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Abstract: Phages are efficient in diagnosing, treating, and preventing various diseases, and as 

sensing elements in biosensors. Phage display alone has gained attention over the past decade, es-

pecially in pharmaceuticals. Bacteriophages have also found importance in research aiming to 

fight viruses and in the consequent formulation of antiviral agents and vaccines. All these applica-

tions require control over the stability of virions. Phages are considered resistant to various harsh 

conditions. However, stability-determining parameters are usually the only additional factors in 

phage-related applications. Phages face instability and activity loss when preserved for extended 

periods. Sudden environmental changes, including exposure to UV light, temperature, pH, and 

salt concentration, also lead to a phage titer fall. This review describes various formulations that 

impart stability to phage stocks, mainly focusing on polymer-based stabilization, encapsulation, 

lyophilization, and nano-assisted solutions. 
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1. Introduction 

Bacteriophages are viruses infecting bacteria. The name is derived from “bacteria” 

and the Greek φαγεῖν (phagein), meaning “to devour”. Bacteriophages are obligate 

parasites that annex the host’s molecular machinery to complete their life cycle. Hun-

dreds of new virions are folded inside a single bacterial cell. In most cases, bacteria are 

disrupted, and phages are released (lytic cycle). Chronic phages, e.g., filamentous phag-

es f1, fd, or M13, do not lyse their host cells, but progeny virions are secreted continu-

ously [1]. Phages that can undergo only the lytic cycle are called virulent, and those 

which can undergo lytic and lysogenic (latent) cycles are called temperate [2,3]. In the 

lysogenic cycle, the viral genome integrates into the chromosomes of bacteria, remains 

latent, and replicates with the host [4]. Such an integrated state is known as a prophage 

[5]. Stressors, e.g., chemicals, UV radiation, or damage to the host DNA, can initiate the 

lytic cycle to escape the endangered host [6]. The natural ability of most bacteriophages 

to destroy bacteria makes them a great candidate to fight multi-drug-resistant infections 

or even replace antibiotics in the post-antibiotic era. 

The average size of a virion (single phage) is around 50 nm to 200 nm. However, 

the largest bacteriophages are more than 800 nm [7]. In ocean water, bacteriophages 

with tails of about 1800 nm have occasionally been observed [8]. The vast majority of all 

known bacteriophages (above 95% [9,10]) share a typical structure design, i.e., genetic 

information (dsDNA) is stored in an icosahedral capsid to which a spike-tail with fibers 

is attached. The length and stiffness of the tail spike depend on whether they belong to 

the family Straboviridae (long and contractile tail, e.g., T4), the Caudoviricetes class (long, 

noncontractile tail, e.g., λ phage), or the family Autographiviridae (short, noncontractile 

tails, e.g., T7). Tail fibers are attached to the tail and have a substantial positive charge. 
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The head has a significant negative charge [11]. Such asymmetry results in a permanent 

dipole moment of the virion. Much less common than Caudoviricetes class phages are fil-

amentous (e.g., M13, fd) or nearly spherical (isometric) phages (e.g., MS2). 

Only recognizing a proper and viable host assures the multiplication of virions and 

the completion of the phage life cycle. Thus, very often, a multi-step “identification” 

process is used. In the case of Caudoviricetes, initial recognition is based on electrostatic 

interactions—positively charged tail fibers are attracted to the negatively charged sur-

face of bacteria. The following steps of host recognition utilize specific receptor-binding 

proteins, which discriminate the appropriate host. This selectivity is the basis for the uti-

lization of phages in sensing. 

The phage display method boosts the importance of bacteriophages. The possibility 

of directly studying the link between genotype and phenotype has allowed for numer-

ous applications. Phage display is quite similar to the immunodetection assay but, in-

stead of relying on antibodies, it relies on phages as recognition elements. Briefly, a li-

brary of genetically modified phages expressing different peptides on their capsids is 

prepared. Then, the phage library is exposed to the molecule (embedded on the surface) 

to determine specifically binding peptides [12]. 

Confidence in phage therapy is re-emerging in the pharmaceutical world. The FDA 

approved the use of phages in critically ill COVID patients with secondary bacterial in-

fections in 2020. Several phage-based products emerged shortly after, for example, Gan-

gaGen, ContraFect, Phagelux, and Phagomed, to fight S. aureus in India, the USA, Chi-

na, and Austria, respectively [13]. In addition to phage therapy and biocontrol applica-

tions, sensing, and phage display, bacteriophages are also used in drug delivery [14], 

material science, and nanotechnology [15] virus-related studies (e.g., vaccines) [16]. In all 

of these cases, phages are our allies. Increasing the stability of formulations is crucial for 

the successful development of phage-based applications. Here, we review the attempts 

to achieve phage stabilization. 

