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Abstract: Significant improvements in the wettability and dissolution rate of celecoxib (CEL), a
poorly soluble selective cyclooxygenase-2 (COX-2) inhibitor, have been shown by Huyn et al., 2019
by combining the binary pharmaceutical compositions including CEL and one of the two co-formers,
adipic acid (ADI) and saccharin (SAC), into eutectic mixtures (EM). Purpose: In this study, we
developed a therapeutic eutectic system for CEL which is a promising approach for oral delivery
to enhance bioavailability. CEL EM were synthesized by novel techniques including supercritical
CO2 techniques and new tablet formulations were purposed. Methods: CEL EM were synthesized
by evaporation crystallization method, spray drying, supercritical fluid (SCF) techniques. The CEL
EM particles were then characterized by differential scanning calorimetry, powder X-ray diffraction,
Fourier-transform infrared spectroscopy, scanning electron microscope, and particle size analysis.
Dissolution studies were carried out. With a quality by design approach, a statistical method
through design of experiment and data analysis by JMP® (SAS institute) was applied to CEL EM
immediate release tablet formulation development. Results: CEL EM produced by spray drying
technique, supercritical fluid (SCF) techniques were identified and characterized. The enhancement
of dissolution was observed for SCF processed samples. The design space for CEL-ADI EM IR tablet
and control limits for individual parameters were determined.

Keywords: celecoxib; supercritical fluid; eutectic mixture; adipic acid; saccharin; spray drying;
quality by design

1. Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drug
class for reducing pain, decreasing fever, preventing blood clots and, in higher doses,
showing anti-inflammation effects. NSAIDs inhibit the cyclooxygenase (COX) enzyme
family, which catalyzes the metabolism of arachidonic acid to prostaglandins, prostacy-
clin, and thromboxane [1]. COX has two isoforms (COX-1 and COX-2) and inhibition of
COX-1 causes gastro intestinal side effects so the introduction of the first selective COX-2
inhibitor (375-fold selectivity) [2] in the pharmaceutical market revolutionized choice
among NSAIDs. Celecoxib (CEL), 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1Hpyrazol-1-
yl] benzene sulphonamide is an NSAID that selectively inhibit cyclooxygenase-2 (COX-2)
enzymes [1,2]. Compared to other NSAIDs (e.g., naproxen, diclofenac), CEL has shown
better efficacy in osteoarthritis, rheumatoid arthritis, and acute pain [3]. Nowadays, CEL
is widely used in the treatment of pain, arthritis, and cancers. However, its absorption
through oral administration remains a challenge because of its hydrophobicity (log P = 3.5)
and very low water solubility (3–7 µg/mL) [4].
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Reducing the crystallinity of the drug through formation of solid dispersions to
manipulate the solid state of drug is used to improve poor water-soluble compounds’
bioavailability [5]. A eutectic mixture (EM) is a homogeneous mixture of two or more
components that usually do not interact to form a new chemical compound but, at certain
ratios, inhibit the crystallization process of one another, resulting in a system having a
lower melting point than either of the constituents [6,7]. A decreasing melting point means
less energy is required for phase change, therefore it becomes easier for EM to dissolve.
EM can be formed between Active Pharmaceutical Ingredients (APIs), between APIs and
excipients or between excipients, thereby providing a lot of beneficial applications for the
pharmaceutical industry [7]. EM, which is formed between API and co-formers, can be
considered as a crystalline solid dispersion of a drug in crystalline form carriers [7,8]. For
decades, therapeutic eutectic systems for the enhancement of drug bioavailability have
emerged as a solution to overcome the drawbacks of some of the existing APIs.

In our previous study, EMs of CEL with adipic acid (ADI) and saccharin (SAC), were
identified. A comparison of the disk intrinsic dissolution rate and powder dissolution
properties demonstrated that CEL EM significantly increased the dissolution rate compared
with CEL and physical mixtures. CEL EM was prepared in bulk by the evaporation
crystallization method [6]. Solid CEL EM prepared by the conventional evaporation
crystallization method is formed after solvent evaporation and normally requires a milling
grinding process to obtain a fine powder. Spray drying has been the preferred method
in food and pharmaceutical industries [9]; by rapidly introducing the solution of the
active ingredient in organic solvent through a hot gas, the spray drying process often
results in fine, dry powder. Moreover, the finer particle size of a drug usually leads to
a faster dissolution rate in the body and faster absorption [10]. Nowadays, green and
sustainable technologies are the goals of any products and processes. In the pharmaceutical
industry, the supercritical CO2 solvent anti-solvent (SAS) precipitation method has been
regarded as an effective, environmentally friendly, new approach for mass production of
fine particles [11]. Hence, it is important to produce CEL EM to enhance CEL bioavailability
employing newer, greener techniques such as supercritical fluid (SCF) methods. In this
study, we focus on the production of CEL EM using different methods including the
employment of supercritical CO2. As CO2 used with or without the addition of organic
solvent presents the definitive advantages of being a “green”, abundant and cheap solvent,
it is perfect for application in the production of pharmaceutical products at a temperature
near to ambient [11].

