtained from Th. Geyer (Renningen, Germany).

2.2. Saturation Solubility

The saturation solubility was determined in 0.05 M phosphate buffer (pH 6.8 medium,
simulating the intestinal pH) by using the shaking flask method. ARCC-4 was added in
excess, and flasks were shaken at 37 ◦C for 48 h. Before analysis, samples were centrifugated
for 5 min at 21,000× g, and 37 ◦C. Then, 450 µL of the supernatant was diluted with 50 µL
acetonitrile to prevent precipitation. The solubility was quantified by high-performance
liquid chromatography (HPLC) (Shimadzu LC-2030C 3D Plus) using a reversed-phase
C18 column and a diode array detector. A volume of 100 µL was injected into a mobile
phase containing 80% acetonitrile and 20% demineralized water. The measurement was
performed at 268 nm.
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2.3. Supersaturation Assay

In order to evaluate the impact of various polymers on the generation and stabilization
of the supersaturated state of ARCC-4, a supersaturation assay was conducted by using a
miniaturized USP dissolution apparatus II (MiniDissolution apparatus) [35]. All experi-
ments were carried out at a temperature of 37 ◦C and a paddle speed of 75 rpm. Several
polymers were pre-dissolved at a concentration of 1.25 mg/mL in 0.05 M phosphate buffer
(pH 6.8). Additionally, the assay was performed in a neat buffer without any pre-dissolved
polymer to investigate the absolute impact of each polymer. A DMSO stock solution of
ARCC-4 with a concentration of 40 mg/mL was prepared. The assay was initiated by
adding 100 µL of the DMSO stock solution into 20 mL of the aqueous polymer solution to
receive a potential concentration of 0.2 mg/mL. The ratio of selected drug concentration
(0.2 mg/mL) and polymer concentration (1.25 mg/mL) corresponded to a theoretical ASD
drug load of 14%. As ASD preparations of 10 and 20% drug loads were planned, the
selected polymer concentration was a compromise to represent the ARCC-4: polymer
ratios of both ASD drug loads. Concentrations were determined for 180 min using an
8453 UV/VIS spectrophotometer (Agilent, Waldbronn, Germany), including correction
for scattering. Measurements were done every minute for the first 30 min of the assay,
followed by an interval of 5 min until the end of the experiment.

2.4. Preparation of the ARCC-4: Polymer Physical Mixtures (PM)

All physical mixtures (PMs) were prepared by blending the PROTAC ARCC-4 and
the polymers using an MM400 ball mill (Retsch GmbH, Haan, Germany) with 30 Hz and
3 × 5 min milling cycles.

2.5. Preparation of Amorphous Solid Dispersions (ASDs) via Vacuum Compression
Molding (VCM)

The compositions of the processed ASDs are listed in Table 1. The preparation of the
ASDs was conducted using a VCM tool (MeltPrep GmbH, Graz, Austria). Approx. 500 mg
of the ARCC-4- polymer blends were loaded into the VCM device with 20 mm diameter
disc geometry and heated under vacuum. The ARCC-4: HPMCAS ASDs were molded at
170 ◦C for 10 min. Due to the reported degradation temperature of 176 ◦C for EL 100-55 [36],
the annealing temperature was reduced to 160 ◦C. However, as EL 100-55 exhibits high
melt viscosity [24,36], it was decided to increase the annealing time to 15 min instead. The
obtained discs were milled utilizing an MM400 ball mill (Retsch GmbH, Haan, Germany)
at 30 Hz and passed through a 355 µm sieve to remove larger particle fractions. Recovery
of ARCC-4 and the absence of degradation products caused by chemical reactions with the
polymers during ASD processing were confirmed via HPLC.

Table 1. Composition of the amorphous solid dispersions (ASDs) and the respective processing conditions.

Composition Ratio Annealing Temperature + Time

ARCC-4: HPMCAS 10:90 170 ◦C, 10 min
20:80 170 ◦C, 10 min

ARCC-4: EL 100-55 10:90 160 ◦C, 15 min
20:80 160 ◦C, 15 min

2.6. X-ray Powder Diffraction (XRPD)

X-ray Powder Diffraction (XRPD) was performed using an X’ Pert MRD Pro (PAN-
alytical, Almelo, The Netherlands) at 45 kV and 40 mA with an X’Celerator detector
and nickel-filtered CuKα1 radiation. The scan was carried out in reflection mode in a
5–45◦ 2θ range with a step size of 0.017◦ 2θ.