Approximately 13% of deaths are related to bacterial diseases [17]. Bacteria are also 

involved in specific types of cancers [18] and metabolic disorders [19]. The World Health 

Organization (WHO) is alarmed that 4.1 million patients are affected by healthcare-

related illnesses each year in Europe [20]. In the USA, nosocomial infections cause 

100,000 deaths yearly [21]. 

Foodborne illnesses remain a significant cause of worldwide death despite many 

advances in pathogen surveillance and food sanitation methods. According to the WHO, 

600 million foodborne infections occurred in 2010, resulting in over 400,000 deaths. Be-

sides being a huge social burden, it is also a massive drain on the economy of nations. 

The average incident is estimated to cost around USD ~1500 per person [22]. Moreover, 

microbial contamination is the major cause of food spoilage, resulting in the loss of 25% 

of food produced yearly [23]. 

Being natural antibacterial agents, bacteriophages are considered an alternative to 

antibiotics, especially at the dawn of the antibiotic-resistance era. There are several ad-

vantages to using phages to fight bacteria. 

 Phages can be produced easily and cheaply in large quantities and easily purified. 

By only infecting a bacteria solution, one can obtain a large number of progeny 

phages. 

 Bacteriophages are considered non-toxic to eukaryotes because structural elements 

of the virion cannot bind to eukaryotic cells [24]. There are, however, specific ex-

amples of phage internalization by eukaryotic cells. Lehti et al. demonstrated the 

penetration of eukaryotic cells by the E. coli phage PK1A2 in vitro [25]. The virus 

remained in the cells for up to 24 h but did not affect cell viability. 

 The lysis of bacteria resulting from phage infection supports the inflammatory re-

sponse against bacteria [26]. Therefore, phage therapies directly eliminate bacteria 

cells and indirectly activate humans’ immune systems. 
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 Phages undergo evolution, and thus, they remain effective against bacteria [27]. De-

spite bacteria developing countermeasures against phages [28], phages are also 

adapting [29]. 

Bacteriophages have been proposed for medical use since the early 1900s [4,30]. 

Due to a poor understanding of phages, issues related to the stability of formulations, 

and, later, the appearance of antibiotics, phage therapies were neglected for decades 

[31]. The spread of drug-resistant superbugs and the lack of new medicines [32,33] has 

caused a renaissance of bacteriophage-based antimicrobials [34]. Nowadays, phages are 

used to fight infections that do not respond to conventional antibiotics [35]. In some 

countries, e.g., Russia and Georgia, phage products are available over the counter, even 

without a prescription [36,37]. In western countries, phage-based methods are advanc-

ing in clinical trials for the treatment of inner-ear infections [38], typhoid [39], and burn 

wound infections (Phagoburn project) [40]. The first clinical trial in the USA was already 

approved in 2019 [41]. 

Phage administration without any stabilizing additives triggers an inflammatory 

response as a result of releasing pathogen-associated molecular patterns (PAMPs) from 

lysed bacteria (i.e., membrane proteins, LPS, etc.) [26]. However, phages also impact 

immunity directly, as they modulate the innate and adaptive immune response through 

phagocytosis, the cytokine response, and antibody production [24]. Anti-phage antibod-

ies are one of the most significant factors limiting the therapeutic effectiveness of phage 

therapy [42,43]. The antibodies usually recognize phage receptors as antigens, and thus, 

binding to them de facto makes phages incapable of infecting bacterial cells [3]. 

Phages are also tested for biocontrol applications, e.g., in the food industry and ag-

riculture. Phage biocontrol is increasingly accepted as green and natural technology for 

the specific targeting of pathogens [44]. Phages are a viable alternative to antibiotics [45]. 

Phages were used to protect dairy products [46], fruits [47], vegetables [48], meat [49], 

and fish [50]. In 2020, among over fifty commercial entities offering phage-derived 

products, fifteen were focused on biocontrol [51]. There are more than ten products ap-

proved for food safety applications [52]. Developments in the utilization of phages as an-

timicrobial agents in plant and animal agriculture are summarized in a review by 

Svircev et al. [53]. 