Immediate release (IR) dosage forms are types of dosage form that are designed to
disintegrate followed by >80% dissolution achieved in 15 min [12]. Superdisintegrants,
which provide instant disintegration, are often used in the formulation to improve the
performance of the tablets. Quality by design (QbD) implementation in the development of
formulations reduces product defects by setting up a quality target product profile (QTPP),
process map, risk assessment and control strategy by design of experiment (DoE) [13].
Herein, an attempt was made to develop the design of CEL EM IR tablets.

2. Materials and Methods
2.1. Materials

Celecoxib (CEL) manufactured by Jiangxi Synergy, China, was kindly gifted from
Daehwa Pharm. Co., Ltd. (Seongnam-si, Gangwon-do, Korea).

Adipic acid (ADI) was purchased from Daejung Chemicals & Metals Co., Ltd. (Siheung,
Gyeonggi, Korea). Saccharin (SAC) was purchased from Acros Organics (Seoul, Korea).

Ethanol, acetone, methanol, isopropyl alcohol, and chloroform were purchased from
Samchun Chemicals (Pyeongtaek-si, Gyeonggi, Korea).

Dimethyl sulfoxide-d6 (DMSO-d6) was purchased from Cambridge Isotope Laborato-
ries, Inc. (Boston, MA, USA).

Spray-dried lactose monohydrate and Microcrystalline cellulose (Avicel® PH 101)
were obtained from Whawon Pharm. Co., Ltd. (Seoul, Korea).
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Sodium starch glycolate (SSG) was obtained from Whawon Pharm. Co., Ltd. (Seoul,
Korea). Cross-linked carboxy methyl cellulose sodium (cross-linked NaCMC) (Ac-Di-Sol®)
was purchased from Ashland (Wilmington, DE, USA). Cross-linked polyvinyl N-pyrrolidone
(cross-linked PVP) (Kollidon® CL) was purchased from BASF SE (Ludwigshafen, Germany).

Mg stearate was obtained from Whawon Pharm. Co., Ltd. (Seoul, Korea).
Water was purified using Milli-Q® Reference water purification system (Merck Milli-

pore, Alsace, France).

2.2. Methods
2.2.1. Screening Assisted Solvent for Eutectic Mixture (EM) Preparation

Acetone, ethanol, methanol, isopropyl alcohol, and chloroform were selected as
studied solvents.

At room temperature, 1 g equimolar amounts of CEL and ADI (CEL and SAC) were
mixed with each organic solvent (ethanol, methanol, isopropyl alcohol, acetone, chloroform)
until totally dissolved. CEL and co-former were dissolved in the minimum amount of
solvent (the concentrations ranged from 500 mg/mL to 100 mg/mL based on the solubility
of components in the studied solvents) to obtain clear viscous solution. Before any further
processing, the dissolved mixtures (CEL-ADI and CEL-SAC) were analyzed by 1H nuclear
magnetic resonance (NMR) spectroscopy and compared with the pure compounds.

CEL-ADI and CEL-SAC EM were prepared by using the evaporation crystallization
method. Briefly, the resulted mixture (CEL-ADI and CEL-SAC dissolved in solvent) was
evaporated at 40 ◦C for approximately 1 h in a rotary evaporator (Eyela N-1110, Tokyo,
Japan) until the solvent was removed, and CEL EM was collected and placed in container
for 24 h to completely dry. The CEL EM samples were then evaluated by Differential
Scanning Calorimetry (DSC).

2.2.2. NMR Analysis

The NMR analysis was performed to confirm that no chiral discrimination, chemical
shifting, peak broadening was detected, which means that there was no change in the
chemical structure, no formation of new molecules of the CEL-EM systems [6]. Eutectic
solution (CEL-ADI and CEL-SAC dissolved in solvent) and CEL-EM samples in deuterated
Dimethyl sulfoxide-d6 (DMSO-d6) were recorded at 25 ◦C using JNM-ECZ600R 600 MHz
spectrometer (Jeol, Tokyo, Japan).

2.2.3. DSC Analysis

The thermal behavior of the samples was identified by DSC technique using a DSC
Auto Q2000 (TA instrument, New Castle, DE, USA). The DSC analysis is considered as a
confirmatory analysis as in this thermal analysis, the EM samples’ melting points were
confirmed. All samples were accurately weighed to 3–5 mg in an aluminum pan, then
were sealed in aluminum pans with lids. Samples were scanned from 40 ◦C to 200 ◦C at a
heating rate of 10 ◦C/min under dry nitrogen at a constant flow rate of 40 mL/min. An
empty pan was used as reference.

2.2.4. CEL EM Preparation by Spray Drying

The dry powder of CEL-ADI and CEL-SAC EM (CEL, ADI and CEL, SAC at specific
weight ratio of 52.7:47.3 and 87.6:12.4—the weight ratios were calculated based on the molar
ratios of CEL-ADI and CEL-SAC reported to be 0.30:0.70 and 0.77:0.23 accordant with the
Tammann’s triangle by Huyn et al. [6]) were produced by spray drying of 50 mL ethanolic
solution of CEL and co-former. The spray drying process was performed by SD1000 spray
dryer (Eyela, Tokyo, Japan) under the following set conditions: inlet temperature of 90 ◦C,
feeding rate of 3 mL/min, atomization pressure of 10–20 × 10 kPa, blowing rate of 30 m3/h.
The airflow is tangential to the feed flow. The spray dryer has a cyclone dust collector, and
the solid sample was collected separately in a sample collector (drum). The samples were
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collected and stored at room temperature for further investigations. The schematic of the
spray drying process is shown in Figure 1.