2.7. Thermostability

The decomposition temperature of ARCC-4 was investigated via thermogravimetric
analysis (TGA) using a TGA 7 (Perkin Elmer, Waltham, MA, USA). Approx. 5 mg sample
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was weighed into a platinum pan, followed by heating from 25 ◦C to 350 ◦C (10 ◦C/min)
with a nitrogen purge of 20 mL/min. The weight loss [%] was determined in dependence
on the temperature.

2.8. Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry (DSC) analysis was conducted by utilizing a DSC
2 instrument (Mettler, Gießen, Germany) equipped with a nitrogen cooling system and
nitrogen as the purge gas. 7–15 mg of the samples was weighed into an aluminum pan
with a pierced lid. Neat ARCC-4 was measured using a conventional method, consisting of
a heating cycle from 25 to 170 ◦C with a constant temperature rising of 10 ◦C/min. Tgs of
the ASDs were determined in TOPEM- mode, a multi-frequency temperature-modulated
program, with an underlying heat rate of 2 ◦C/min and a temperature pulse with an
amplitude of ±0.5 ◦C. All experiments were carried out in triplicates.

2.9. Preparation of Liquisolid Formulations

The compositions of the liquisolid formulations are given in Table 2. As the liquid
vehicle can impact the dissolution profile [27,37], three suitable non-volatile organic solvents
(PC, NMP, and DMSO) were chosen. The formulations were prepared by dissolving ARCC-4
in the organic solvents, whereby the minimum amount of organic solvent for dissolving
ARCC-4 was used. To obtain a maximum drug load, the organic solutions of ARCC-4 were
added to the solid Silsol 6035 until the loading limit of Silsol 6035 was reached. Preliminary
experiments have shown a maximum loading limit of 66% (v/m) of the organic solutions
with respect to the weight of Silsol 6035, resulting in liquisolid formulations (Table 2)
listed below.

Table 2. Composition of the liquisolid formulations.

Liquisolid Formulation
Organic Solvent [µL]

Silsol 6025 [mg] Total Drug Load [%]
PC NMP DMSO

ARCC-4: PC: Silsol 100 153.4 6.83
ARCC-4: NMP: Silsol 80 120.2 9.27

ARCC-4: DMSO: Silsol 100 151.8 7.39

2.10. Non-Sink Dissolution Study

Non-sink dissolution experiments were carried out to measure the potential solu-
bility enhancements of the processed formulations (ASDs and liquisolid formulations)
compared to the corresponding PMs and neat ARCC-4. To minimize the sample sizes,
the miniaturized USP dissolution apparatus II (MiniDissolution apparatus) of Section 2.3.
(supersaturation assay) with 20 mL 0.05 M phosphate buffer (pH 6.8) in each vessel used for
the measurements. The temperature was set to 37 ◦C and the paddle speed to 75 rpm. As no
experience in terms of the dose was available, we selected a sample size that corresponded
to an ARCC-4 amount of 4 mg in each vessel (theoretical concentration of 0.2 mg/mL in case
of complete dissolution). By choosing this dose, we were able to create very pronounced
non-sink conditions and, thus, could distinguish optimally between the dissolution per-
formances of the processed formulations and the PMs/neat ARCC-4. Concentrations of
dissolved ARCC-4 were determined online for 270 min using an 8453 UV/VIS spectropho-
tometer (Agilent, Waldbronn, Germany), including correction for scattering. Measuring
intervals were selected equal to the supersaturation assay (Section 2.3).

3. Results
3.1. Saturation Solubility of ARCC-4

The saturation solubility of ARCC-4 was determined to be 16.3 ± 7.0 ng/mL at pH 6.8.
This study confirmed the poor aqueous solubility of ARCC-4 and the need to develop
solubility-enhancing formulations.
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3.2. Solid State of ARCC-4

Figure 2 represents the XRPD diffractogram of neat ARCC-4. The absence of sharp
reflection peaks indicated the complete amorphous nature of ARCC-4.
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The DSC thermogram of ARCC-4 (Figure 3a) confirmed the finding of the XRPD
diffractogram. As no melting point of ARCC-4 was detected, the amorphous character
could be corroborated, showing a Tg at 100.1 ± 0.3 ◦C.
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The thermal stability in terms of decomposition processes was evaluated via TGA
(Figure 3b). The first step of weight loss was referred to the loss of adsorbed moisture.
The subsequent temperature profile showed that ARCC-4 was thermally stable up to
temperatures of 217 ◦C, as no significant weight loss (threshold of 0.5% weight loss after the
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first step) caused by degradation was detected. As only volatile decomposition processes
can be detected by TGA, liquid chromatography-mass spectrometry (LC/MS) analyses
after treating ARCC-4 samples at elevated temperatures that are consistent with forming
ASDs (tested between 120 and 200 ◦C for 10 min each) showed no thermal degradation of
the drug (data not shown).