Among the many bacteriophages, some examples are considered good surrogates 

for studies on eukaryotic, often dangerous, viruses. The most common examples are 

MS2 [54], Phi6 [55,56], PhiX174 [57], and QBeta [58]. For instance, MS2 phages were em-

ployed as a model agent for inactivation studies due to their resistance to UV and the re-

semblance between their inactivation profile and some enteric viruses, such as polio-

myelitis virus [54,59]. Phi6 was used as a surrogate of Sars-Cov-2 in studies on survival 

in evaporated saliva droplets on glass surfaces [55] and tests on surface disinfectants 

[60]. PhiX174 and QBeta were used for studies on virus deactivation [57,58,61]. Figure 1 

shows the similarity between Phi6 phage and SARS-CoV-2 on SEM images. 

As such, methods developed for phage stabilization might be applicable to the sta-

bilization of other viruses. This is still important, as bacteriophages can be used to for-

mulate vaccines. Depending on the particular type of vaccine, phages can either carry 

the genomes of other viruses, affinity bind eukaryotic virus antigens on the capsid’s sur-

face [16,62], or present virus antigens to select its targeting factors via phage display [63]. 

Moreover, as phages are surrogates of eukaryotic viruses [64], different strategies of vac-

cine stabilization can be examined on phage models. 
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Figure 1. The comparison of enveloped phage Phi6 [65] and SARS-CoV-2 virus [66] using scanning 

electron microscopy imaging. The scale bar is 100 nm. Phi6 image was adapted from Block et al., 

based on CC BY 4.0 License [65]. SARS-CoV-2 image was adapted from Goldsmith et al. [66] based 

on Elsevier License No. 5375361146341. 

The major drawback of using phages as antimicrobials is the stability of virions. The 

primary criteria are virulence, selectivity, host range, ease of manipulation, and modifi-

cation. Even though phages are capable of retaining their activity after exposure to stress 

factors (including high temperatures [67], pH [68], and organic solvents [69,70]), this re-

sistance is only an additional factor in the search for valuable medical purposes. Stabil-

ity-determining factors were described in the review by Jończyk-Matysiak et al. [71]. The 

authors focused on the effects of chemicals and physical factors, including pH, tempera-

ture change (freezing, heat), and UV-light. 

The matter of phage suspension stability is not to be underestimated. Improper 

preparation of such suspension can affect the effectiveness of the phage therapy ap-

proach. For instance, in the Phagoburn project, storing bacteriophages in unsuitable con-

ditions dramatically decreased phage titer a thousand-fold within just fifteen days. Be-

cause of this, patients received lower dosages of phages (102 PFU/mL daily), about 5 log 

below the required rate of infection (ROI) [40]. 

With the shift in attention towards phage-based pharmaceutics, the precise nature 

and uniformity of bacteriophages are gaining increased appreciation. The preliminary 

testing of phage therapy did not concern the stability of phages; however, commercial 

circulation would require stable concentrations and known dosages. Phages often lose 

activity during formulation and storage. The most common factors affecting the viability 

of phages (and phage proteins) include exposure to organic solvents, high temperatures, 

pH, and ionic strength [72]. 

2. Polymer-Based Stabilization 

A polymer is a substance or material of large molecular mass composed of repeat-

ing subunits (Encyclopedia Britannica). Because of a large number of subunits, removing 

one of them does not change the properties of the entire molecule. Polymers can be di-

vided into natural (proteins, nucleic acids, and polysaccharides) and synthetic (polyeth-

ylene, polytetrafluoroethylene, and polypropylene) [73]. Although polymers’ usage for 

phages and virus stabilization is in the early stages, some interesting applications have 

already been reported. 

The effect of sugars as stabilizers against protein unfolding is known [74–78]. Be-

cause of this effect, sucrose has been used as a cryo-stabilizer for freeze-dried vaccines. 

Yet, it has been shown that sucrose-induced stabilization of the viral capsid proteins 

alone does not necessarily lead to virus capsid stabilization [74]. More importantly, the 

protein stabilization effect is broadly observed with many sugars [79–82], but only su-

crose and trehalose seem to be effective in stabilizing viral capsids [79,83]. Sucrose is 

known to enhance protein–protein binding at molar concentrations by modifying pro-

tein hydration properties [75], and thus, it is effective in the stabilization of vaccines 

[79,83–85]. Other carbohydrates, such as agar or alginate, can also be used for the stabili-
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zation of phage particles. Balcão et al. proposed fifteen polymers with different concen-

trations of sodium alginate and calcium solution for storing bacteriophage DSM JG004, 

targeting P. aeruginosa. Such hydrogels were effective in the elimination of bacteria em-

bedded on the surfaces of gel beads. The authors, however, did not provide quantitative 

values of these antibacterial properties. [86]. Leung et al. proposed the usage of pullulan 

and trehalose films for the protection of the LISTEX P100 phage, targeting Listeria mono-

cytogenes. While pullulan itself was not effective for phage stabilization after drying, the 

combination of pullulan and trehalose as a stabilizing matrix allowed the maintenance 

of about 7 log active phages after 60 days (from the initial concentration of 10 log). In 

comparison, in the trehalose matrix, only 3 log phages remained active after the same 

amount of time [87]. 