Figure 1. Schematic illustration of the spray drying process.

2.2.5. CEL EM Preparation by Supercritical Fluid (SCF) Technique

The schematic of SCF apparatus is shown in Figure 2, the apparatus consists of a CO2
cylinder and a reactor. In the cylinder, CO2 is in the liquid state; after being compressed to
supercritical state, CO2 was injected into the reaction vessel and the desired pressure was
constantly controlled by a pressure regulator. At the end of the experiment, CO2 gas was
removed at a stable flow rate managed by a back-pressure regulator.
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Supercritical Anti Solvent (SAS) Crystallization

CEL, ADI and CEL, SAC at specific weight ratio (52.7:47.3 and 87.6:12.4) were dissolved
in 20 mL ethanol in the reactor chamber. The SAS process included 3 stages; (1) mixing
stage: The CO2 was transferred to the reactor, whereas the pressure was maintained at
16 ± 0.5 MPa. After adjusting to the proper pressure (16 ± 0.5 MPa) and temperature
(40 ± 5 ◦C), the pump was shut down. The mixing time was 30 min for the medium
saturation in the reactor by supercritical CO2. (2) Washing stage: the solvent (ethanol) was
reduced by the presence of supercritical CO2. Pump was operated to keep CO2 constantly
flowing in 20 min, and 3 repetitions were performed totaling 60 min. (3) Venting stage: The
pressure was reduced to 0 at a rate of 1 MPa/min. The total time required to depressurize
(dynamic time) was approximately 15 min. Finally, CEL EM samples were formed and
precipitated on the walls and bottom of the vessel. The samples were collected and stored
in desiccators.

SCF Assisted Mixing Method

With no organic solvent, CEL-ADI and CEL-SAC EM at the exact weight ratio (52.7:47.3
and 87.6:12.4) were prepared in the reactor chamber and the mixture was mixed using
supercritical CO2. The SCF-assisted mixing process includes 2 stages: (1) Mixing stage:
CO2 was injected into the reactor chamber at a constant pressure of 16 ± 0.5 MPa. After
adjusting to the proper pressure and temperature, the pump was shut down. The mixing
(soaking) time was 24 h. (2) Venting stage: The pressure was reduced to 0 at a rate of
1 MPa/min. The total time required to depressurize (dynamic time) was approximately
15 min. Finally, CEL EM samples were formed and precipitated on the walls and bottom of
the vessel. The samples were collected and stored in desiccators.

2.2.6. Powder X-ray Diffraction (PXRD) Analysis

PXRD patterns were measured by Rigaku SmartLAB X-ray diffraction system (Rigaku,
Tokyo, Japan) in the θ/2θ scan mode with Cu K-α radiation. The sample was loaded in a
small disc-like container and its surface was carefully flattened. θ is the angle between the
beam and the crystallographic plane. Samples were run in the range of 3 to 60◦ with 0.02◦

step size at a rate of 4◦/min.

2.2.7. Fourier Transform Infrared Spectroscopy (FT-IR)

Infrared spectra of the samples were recorded using Cary 630 FT-IR spectrometer
(Agilent Technologies, Santa Clara, CA, USA) equipped with an attenuated total reflectance
(ZnSe crystal) to check if there were any conformation changes in the EM. Each spectrum
was scanned in the range of 400–4000 cm−1 with a resolution of 8 cm−1, and was derived
from single average scans collected in the mid-infrared region (2.5 to 50 µm) at a high
spectral resolution; a total of 32 scans were obtained.

2.2.8. Particle Size Analysis

Particle size was measured by Helos-Rodos/VIBRI laser diffraction system (He-
los/Rodos; Sympatec GmbH, Clausthal-Zellerfeld, Germany). The RODOS dispenser
was operated at 4 bars for de-agglomeration, and HELOS laser sensor was set with R2 lens
(detecting range of 0.45 µm–87.5 µm). Particle-size distribution typically includes d10, d50
and d90, which represent the percentage of particles below given size (µm). Volume mean
diameter (VDM) and SPAN = d90−d10

2×d50
were calculated.

2.2.9. Scanning Electron Microscopy (SEM)

The shape and surface morphology of the CEL EM were determined by scanning
electron microscopy (SEM) (JSM-6700F, JEOL, Tokyo, Japan). Briefly, a small amount of
powder was sprinkled onto adhesive carbon tape (Ted Pella Inc., Redding, CA, USA),
where the excess powder was gently removed by a jet. The samples were then attached to
an aluminum stub and was sputter-coated with gold under vacuum. Photographs were
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taken at 5× magnification with an accelerating voltage of 1–5 kV to reveal the surface
characteristics of the particles.