3.3. Supersaturation Assay

Figure 4 demonstrates the supersaturation potential of ARCC-4 in the presence of
various pre-dissolved polymers. Without any pre-dissolved polymer, ARCC-4 could not
generate a detectable supersaturated state, as for the entire experiment, concentrations
of less than 0.9 µg/mL were measured. Pre-dissolved Copovidone did not have any
impact on the supersaturation generation of ARCC-4; again, very low concentrations of less
than 1.5 µg/mL were determined for the entire observation period. HPC-SSL enhanced
the solubility of ARCC-4 slightly, as a concentration of 5.9 ± 0.2 µg/mL resulted after
29 min. Beyond its only poor impact on the initial solubility, HPC-SSL was not able to
stabilize the supersaturated state, as the concentration of dissolved ARCC-4 decreased to
approx. 1.5 µg/mL after 100 min. By pre-dissolving HPMC HME 15 LV, a constant ARCC-4
concentration of approx. 4 µg/mL was measured for the entire period.
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The presence of pre-dissolved EL 100-55 led to a pronounced generation of ARCC-4
supersaturation that could be stabilized for the entire measurement period. Concentrations
between 17.1 and 20.1 µg/mL were detected between the sampling time of 5 min and
180 min.

By pre-dissolving HPMCAS, an even further enhancement was observed, as an ARCC-4
concentration of approx. 38 µg/mL was measured after 4 min. Equal to EL 100-55, HPMCAS
prevented a decrease of ARCC-4 concentration, i.e., precipitation, for the entire experiment,
as 36.3 ± 4.9 µg/mL was detected after 180 min.

After performing the supersaturation assay, two suitable polymers (EL 100-55 and
HPMCAS) were identified to enhance the solubility of ARCC-4 and stabilize the super-
saturated state. Therefore, further investigations focused on the processing of ASDs (10
and 20% drug load of ARCC-4) containing EL 100-55 and HPMCAS as ASD-forming
polymers, respectively.
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3.4. Differential Scanning Calorimetry (DSC)

Tgs of the pure polymers and the ASDs were examined (Figure 5) to investigate the
miscibility and homogeneity of ARCC-4 and the corresponding ASD-forming polymer
(EL 100-55 and HPMCAS). The Tg of EL 100-55 was measured in a prior project of our
workgroup and determined to be 118.0 ± 0.1 ◦C [24]. Neat HPMCAS showed a similar Tg
at 117.5 ± 0.2 ◦C.
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Figure 5. DSC thermograms (exo up) of (a) HPMCAS ASDs (10 and 20% drug load) and (b) EL 100-55
ASD (10 and 20%) compared to neat ARCC-4 and neat polymers.

The ARCC-4: HPMCAS ASD (10% drug load) exhibited a Tg at 112.5 ± 0.5 ◦C,
while the ARCC-4: HPMCAS ASD (20% drug load) showed a slightly decreased Tg at
107.3 ± 1.0 ◦C. For the ARCC-4: EL 100-55 ASD (10% drug load) and the ARCC-4: EL 100-55
ASD (20% drug load) Tgs at 107.7 ± 0.1 ◦C and 104.7 ± 0.7 ◦C were measured, respectively.

3.5. Non-Sink Dissolution Study

Figure 6a represents the non-sink dissolution study of the ARCC-4: HPMCAS ASDs
(10 and 20% drug load) compared to neat ARCC-4 and the corresponding PMs with an
ARCC-4 content of 10% and 20%, respectively. Neat ARCC-4 did not show any dissolution,
as concentrations of less than 0.4 µg/mL were detected for the entire observation period.
Similar results were obtained for the PMs. Both the mixture with 10% content of ARCC-
4 and the mixture with 20% content did not lead to decisive higher concentrations of
ARCC-4 compared to the neat drug (see Figure S2 of supplementary material for rescaled
dissolution curves of PMs and neat ARCC-4). In contrast, the dissolutions of both ARCC-
4: HPMCAS ASDs showed continuous dissolution of ARCC-4 without precipitation for
the entire dissolution period. Compared to the HPMCAS ASD (20%), the ASD with a
10% drug load demonstrated faster dissolution. In the case of the 10% ASD, a concentration
of 17.9 ± 1.2 µg/mL was determined after 60 min, while 13.3 ± 0.6 µg/mL was detected
for the 20% ASD after the same time. Moreover, the dissolution of the HPMCAS ASD
(10%) led to a higher final concentration after 270 min (31.8 ± 0.6 µg/mL) compared to the
corresponding ASD with 20% drug load (22.6 ± 0.6 µg/mL).