Polyacrylamide can be used to stabilize phage particles for strictly research purpos-

es, such as protein nuclear magnetic resonance spectroscopy. Trempe et al. reported the 

stabilization of a filamentous Pf1 phage using 5% polyacrylamide as a polymer-

stabilized liquid crystal (PSLC). This approach allowed for measurements of dipolar 

couplings with a single sample and, therefore, a more accurate analysis of protein struc-

ture based on the comparison of theoretical and experimental tensor parameters [88]. 

PEGylation is the attachment of polyethylene glycol (PEG) groups to the target 

molecule, commonly used in food and drug formulation to increase molecules’ stability. 

PEG is biocompatible and reduces the immunogenicity of the molecule, but it is non-

degradable [89]. PEG is known to affect protein–protein interactions by changing their 

hydration, similarly to sucrose [90]. Since phage capsids are made exclusively of pro-

teins, PEGylation was found to be suitable as a phage stabilizer. This approach uses PEG 

polymer conjugate with phage proteins [91]. Kim et al. reported that two bacteriophag-

es—Felix-O1 and A511—when modified with monomethoxypolyethylene glycol 

(mPEG) could be present for longer within the bloodstream. After 24 h, the amount of 

non-modified phages was 2 log less than mPEG-modified. However, their immunogen-

icity was increased, which was suggested by the larger amount of IgG and IgM antibod-

ies 12 days after the injection [92]. PEGylated phage lysins are currently considered to be 

more promising [93]. In comparison, the PEGylation of phage endolysins caused the loss 

of their bactericidal properties in vitro [94]. 

Polymers might also have an indirect effect on phages. Richter et al. explained the 

phenomenon of phage titer loss when phages are stored in plastic (mainly polypropyl-

ene) labware [95]. The authors observed that the effect depends on the hydrophobicity of 

the inner walls of the plastic containers and tubes. For high-enough wetting angles, the 

system minimizes energy by limiting the contact between hydrophobic plastic and water 

molecules. The surface nanoporography also appeared significant for the absorption 

process [96]. In the case of phages, it resulted in dramatic changes in the bulk titer. To 

overcome this effect, Richter et al. proposed the addition of Tween-20 and plasma treat-

ment [95]. Later, O’Connel et al. used pre-incubation with bovine serum albumin [96]. 

Additionally, an inorganic polymer nanocomposite (gold nanoparticles embedded in 

polyoxoborates) can be used to cover plastic container surfaces. Such a nanocomposite 

not only prevents the uncontrolled absorption of phages, but also has antibacterial and 

antifungal properties. [97]. This, indirectly, allows for more extended storage of liquid 

phage stocks. Both the phage absorption of plastic surfaces and its prevention are pre-

sented in Figure 2. 
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Figure 2. The absorption of bacteriophages on plastic surfaces. (a) A comparison of absorption of 

phages on different types of plastic surfaces enhanced by temperature and mixing [95]. (b) The re-

duction in phage absorption on polypropylene vial surface upon covering with gold-

polyoxoborates nanocomposite (*** p < 0.001) [97]. Panels were adapted from Richter et al. [95], 

and Wdowiak et al. [97], based on the CC BY 4.0 License. 

3. Encapsulation 

Polymers are also used as protective matrices in which phages are embedded. En-

capsulation allows for better stability and modulates the long-term release of active 

phage particles [98]. Various techniques are used for encapsulation, for example, emul-

sion, polymerization, spray-drying, and extrusion dripping [71]. The encapsulation of 

bacteriophages for preservation and administration must consider the possible stresses 

encountered by phages during and after the process. It is crucial to ensure that the mor-

phology of encapsulated particles is maintained and that they do not aggregate or un-

controllably fuse with the surface of interest [72]. The bacteriophage strain of interest de-

fines the encapsulation conditions; it is difficult to develop methods that universally ap-

ply to phages [71]. The encapsulation of phages also facilitates the transportation of 

samples at prescribed temperatures for long durations. For example, Menendez et al. 

showed that microencapsulated phages could be maintained at 20 °C for 2 months [99]. 

Dry encapsulation also has an advantage over other liquid-based formulations, especial-

ly for transporting phages and maintaining a long shelf-life [100]. 