2.2.10. In Vitro Dissolution Study

Dissolution studies were carried out in an automated dissolution tester (DISTEC
2500) using the USP Apparatus 2 (paddle) method. The bath temperature and paddle
speed were set at 37 ◦C and 50 rpm, respectively. The dissolution medium was 900 mL
of hydrochloric acid 0.1 M containing 0.2% (w/v) sodium lauryl sulfate (SLS) to stimulate
the gastro-intestinal fluid. A certain weight of samples equivalent to 200 mg CEL was
capsulated, put inside a basket (sinker) then put into the vessels to keep the capsules to
not float on the surface of the solution. Samples of dissolution medium were withdrawn
through a filter at different time points: t = 5, 10, 15, 20, 30, 45, 60, 90, 120 min. The
samples were replaced with fresh dissolution medium of same quantity. Samples were
assayed for CEL concentration using high-performance liquid chromatography (HPLC).
The HPLC assay was performed using an Agilent-HPLC system 1200 infinity series (Agilent
Technologies, Waldbronn, Germany), with a C18 column (CAPCELL, 120 Å pore size, 5 mm,
4.6 mm inside diameter × 250 mm; Shishedo, Tokyo, Japan). The mobile phase comprised
30% 0.2% trifluoroacetic acid (TFA) and 70% ACN, pumped at a rate of 1.5 mL/min. The
samples were diluted as required before the injection. The amounts of CEL then were
calculated based on the standard calibration curve obtained for CEL at the same condition.
The dissolution of each sample was determined in triplicate.

2.2.11. CEL Immediate Release (IR) Tablet Formulation Development by a Quality by
Design (QbD) Approach
Quality by Design (QbD) Approach

CEL-ADI EM was chosen as the model drug. Novel CEL immediate release (IR) tablets
were manufactured (lab-scale) (Table 1) from CEL EM via the direct compression process
using QbD approach. The QbD approach was initiated with selection of quality target
product profile (QTPP) (Table 2). The risk assessment was performed to select and evaluate
the critical material attributes (CMAs) and critical quality attributes (CQAs). The risk
assessment (Table 3) was based on prior knowledge, screening experiments, and experience
and information on dosage form, obtained from published guidance for industry [14]. In the
process map, material attributes (MAs) and process parameters (PPs) were listed (Table 1),
CMAs have critical effects on CQAs and among various PPs, critical process parameters
(CPPs) which also have critical effects on CQAs, were noted (Table 2). For the final product,
appearance, hardness, drug dissolution and disintegration, assay, content uniformity were
selected as CQAs. CEL EM (CEL as the active pharmaceutical ingredient (API) and co-
former), disintegrant, filler, surfactant, and lubricant were selected as candidate MAs that
affect CQAs. Mixing and direct tablet compression were selected as candidate PPs that
affect CQAs. Design of experiment (DoE) is employed to determine the interaction between
MAs and/or PPs on the performance of the final formulation. Here, a mixture design
approach was utilized to investigate the influence of disintegrants used (independent
variable) on dependent variables (hardness and drug dissolution). Statistical software JMP®

16 (Statistical Analysis Software, SAS Institute Inc., Charlotte, NC, USA) was employed
to perform DoE. Independent variables (factors): sodium starch glycolate (SSG) (X1),
cross-linked carboxy methyl cellulose sodium (cross-linked NaCMC) (X2) and cross-linked
polyvinyl N-pyrrolidone (cross-linked PVP) (X3) and the dependent variables (response):
hardness (kp) (Y1) and dissolution (%) (Y2) were studied and analysis of variance (ANOVA)
was performed. X1:X2:X3 is the ratio of SSG, PVP and CMC in the formulation. A total of
12 experiments were run and the design space was created.
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Table 1. Process Map (Lab-scale).

Process Material MAs PPs Associated CQAs

Mixing

API + co-former (EM)
Disintegrants
Fillers
Surfactant

Particle size
Flowability
Uniformity
Moisture content

Order of addition
Hold time
Environment (temperature
and humidity)

Flowability
Uniformity

Mixing

API + co-former (EM)
Disintegrants
Fillers
Surfactant + Lubricant

Particle size
Flowability
Uniformity
Moisture content

Order of addition
Hold time
Environment (temperature
and humidity)

Flowability
Compressibility
Uniformity
Disintegration
Dissolution

Direct compresion

API + co-former (EM)
Disintegrants
Fillers
Surfactant + Lubricant

Particle size
Compressibility
Uniformity

Compressor type
Compression force
Rotation speed
Environment (temperature
and humidity)

Appearance (Size and shape)
Weight
Thickness
Hardness
Friability
Content uniformity
Disintegration
Dissolution

Table 2. QTPP.

Quality Attributes (QAs) Target Critically

Dosage form Solid oral IR tablet containing 100 mg of CEL (API)

Appearance Suitable size and shape Critical (related to compressibility, thickness,
hardness and patient acceptability)

Hardness 6–10 kp Critical (able to withstand transport, handling, storage)

Friability ≤1% w/w Critical (low friability leads to higher hardness of tablets)

Moisture content ≤1% Not critical, API is not sensitive to hydrolysis

Dissolution
Dissolution acceptance criteria: Q ≥ 80%
in 15 min (The International Conference
on Harmonization (ICH) Q6A guideline)

Critical (IR tablets enabling Tmax in less than 2 h)

Disintegration 2.5 to 10 min [15]

Critical (for IR tablets, related to dissolution,
disintegration is before dissolution can occur). ICH
allows disintegration time with an upper time limit
to be used as the drug release acceptance criteria if

Q ≥ 80% is achieved in 15 min at pH 1.2, 4.0, and 6.8.

Assay 95–105% Critical

Content uniformity Meets USP requirements Critical

Table 3. Risk assessment.