Regarding the dissolution profiles of the ARCC-4: EL 100-55 ASDs and of the corre-
sponding PMs (Figure 6b), comparable results to the ARCC-4: HPMCAS combinations were
obtained. The PMs, both with ARCC-4 content of 10% and 20%, did not show any dissolu-
tion of ARCC-4 as concentrations of less than 0.9 µg/mL were determined (see Figure S2).
However, both ARCC-4: EL 100-55 ASDs demonstrated continuously increasing dissolution
profiles for the entire observation period. Again, the dissolution of the EL 100-55 ASD (10%)
resulted in superior supersaturated concentrations than the ASD with a 20% drug load.
While in the case of the ASD with a 10% drug load, a concentration of 35.8 ± 0.4 µg/mL
was obtained after 270 min, the dissolution of the EL 100-55 ASD (20%) ended with a final
dissolved ARCC-4 concentration of 22.4 ± 0.6 µg/mL. Moreover, the ARCC-4: EL 100-55
ASD (10%) demonstrated a faster dissolution rate, as 18.1 ± 0.8 µg/mL of ARCC-4 was
dissolved after 30 min, while at the same time, a concentration of 11.8 ± 0.2 µg/mL was
detected for the ASD with 20% drug load.
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The dissolution testing of the liquisolid formulations is presented in Figure 7. All
liquisolid formulations did not lead to any improvement in the ARCC-4 solubility. Inde-
pendent of the used organic solvent, concentrations of less than 1 µg/mL were observed
for the entire observation period.
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4. Discussion

PROTACs represent a new and very promising class of compounds to treat multiple
chronic diseases and offer new pharmaceutical opportunities by targeting undruggable
proteins. However, their physicochemical properties suspect minimal oral bioavailability,
resulting in limited clinical effectiveness [3,8,38]. The investigated PROTAC ARCC-4 is a
typical representative of this class. Despite its amorphous nature, proven by XRPD and
DSC, ARCC-4 showed a very poor aqueous saturation solubility in 0.05 M phosphate buffer
pH 6.8 (16.3 ± 7.0 ng/mL). As ARCC-4 has an experimental clogP of 7.16, poor solubility
can be regarded to be a crucial factor for low intestinal absorption.

By preparing ASDs (ARCC-4 within a polymer matrix) and liquisolid formulations
(without the utilization of polymers), two different solubility-enhancing principles were
chosen; thus, we were able to evaluate the potential of two different formulation approaches
for supersaturating ARCC-4.

Preliminary experiments excluded HPMC HME 15 LV, HPC-SSL, and Copovidone
from further investigations, as these polymers did not seem to be promising candidates
for ASD processing. However, the supersaturation assay demonstrated excellent precip-
itation inhibition of the pH-dependent soluble polymers HPMCAS and EL 100-55. It is
well-known that the polymer-induced solubility enhancement and supersaturation stabi-
lization of an API depend on intermolecular interactions between the API and the polymer.
Therefore, functional groups of the polymers play a key role in maintaining the super-
saturated state [39]. For cellulose derivatives, it has been reported that a moderate level
of hydrophobicity provides optimal polymer properties, as hydrophobic interactions are
decisive for precipitation inhibition [26,40]. For HPMCAS, the presence of functional
groups (acetyl and succinyl substitution) and a partial hydrophobic character are given.
The acetyl groups in the polymer structure of HPMCAS provide additional hydrophobic
properties, leading to the successful preservation of the supersaturated state. In the case of
EL 100-55, intermolecular interactions, such as hydrogen binding, between the API and the
acidic functional groups (carboxylic acid groups and the esterified carboxyl groups) of the
polymer were discussed as the predominate precipitation mechanism [41]. As the other
polymers in the supersaturation assay were pH-independent soluble polymers and did not
reveal acidic functional groups, the acidic character of the polymers seemed to be a crucial
factor for the supersaturation stabilization of ARCC-4.

Aside from a balanced hydrophobic/hydrophilic character and functional groups,
the polymer conformation can have a decisive impact on the supersaturated state of a
drug. Bristol et al. determined that HPMCAS L exhibits an aggregate conformation state
above a polymer concentration of 0.18 mg/mL leading to an enhanced and stabilized
supersaturation of the poorly water-soluble drug celecoxib [42].