The applications of encapsulation also include phage cocktails. For example, a cock-

tail of three phages against Salmonella was encapsulated within alginate microparticles 

associated with calcium carbonate to prolong their gut residence time [101,102]. Pacios-

Michelena et al. combined alginate/chitosan-encapsulated phages with polyphenolic ex-

tracts, increasing the phage surveillance during UV exposure from about 5 min to at 

least 25 min [103]. 

Malik et al. listed the types of polymers used for phage encapsulation as agarose, 

alginate, chitosan, pectin, whey protein, gelled milk protein, hyaluronic acid methacry-

late, hydroxypropyl methylcellulose poly(N-isopropyl acrylamide), poly(DL-lactide: 

glycolide), polyesteramide, polyvinyl pyrrolidone, polyethylene oxide/polyvinyl alco-

hol, cellulose diacetate, and polymethyl methacrylate [72]. Alginate is often used to en-

capsulate phages for applications that require exposure to acidic media [102]. Tang et al. 
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improved the release of phage particles from alginate microspheres by using whey pro-

tein [71]. Alginate capsules can also be developed to immobilize phages and their stor-

age at lower temperatures [99]. Furthermore, bead encapsulation in chitosan–alginate 

multilayers can enhance the stability of phages even under harsh conditions such as in 

the intestine [104]. 

Liposomes are biocompatible nanoparticles composed of a lipid bilayer surround-

ing therapeutic cargo. This approach is promising in achieving directed delivery while 

surviving the extreme conditions of the stomach and intestine when administered orally 

[98]. Liposome-encapsulated phages were used to target Salmonella [71]. Pharmaceutical 

formulations in the form of gastro-resistant microparticles encapsulating anti-Salmonella 

phages have been produced to maintain elevated levels of phage particles in the gut 

[102]. Nanoparticles of cationic liposomes can also be designed to encapsulate anti-

Salmonella phages, protecting them against the acidic conditions of the intestine [102]. 

This technique is popularly adopted to immobilize phage cocktails to treat burn infec-

tions [105]. However, liposome-encapsulated phages appeared to be less effective in 

comparison to phages alone. This fact led researchers to explore hydrogels as scaffolds 

(primarily polymers) for phage delivery [106]. 

While aiming for perfection, modifications in the approach to encapsulate phages 

are gaining popularity. For example, microfluidic devices are used to produce calcium 

alginate capsules containing bacteriophages [107]. These capsules find applications in 

the sanitization of food surfaces. There is a constant need to improve the technique to 

avoid the exclusion of encapsulated phages by our immune systems and the cleavage of 

capsid proteins by proteases in the gut. The efficacy of encapsulated phages is presented 

in Figure 3. 

 

Figure 3. Microencapsulated phages show prolonged stability in gastrointestinal environments 

and high therapeutic efficiency in treating Escherichia coli O157:H7 infection. (a)—the comparison 

of free phages’ and microencapsulated phages’ stability in simulated gastrointestinal conditions. 

Encapsulated phages remained active two times longer (30 min) than free phages (15 min). (b)—

Phage titer in the feces; encapsulated phages remained active for 6 days, while free phages were 

detected up to 4th day (* p < 0.05; ** p < 0.01). (c)—Images of microcapsules on the plate and imag-

ined using the optical microscope [108]. Panels were adapted from Yin et al. [108], based on the 

CC BY 4.0 License. 
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4. Lyophilization 

Lyophilization (dehydration process), first used for food storage, has become a very 

commonly used method for phage stabilization and long-term storage. At first, lyophi-

lization involved freezing the phage stock, lowering the pressure, and removing the wa-

ter (so-called freeze-drying) [109]. Now, there is a branch of similar methods, including: 

(i) spray-drying, where the concentrated liquid is atomized and exposed to the hot air—

causing evaporation of the water—and then, dried and separated [109,110]; (ii) hot-air-

drying, where the sample is pre-treated with ethyl oleate and potassium carbonate solu-

tions, and then, exposed to a temperature of about 50–60 °C [111,112]; and (iii) drum-

drying, where hot-air-drying is enhanced by placing the sample in a rotating drum to 

increase the heat transfer [113]. The differences in phage formulations with freeze-

drying, spray-drying, and electrospray are presented in Figure 4. 

 

Figure 4. The schematic illustration of spray-drying protocols in vapor over liquid, liquid, and va-

por phases(upper, adapted from Adali et al. [114], based on the CC BY 4.0 License), and the com-

parison of phages lyophilized via freeze-drying (a,d), spray-drying (b,e), and electrospray (c,f). 