QAs Variables

API Particle Size Filler Disintegrant Lubricant

Appearance Low Low Low Low
Content uniformity Medium Medium Low Medium

Degradation Low Low Low Low
Disintegration Medium Medium High High

Dissolution High Medium High High
Friability Low High Low Medium
Stability Low Medium Low Low
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Preparation of CEL IR Tablets

CEL IR tablets were manufactured using the direct compression process, employing
CEL-ADI EM and other ingredients (Table 4). CEL EM was synthesized, checked for
NMR, DSC and drug content, then mixed with disintegrant in different proportions, i.e.,
SSG: cross-linked NaCMC: cross-linked PVP at a ratio of 1: 1: 1, filler and surfactant.
Then the mixture was mixed with lubricant; the lubrication time was 2 min. The mixture
was direct compressed using ZP-10 rotary tablet press (Shanghai Tianhe Pharmaceutical
Machinery, Shanghai, China). The tablets were collected and stored at room temperature
until further evaluation.

Measurement of tablet friability: the ability of the tablets to resist chipping and surface
abrasion was checked by tumbling the batch in FRV 2000 rotating drum (Copley Scientific,
Nottingham, UK). Friability ≤ 0.2% weight loss [16] is considered optimum.

Measurement of tablet hardness: TBF 1000 tablet hardness tester (Copley Scientific,
Nottingham, UK) was used to determine tablet hardness. The pressure at which a tablet
was crushed was recorded.

Measurement of disintegration time: disintegration time of the tablet was estimated
by placing the tablet in distilled water maintained at 37 ± 0.5 ◦C using a USP disintegration
test apparatus (Labfine Instruments, Namyangju-si, Gyeonggi, Korea). The disintegration
time was limited to within 120 s.

In vitro drug dissolution study: the release rate of CEL from CEL IR tablets was
determined using USP Apparatus 2 (paddle) method. The dissolution test was performed
using 900 mL of hydrochloric acid 0.1 M, at 37 ◦C and 50 rpm. A sample of the solution
was withdrawn from the dissolution apparatus at determined time points. The samples
were replaced with fresh dissolution medium of same quantity. The samples were filtered
and analyzed using HPLC.

Content uniformity tests were performed according to the USP procedures in regard to
the dose and ratio of drug substance of the formulations over 25 mg and 25%, respectively.
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Table 4. List of components for CEL immediate release (IR) tablet formulations for DoE mixture design runs. SSG (X1), cross-linked CMC (X2) and cross-linked PVP
(X3); independent variables: disintegrant (SSG + PVP + CMC) = 64 mg (16%), respectively.

Ingredient(s) g (%) Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Run 11 Run 12

API CEL 100 (25) 100 (25) 100 (25) 100 (25) 100 (25) 100 (25) 100 (25) 100 (25) 100 (25) 100 (25) 100 (25) 100 (25)

co-former ADI 89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

89.75
(22.4)

Filler lactose monohydrate (75%) &
microcrystalline cellulose (25%)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

142.65
(35.7)

Disintegrant SSG 32 (8) - 64 (16) - - - - 21.3 (5.3) 64 (16) 32 (8) 21.3 (5.3) 32 (8)

Disintegrant crosslinked NaCMC
(Ac-Di-Sol®) - - - - 64 (16) 64 (16) 32 (8) 21.3 (5.3) - - 21.3 (5.3) 32 (8)

Disintegrant crosslinked PVP (Kollidon® CL) 32 (8) 64 (16) - 64 (16) - - 32 (8) 21.3 (5.3) - 32 (8) 21.3 (5.3) -
Surfactant SLS 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4) 1.6 (0.4)
Lubricant Mg-stearate 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5) 2 (0.5)



Pharmaceutics 2022, 14, 1549 10 of 18

3. Results and Discussion
3.1. Assisted Solvent for EM Preparation

Solvents have an effect on the process of making EM as solvents have influence on
solubility, stability, chemical reactivity/reaction and/or molecular associations [17]. All
the studied solvents are common organic solvents and commercially available; they were
selected based on their low boiling point which is suitable for the application of SCF
processes. The chosen solvents are expected to dissolve well CEL and its co-former(s) and
have no effects on the formation of EM. In addition, the solvent should be volatile enough
to be vaporized at ambient condition. The particle size is associated viscosity of solution,
thus higher viscosity resulting in larger particle [18].

Among the studied solvents, ethanol, methanol and isopropyl alcohol showed the
ability to dissolve CEL, ADI creating the concentrations ranging from 500 mg/mL to
100 mg/mL. Ethanol and methanol showed the ability to dissolve CEL, SAC creating the
concentrations ranging from 500 mg/mL to 100 mg/mL.

The clearly distinct peaks in DSC results of methanol assisted CEL-ADI EM and
CEL-SAC EM and ethanol assisted CEL-ADI EM and CEL-SAC EM were shown in
Figures 3 and 4. Ethanol-assisted EM exhibited the expected melting points in agreement
with previous study [6]. With methanol as assisted solvent, the clear endothermic peaks
showed that EM was well formed between raw materials, but the increase in the concen-
tration of methanol can increase the melting point of EM. The higher concentrations of
solute in solvent normally require less energy to bring them together to solid state. When
compared to ethanol, methanol intermolecular force is lower; therefore, its boiling point
is lower, but ethanol possesses a stronger dispersion force. Methanol as assisted solvent
might affect the thermal stability of the solutes, and the ratio of the solutes to form EM.
Further studies will be needed to determine the phase diagram of CEL EM with methanol
as assisted solvent.