Moreover, HPMCAS was demonstrated to act as a growth inhibitor for nanoparticles
and colloids that are related to the formation of amorphous colloidal phase separation, e.g.,
liquid-liquid phase separation [26,43]. The liquid-liquid phase separation describes the
separation of the supersaturated solution into a drug-rich and solvent-rich phase above
the amorphous solubility of the drug. The drug-rich phase consists of highly concentrated
colloids/nanodroplets. These colloids/nanodroplets function as drug reservoirs and are
reported to be responsible for enhanced drug absorption [44–46]. A relationship between
the amorphous colloidal phase separation and the supersaturated state was assessed
by Hirlak et al. They could demonstrate a linear correlation between the extent of the
amorphous colloidal phase and supersaturated, molecularly dispersed drugs [47].

As suitable supersaturation stabilizing polymers were detected, ARCC-4 ASDs using
HPMCAS and EL 100-55 as ASD-forming polymers with 10 and 20% drug loads were
prepared. The annealing temperatures for ASD processing (170 ◦C for HPMCAS and
160 ◦C for EL 100-55) were set distinctly below the decomposition temperature of ARCC-
4 (217 ◦C), and the absence of degradation products was confirmed to guarantee the
chemical integrity of ARCC-4 after ASD processing. The single Tg in all processed ASDs
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indicated the formation of single-phased ASDs, and, thus, the successful preparation of
homogenous dispersions.

In the non-sink dissolution study, all ASDs demonstrated promising dissolution
profiles, as independent of the selected ASD forming polymer, continuous dissolutions of
ARCC-4 without any precipitation were observed. Noticeably, the standard deviations of
all dissolution profiles (n = 3) were very low and almost not visible (Figure 6), indicating
stable supersaturation during the dissolution processes. By using pH 6.8 medium, the
pH condition in the intestinal tract during resorption was simulated. As EL 100-55 and
HPMCAS are pH-dependent soluble polymers, the release of the drug during the gastric
stage (pH 1) was not expected. However, as shown by previous investigations of our
workgroup, the potential negative impact of prior acidic exposure on the stability of
pH-dependent soluble ASDs (e.g., amorphous-amorphous phase separation) could be
prevented by enteric encapsulation [48].

However, for both the HPMCAS ASDs and the EL 100-55 ASDs, differences between
the 10% and 20% ASD drug loads have been observed. The 10% ASDs showed a faster
release of ARCC-4 and a greater extent of supersaturation. This observation is consistent
with previous investigations. Several studies have demonstrated that the drug load of an
ASD impacts the dissolution performance, as higher polymer concentrations lead to higher
supersaturation levels [48–50].

The importance of the polymer concentration for creating and maintaining the super-
saturated ARCC-4 system became even more apparent when the dissolution data of the
ASDs were compared with the dissolution performances of the liquisolid formulations.
All liquisolid formulations failed to increase the solubility of ARCC-4, independent of the
utilized non-volatile organic solvent. Intermolecular interactions between ARCC-4 and the
polymers were obviously required for generating and maintaining the supersaturated state.

Nevertheless, this study demonstrated that ASDs formulations provide promising
opportunities to overcome the low solubility challenge of PROTACs. However, it must be
considered that molecular rigidity and high molecular weight of the PROTAC molecules
are additional critical factors for low permeability that cannot be addressed by formulat-
ing ASDs. Therefore, as PROTAC-ASDs represent an entirely new concept of PROTAC
formulations, further investigations (e.g., in-vivo pharmacokinetic studies for testing the
successful enhancement of PROTAC absorption) and further formulation studies of addi-
tional compounds of this class need to be conducted.

5. Conclusions

This study provides the first insights into the formulation development of PROTAC-
ASDs and demonstrates that ASD processing is a promising approach for oral applications
of poorly soluble PROTACs. As drug supply was very limited, the supersaturation assay
offered the possibility to provide drug-saving insights into the supersaturation behavior
of ARCC-4 in the presence of various pre-dissolved polymers for a preliminary selection
of potential ASD-forming polymers. Based on these results, the pH-dependent soluble
polymers HPMCAS and EL 100-55 were selected for ASD processing using 10 and 20% drug
loads, respectively. The homogenous and intimate ASDs demonstrated pronounced sol-
ubility enhancement and supersaturation of ARCC-4 without any precipitation during
the entire dissolution period of 270 min. Compared to the successful ASD formulations,
the alternative liquisolid formulations did not lead to the desired solubility enhancement.
Hence in the case of ARCC-4, this technique was not suitable.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15010156/s1, Figure S1: Original and revised
synthetic method for ARCC-4. Syntheses and analytics of all intermediates and ARCC-4 are presented.
Figure S2: Rescaled dissolution profiles of neat ARCC-4 and physical mixtures.

https://www.mdpi.com/article/10.3390/pharmaceutics15010156/s1
https://www.mdpi.com/article/10.3390/pharmaceutics15010156/s1
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