Both SEM images and phage powder form show significant differences in phage formulations 

(adapted from Ergin et al. [115], based on Elsevier License No. 5375361146341). 

For phage storage, freeze-drying and spray-drying methods are the most important. 

Freeze-drying is, relatively, the cheapest method for preparing phage powders. One of 

the first attempts was the freeze-drying of mycobacteriophages; when stored in the dark, 

phage lyophilizates were suitable for over two years [116]. The average loss in titer of 

such methods was estimated to be about 1 log [117,118]. The activity of phages after 

freeze-drying can be regulated by the drying time and the number of times they have 

previously been refrigerated. The authors proved that a long duration of drying (over 

150 min) provides three-times-higher survivability of phages during freeze-drying than 

a short duration (90 and 120 min). Additionally, every subsequent freezing causes the ti-

ters to decrease by about 3 log [119]. The efficiency of freeze-drying also depends on the 



Pharmaceutics 2022, 14, 1936 9 of 20 
 

 

size of the grains of phage powder during the procedure—smaller bead formulation 

provides a smaller reduction in phage titer than in the case of macro-beads [120]. 

The storage time can be extended by adding some cryoprotectants. Merabishvili et 

al. proposed adding 0.5 M sucrose and trehalose solutions to the Staphylococcus aureus 

ISP phage to prolong the storage time up to 37 months, with a titer loss of about 1 log 

[121]. This observation was confirmed by Dini and Urraza, who also proved how im-

portant it is to freeze-dry CA933P phage stocks in proper buffer solutions [122]. Addi-

tionally, sugar solutions (sucrose and trehalose) appeared to be much better cryoprotect-

ants than polymers (polyethylene glycol 6000-PEG6000) in the M13 phage model. After 

seven days, the phage titer was 2 log higher in the sucrose and trehalose solution com-

pared to PEG [123]. A similar tendency was described by Puapermpoonsiri et al. [124]. 

Recently, Petsong et al. proved that the combination of trehalose and whey protein iso-

late (WPI) allowed the storage of the freeze-dried Salmonella SPT 015 phage, even at 

room temperature [125]. Other sugars, including lactose or mannose, are not such effi-

cient cryoprotectants, as was shown by Chang et al. [126]. 

Spray-drying allows for a reduction in the decrease in the phage titer during the 

procedure [115]. Still, adding carbohydrates to the phage solution is essential for the en-

tire protocol. Vandenheuvel et al. compared the addition of dextran, lactose, and treha-

lose to phage-titer decrease during the spray-drying of two phages—LUZ19 and Romu-

lus. Trehalose was found to be the most suitable cryoprotectant for the spray-drying 

protocol [127]. Yet, the virions’ stability after drying strongly depends on the proper 

crystallization of the trehalose matrix [128]. Leung et al. proposed a mixture of trehalose 

and leucine in different concentrations to protect two Pseudomonas phages—PEV2 and 

PEV40. They showed that phage powder prepared in the mixture containing 70% treha-

lose and 30% leucine could be stored for 12 months with a titer decrease of about 0.5 log 

[129]. Chang et al. proposed mixtures of 80% lactose/20% leucine and 50% lactose/50% 

leucine for the same purpose on phage PEV20. Such s matrix allowed the storage of 

phages for 250 days with a loss in titer of about 2 log [130]. In addition to trehalose, Car-

rigy et al. proposed the usage of trileucine and pullulan as a matrix for phage powders. 

Depending on the formulation, after 1 month, the phage titer decreased from 0.6 log to 

1.9 log [131]. The sensitivity of phages to the drying procedure strongly depends on the 

particular phage [132]. Moreover, spray-drying can be combined with encapsulation-

related methods. That is, a phage that is already encapsulated can be spray-dried, with 

the possibility of triggered release in response to pH changes, e.g., in the gut [133]. 

Phage storage and transport can also be facilitated by obtaining dry powders of phage 

stocks (e.g., phage phiPLA-RODI [99]) containing viable encapsulated phages. Alterna-

tively, metal–phenolic networks can be employed to evade protease cleavage and pro-

tect phages until the target is achieved [106]. 

Freeze-drying and spray-drying were combined into a novel atmospheric spray-

freeze-drying (ASFD) [134,135]. Both spray-dried and ASFD phage powders are believed 

to be a promising medicine for bacterial infections, e.g., caused by Pseudomonas aerugino-

sa [126,130,136–144], Acinetobacter baumannii [145], Burkholderia cenocepacia [146], Salmo-

nella enterica [147], Campylobacter jejuni [148], or Mycobacterium tuberculosis [149]. Howev-

er, at this moment, such projects are in the stage of optimization [150]. 