Figure 3. DSC results of CEL-ADI EM: (a) ethanol-assisted EM; (b) methanol-assisted EM.

Figure 4. DSC results of CEL-SAC EM: (a) ethanol-assisted EM; (b) methanol-assisted EM.
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3.2. Characterization of CEL-EM
3.2.1. DSC Analysis

CEL-ADI EM has melting point at 141± 1 ◦C and CEL-SAC EM has melting point
at 162 ± 1 ◦C regardless of the different methods of making EM. Ethanol was chosen
as solvent.

3.2.2. FTIR Analysis

No evidence (shifting and broadening of peaks) for any bond formation were observed
in FTIR results, showing no chemical interaction involved between raw materials or during
the process of making EM regardless the different methods.

3.2.3. NMR Analysis

No chiral discrimination, chemical shifting, or peak broadening was detected in NMR
results; the NMR results support the observations of the FTIR results, with no new bond
formation observed in the EM.

Solid-state NMR spectra are broader, and can give a full effects of anisotropic or
orientation-dependent interactions; therefore, we suggest this method to further character-
ize deeper atomic level structure of the resulted solids.

3.2.4. PXRD Analysis

PXRD analysis was performed SAS, SCF assisted mixing and spray drying CEL EM in
comparison with raw CEL and co-former(s) PXRD patterns (Figure 5).

Figure 5. PXRD results of CEL EM: (a) CEL-ADI EM; (b) CEL-SAC EM. SAS 3 (temperature: 45 ◦C),
SAS 2 (temperature: 40 ◦C), SAS 1 (temperature: 35 ◦C), SCFAM: SCF assisted mixing, SD: spray drying.

Two binary systems, CEL-ADI and CEL-SAC originally showed sharp peaks in PXRD
results and represented that the resultants from the bulk evaporation crystallization EM-
making method were in crystalline, not amorphous form [6].

The resulted EMs did not have any observable distinct peaks differing from raw
materials, meaning that mixtures do not have a new pattern of crystal lattice and bond.
CEL, ADI and SAC have numerous distinct peaks, and all peaks are correlated in complexes
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regardless of different methods of making EM. It clearly appears that compared to the
highly crystalline parent materials, the generated particles are less crystalline and more
amorphous, and the degree of crystallinity was as follows: spray drying > SCF assisted
mixing > SAS. CEL “re-crystallization” temperature was reported to be at least 30 ◦C, which
is lower than its glass transition at 51.8 ◦C [19]. There was no significant difference between
SAS 3 (45 ◦C), SAS 2 (40 ◦C) and SAS 1 (35 ◦C); thus, there were no significant effects of
ambient temprature on amorphous CEL.

In agreement with earlier report of PXRD analysis by Huyn et al. [6], in case of CEL-
SAC EM, the amount of SAC was much less than CEL; therefore, the peaks of SAC were
hidden by the peaks of CEL in almost every method of making EM (evaporation crystal-
lization, SAS and SCF assisted mixing). In the PXRD pattern of spray drying CEL-SAC
sample, the significant deviation in the peak intensity can still be recognized but the low
intensities of peaks might indicate that: (a) upon spray-drying at high temprature, all
particles’ shapes and orientations were changed drastically, lowering the sample quality;
or (b) both SCF-assisted mixing and the spray-drying method somehow disrupted inter-
molecular interactions of CEL and SAC in the mixture, but was not efficient enough to
amorphize both parent substances; SAC was partially amorphized but the amount of SAC
in the mixture was low (12.4%). An intermediate amorphous state and differential phase
behavior of CEL during spray-drying was also reported with different compositions of
solvent system used [20].

3.2.5. Particle Size and Morphology Analysis

Figure 6 shows SAS, SCF assisted mixing and spray drying CEL EM under optical
microscopy. Obtained SAS crystallization CEL-EM were like snow flakes; the cause of
this flake shape is the rapid depressurization of CEL in SCF [21]. The same phenomenon
happened to SCF assisted mixing where CEL was dissolved in SCF, but the formed par-
ticles were not uniform because the samples went from a completely amorphous state at
low tempreture to a nearly amorphous state at ambient temprature; during that process,
recrystalization occurred. Recent developent of the SCF spray-drying method permits
preparation of dry, fine powders from the SAS process [22,23], but in this study, we com-
pare a single-step processed CEL-EM mixture: the evaporation crystalization method, SAS
method, SCF assisted mixing method and spray drying. However, EMs resulting from SCF
methods do not have powder form (and EMs resulting from the evaporation crystallization
method required an extra grinding/sieving/milling step to reach fine powder form; the
particle size of spray drying EM was measured to compared to that of raw CEL fine powder
(1.74–8.97 µm). Volume mean diameter (VMD) value showed that the average particle size
of spray-dried CEL-ADI EM (5.77 µm) and CEL-SAC EM (4.72 µm) were larger than that
of raw CEL (3.25 µm). An additional parameter to show the particle size distribution is
the SPAN value, spray drying CEL-ADI EM had the SPAN value (0.68) smaller than that
of raw CEL (1.05); the SPAN value of spray drying CEL-SAC (1.08) was almost similar to
raw CEL.