Another long-term method of storing and stabilizing bacteriophages is freezing ma-

ture virions within bacterial cells. In this approach, bacteriophages at a proper multiplic-

ity of infection (MOI) are mixed with their host bacterium and incubated for a short 

time. Next, infected cells are frozen and stored at −80 °C. After reviving and washing, 

phages are released and can actively infect bacterial cells. Golec et al. proved that this 

method allows for phage storage with minor or no losses in phage titer for about 10 

months, depending on a particular phage [151]. 
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5. Nano-Assisted Stabilization 

The implementation of nanotechnology in medicine has the potential to solve the 

stability issue. Nanoparticles can be viewed as vectors for drug solubilization while 

overcoming sequential biological barriers in the body [152]. Phages can be associated 

with nanoparticles to remain detectable in the bloodstream for about 24 h longer than in 

the control [153]. The majority of bacteriophages fulfill the classical definition of nano-

materials (i.e., having one geometrical dimension in a range from 1 nm to 100 nm). 

Therefore, they integrate well with abiotic nanomaterials, ensuring higher efficiency 

[154]. 

Nanoscience plays an essential role in the immobilization of phages; bacteriophages 

can be chemically or genetically modified to bind strongly to nanomaterials [155]. Gold 

nanoparticles are most commonly used to stabilize T4-like bacteriophages to detect E. 

coli cells [156]. Additionally, the DNA of B. anthracis can be targeted using phage probes 

modified and stabilized with gold nanoparticles [157]. For more inexpensive applica-

tions, silica nanoparticles are popularly employed for their ability to bind to phages 

[155]. The one-step production of phage-engineered bio-functionalized silicon nanopar-

ticles has also been applied to optical biosensors [158]. 

In some experiments on vaccine formulations, nanolayers of aluminum oxide were 

used to stabilize the λ bacteriophage, which ensured the controlled release of antigens in 

vivo [159]. Vaccines made from eukaryotic viruses may also be stabilized by the addition 

of nanoparticles. For example, negatively charged gold nanoparticles can improve the 

storage time of adenovirus [160] (Figure 5). 

 

Figure 5. The efficacy of PEG8000 and anionic nanoparticles (NPs) as the thermal-protective addi-

tives in adenovirus-based vaccines. (a)—Fraction of cells infected versus storage time for Ad5 

stored in the presence of different concentrations of PEG at RT and at 37 °C, (b)—Fraction of cells 

infected versus storage time in days for Ad5 stored in presence of different concentrations of ani-

onic MUS:OT NPs at RT and at 37 °C. The panel was adapted from Pelliccia et al. [160], based on 

the CC BY 4.0 License. 

Apart from imparting stability, nanoparticles have been shown to enhance the func-

tioning of phage-based biosensors by exploring rapid and sensitive approaches [158]. 

Carbon-based nanomaterials, in particular, have emerged as potential next-generation 

miniaturized biosensors to obtain susceptible and selective detection [161]. This was 

displayed when virions were chemisorbed on a glassy carbon electrode decorated with 



Pharmaceutics 2022, 14, 1936 11 of 20 
 

 

gold nanoparticles, reducing the LOD to 14 CFU/mL within 30 min of incubation [162]. 

Furthermore, the longevity of such sensors can be increased by using only parts of viri-

ons, e.g., receptor-binding proteins (RBPs), instead of the whole bacteriophage [163,164]. 

Alternatively, MS2 phages can be quickly transported and internalized into bacteria via 

exposure to Ag and ZnO NPs [165]. 

The synergistic effect of phages and nanoparticles has been widely used for target-

ing biofilms and eliminating pathogenic infections [166,167]. For example, the combina-

tion of the C3 phage and gold nanoparticles (AuNPs) provided a promising treatment 

for P. aeruginosa planktonic and biofilm states, with high stability under a broad range of 

temperatures, pHs, and salt concentrations [168]. In other experiments, polyvalent phag-

es were attached to magnetic colloidal nanoparticle clusters (CNCs) to facilitate biofilm 

penetration [169]. Phage virions may be used as stabilizing agents for synthesizing gold 

nanoparticles, which have antibacterial and antibiofilm properties [170]. Metallic nano-

particles and bacteriophages impart a synergistic effect against pathogenic bacteria. For 

example, phage ZCSE6 was combined with ZnO NPs to target Salmonella enterica by 

causing the deformation of biofilms [171]. Alternatively, phage display can be employed 

to select the most efficient ‘bacteria-recognizing’ peptide. This peptide can be loaded on 

nanoparticles for an enhanced antibacterial effect [172]. 