An SEM image (Figure 7) of raw CEL fine powder was taken; the image correlates with
the assessment of the particle size above. Surface topography of prepared binary EMs by
different techniques of CEL and ADI and CEL and SAC examined using SEM was shown in
Figure 8a–h. Compared to raw CEL, SAS CEL-EM (Figure 8b,f) appeared to be dominantly
needle-shaped crystals. Evaporation crystallization CEL EM (Figure 8a,e) and spray-dried
CEL EM (Figure 8d,h) showed small needle-shaped particles aggregated, clumped together
probably because of heat application. On the other hand, SCF-assisted mixing CEL EM
showed particles shaped like thin plates spread throughout the background; each thin
plate particle is about the same size as each raw CEL particle—which can be explained
because “recrystallization” occurred right after particle expansion forming amorphous
form. Without the use of organic solvent, SCF assisted mixing was similar to the rapid
expansion of SCF (RESS) [24]; the expansion of SCF leads to solute precipitation. In this
study, CEL and co-former was allowed to dissolve in SCF CO2 until uniform, then the
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pressure was reduced slowly. The solubility of CEL in SCF CO2 was reported [25,26],
showing that SCF CO2 has the ability to dissolve a certain amount of CEL to be micronized
in near-saturation condition. In RESS, a fast expansion of CEL and co-former mixture
occurs early at the nozzle and precipitation happens in the chamber, in the SCF-assisted
mixing method, we allowed 24 h residence time of SCF in the chamber, thus allowing the
possibilities of particle recrystallization, agglomeration and post-expansion to happen. The
obtained mixture was damp after the process, and was left to desorb in dry surroundings.
ADI was also reported to have an increase effect on absorption and desorption of CO2 [27].
Overall, coalescing and irregular particles were observed in evaporation crystallization,
spray drying and SCF-assisted mixing; otherwise, SAS particles tend to be larger but
more homogenous.

Figure 6. Optical microscopic image of (a) SAS CEL-ADI EM, (b) SCF-assisted mixing CEL-ADI
EM, (c) spray-dried CEL-ADI EM, (d) SAS CEL-SAC EM, (e) SCF-assisted mixing CEL-SAC EM,
(f) spray-dried CEL-SAC EM.

Figure 7. SEM image of raw CEL powder.
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Figure 8. SEM image of (a) evaporation crystallization CEL-ADI EM; (b) SAS CEL-ADI EM; (c) SCF
assisted mixing CEL-ADI EM; (d) spray drying CEL-ADI EM; (e) evaporation crystallization CEL-SAC
EM; (f) SAS CEL-SAC EM, (g) SCF-assisted mixing CEL-SAC EM, (h) spray-dried CEL-SAC EM.

3.2.6. Dissolution Test

Dissolution profiles of evaporation crystallization, SAS and SCF assisted mixing CEL
EM are shown in Figure 9. In dissolution medium simulated gastric conditions, CEL EM
dissolved instantaneously in the first 5 min. At subsequent time intervals, % CEL release
increased slowly due to the non-sink nature of the dissolution medium. In the case of
CEL-ADI EM, the initial dissolution rate was determined as follows: SAS > spray drying >
evaporation crystallization > SCF assisted mixing but at the end of 120 min, 85.4%, 87.61%,
83.2% and 92.15% CEL release was observed according to the order. Forming an EM is
a strategy to enhance the dissolution of the drug, more specifically, different methods of
making EM mixture forming different new structures thus affecting the depletion of the
crystal lattice barrier and the formation of interfacial disorders. We also take into consider-
ation that ADI and SAC were hydrophilic coformers and could not inhibit precipitation.
Co-former also affected the perfomance of CEL EM; dissolution profiles of CEL-SAC EM
are significantly different compared to CEL-ADI EM ones. For CEL-SAC EM, evaporation
crystalization, SAS, SCF assisted mixing and spray drying showed similar fast dissolution
rate initially, but after 120 min only the spray-drying sample was closest (92.5%) to fully
cumulative CEL release. If we consider that the spray-dried CEL-SAC product was not
crystalline EM, but was partially amorphized, the amorphous formulation of drug with the
carrier that forms an EM provided higher enhanced drug release. Comparing evaporation
crystalization formulations with spray drying, SAS- and SCF-assisted mixing formulations,
the particle sizes were bigger; therefore, the dissolving process was not facilitated. The
pointy shape and flaky form of SAS- and SCF-assisted mixing increase the surface area of
particles, but instead of resulting in clumped particles, SAS crystalization decreased the
size to nanometer scale and formed uniform particles.
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Figure 9. Dissolution profile of CEL EM: (a) CEL-ADI EM; (b) CEL-SAC EM in comparison with raw
CEL dissolution profile. Data were performed as mean (n = 3).

3.2.7. Development and Formulation of CEL Immediate Release (IR) Tablet by a Quality by
Design (QbD) Approach

A risk analysis was performed (Table 3). Particle size, the amount of lubricant, mixing
time with lubricant and compression force may affect the drug product quality. A series
of excipients were screened for compatibility and a dual filler system was proposed to
achieve the right balance of brittle compression and excipient solubility. Spray-dried lactose
monohydrate and microcrystalline cellulose are combined together in tablet formulation
as filler with particle sizes of around 50 µm. This combination gives a balance of cohesion
and adhesion in direct compression where lactose exhibits brittle fracture and cellulose
exhibits plastic deformation [28]. Increasing lubricant amount and its mixing time tended to
decrease tablet hardness [29] so the lubricant amount of only 0.5% and the lubrication time
of 2 min were chosen. Magnesium stearate was selected as lubricant. Although the tablet
hardness increases and friability tended to decrease when compression force was high, the
disintegration time was shorter, the tableting process parameters were fixed at slide thick
4.5 mm, before press (pre-compression) 7.5 mm and depth of fill (fill-up) 11.5 mm.