6. Conclusions 

Vaccination against infectious diseases saves over three million lives yearly. How-

ever, some estimations suggest this number could be doubled if all the problems related 

to proper storage were solved [173]. According to the World Health Organization 

(WHO) regulations, vaccine stability is defined by three factors: (1) its ability to retain its 

properties, (2) the duration of retaining its properties, and (3) parameters indicating its 

stability [174]. Even though recently, mostly mRNA-based vaccines have been desired 

and examined [175], most vaccines used nowadays contain inactivated pathogens or an-

tigens. To regulate their immunogenicity and minimize the risk of side-effects, pathogen 

antigens can be displayed on the surface of bacteriophages and are an exciting alterna-

tive to ‘traditional’ vaccines [16]. Moreover, the application of microparticles of poly 

(lactic-co-glycolic acid) (PLGA) for the encapsulation of the modified filamentous phage 

fd, as a potential anti-cancer therapy, was described. This protocol resulted in the stand-

ardized release of bacteriophages during an 8 h period, and was proven to successfully 

mobilize the release of interleukin 2 (IL-2) by the B3Z hybridoma cell line [176]. There-

fore, research on phage stabilization from a long-term perspective may result in a new 

generation of vaccines that could be used, e.g., in remote parts of the world, where the 

proper storage of medicines is most problematic [177]. 

Despite the advantages, research on phages is troublesome due to their instability 

in phage cocktails and varying phage titers [102]. Table 1 presents the examples of dif-

ferent kinds of formulations to enhance phage stability. When it comes to long-term 

phage storage, lyophilization and storage inside bacterial cells appear to be most effi-

cient.  

Table 1. Examples of formulations for phage stability. 

Technique Stability Enhancers Phage Duration Reference 

Polymer-based 

Pullulan and Trehalose LISTEX P100 60 days [87] 

Polyethylene glycol (PEG) Felix-O1, A511 
24 h within 

bloodstream 
[92] 

Polyoxoborate composite T4, MS2, M13 6 h of incubation [97] 

Encapsulation 

phiIPLA88, 

phiIPLA35, 

phiIPLA-RODI, 

phiIPLA-C1C 

2 months [99] 
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Liposome 
KØ1, KØ2, KØ3, 

KØ4, KØ5 

48 h within 

bloodstream 
[102] 

Freeze-dried 

powder 

Lactose, trehalose, sucrose ISP 37 months [121] 

Lecithin PEV2, PEV20 250 days [130] 

Spray-dried 

powder 
Trehalose, dextran, lactose LUZ19, Romulus 

12 min of 

atomizing 
[127] 

Freezing inside 

bacterial cells 
Glycerol Tailed-phages ~10 months [151] 

Nano-assisted 
Nanolayers of aluminum oxide λ ~1 month [159] 

Carbon-based nanoparticles, gold nanoparticles M13 16 days [162] 

Phage delivery is also often compromised due to its degradation and clearance by 

the body’s defense mechanisms [178]. Many techniques are adopted to maintain the sta-

bility of phages for storage and preservation. Some approaches are met with shortcom-

ings that need further improvements. For example, lyophilization often leads to a dis-

torted morphology which affects the activity of phages [179]. There are discrepancies in 

the effectiveness of cryoprotectants used to store lyophilized phages. Some experiments 

have also reported that phages were unstable during 1-year storage at room temperature 

when they were lyophilized with skim milk and sucrose [180]. Moreover, studies have 

shown that phage solutions only remain stable up to 126 days after the rehydration of 

lyophilized phages [181]. The excipients should thus be selected carefully, depending 

upon the family of the phage of choice. Other studies have found that the encapsulation 

of phages in liposomes frequently results in undesired aggregation, fusion, or rupture 

[182]. This also limits the application and further development of such stabilizing meth-

ods. Additionally, the nano-based solution for phage stabilization, even though promis-

ing, is extremely scarce nowadays, and requires further development. There is also not 

yet an efficient way to protect phages from UV radiation, e.g., the usage of natural ex-

tracts and astaxanthin provides some protection against UV exposure (1 mW/cm2), but 

only for up to 5 min [183]. Due to the above-mentioned reasons, more research is re-

quired to acquire phage stability for storage and preservation without hampering their 

activity. 

This review presents an update on the state of the art of bacteriophage stabilization, 

including the research published only last year (since May 2021). The review is mostly 

focused on polymer-based stabilization, encapsulation, lyophilization, and nano-assisted 

solutions; the problems and future perspectives of such approaches are also highlighted. 
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