Risk assessment based on experience and risk assessment analysis using Preliminary
Hazard Analysis were performed during the process development. This pilot-scale risk
assessment indicated that it was highly plausible that not only the particle size, but also the
composition of disintegrants affected the dissolution and tableting pressure affected tablet
hardness, therefore affecting the dissolution.

Design of experiment (DoE) has been widely used for the design of multi-factor exper-
iments. It provides efficient data collection and helps reduce the workload effectively. In
this study, a total of 12 experiments according to the custom design model for CEL IR tablet
were performed to obtain the precise design space for mixture of the three disintegrants.
More runs will be required with the larger number of factors including disintegrants and
other components of the formulation for a mixture design model of the CEL IR tablet. All
tested tablets exhibit friability ≤ 0.2% weight loss and disintegration time < 120 s. Disso-
lution tests and hardness measurements results (responses) were recorded and analyzed
by JMP® software. The design space of mixture of disintegrants profile and the prediction
of hardness and dissolution were shown in Figures S1 and S2 (Supplementary Materials).
Although the mixture design model for CEL IR tablet was not performed, the custom design
model showed that the amount of disintegrants (factors) used alone or in combination
affecting the hardness (p < 0.0001, R2 = 0.99571) and dissolution (p = 0.0013, R2 = 0.97)
of CEL IR tablet statistically significant. Further studies can be performed in a real-life
scale-up process; note that in any case of composition changes, the whole process must
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be re-done. In addition, when it comes to preparation of IR tablets, our QbD approach
is limited to MAs at lab-scale (Table 1) but generally, in order to scale-up, the change in
PPs is very important due to the adaptation to changes in equipment and environment.
For example, in current setting (Figure S1), to reach hardness value of 6 and dissolution at
30-min time point of at least 85%, the ratio of SSG, cross-linked NaCMC and cross-linked
PVP is 0.63 (10.08% tablet weight): 0.33 (5.28% tablet weight): 0.03 (0.48% tablet weight),
respectively. SSG helps the tablet swell quickly and extensively with minimal gelling
and is often recommended to be in the range of 2 to 8% of tablet weight [30]. However,
cross-linked NaCMC helps draws off water by capillary action due to its fibrous structure,
also minimizes gelling effect and normally only accounts for 1 to 6% weight of a tablet [30].
With the recommendation of 0.5–5% of tablet weight, the rate of swelling of PVP is as high
as compare to other disintegrants, it can also facilitate deformation, thus quickly dispersing
and swelling in water but not gelling even after prolonged exposure [30]. Surprisingly, the
amount of PVP is very small compared to the other compositions and was predicted to be
0 to maximize response values (Figure S2). According to the maximized desirability mode,
SSG:Ac-Di-Sol®:PVP 0.71:0.29:0 is the optimum disintegrant ratio. Therefore, cross-linked
PVP will not be considered primary in the disintegrant mixture. In conclusion, the accep-
tance range for the disintegrant mixture was shown. According to the Dissolution Testing of
Immediate Release Solid Oral Dosage Forms Guidance for Industry, testing water-insoluble
or sparingly water-soluble drug products can use a surfactant such as sodium lauryl sulfate
(SLS). Dissolution media of CEL capsule consist of 1% SLS [31]; in contrast, we reduced
the concentration of SLS to 0.2% in in vitro dissolution study media for CEL-EM (Figure 9).
It was noted at this point that the control limit was set a bit too tight (dissolution rate at
30-min time point > 85%) as our CEL-ADI EM IR is expected to be at a higher standard
compared to the available marketed ones in terms of dissolution rate aspect.

4. Conclusions

In conclusion, screening for proper solvent to make CEL-ADI and CEL-SAC EM
was conducted. Therefore, methods of making EM were developed and initial in vitro
dissolution test results were observed and contributed to the comparison between different
methods of making EM. Further pharmacokinetic and efficacy studies can also be done
to compare those methods. Each methods exhibited both opportunities and obstacles to
be scaled up for industrial purposes. In addition, a novel CEL IR tablet was formulated
using CEL-ADI EM solid dispersion with the help of JMP® by a QbD approach. The choice
of disintegrants used in the formulation was statistically proven to significantly affect the
performance of tablets; this is a case study which set an example to follow for many further
applications of the QbD approach and of statistics in designing new pharma products.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14081549/s1, Figure S1: DoE result of the ratio of
sodium starch glycolate, cross-linked carboxyl methyl cellulose sodium (Ac-Di-Sol®) and cross-
linked povidone in CEL-ADI EM IR tablet analyzed by JMP® software. Figure S2: DoE result of the
ratio of sodium starch glycolate, cross-linked carboxyl methyl cellulose sodium (Ac-Di-Sol®) and
cross-linked povidone in CEL-ADI EM IR tablet, responses predicted by JMP® software.
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