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Abstract: Obesity is a global public health issue that results in many health complications or comor-
bidities, including type 2 diabetes mellitus, cardiovascular disease, and fatty liver. Pharmacotherapy
alone or combined with either lifestyle alteration or surgery represents the main modality to combat
obesity and its complications. However, most anti-obesity drugs are limited by their bioavailability,
target specificity, and potential toxic effects. Only a handful of drugs, including orlistat, liraglutide,
and semaglutide, are currently approved for clinical obesity treatment. Thus, there is an urgent
need for alternative treatment strategies. Based on the new revelation of the pathogenesis of obesity
and the efforts toward the multi-disciplinary integration of materials, chemistry, biotechnology, and
pharmacy, some emerging obesity treatment strategies are gradually entering the field of preclinical
and clinical research. Herein, by analyzing the current situation and challenges of various new obesity
treatment strategies such as small-molecule drugs, natural drugs, and biotechnology drugs, the ad-
vanced functions and prospects of biomaterials in obesity-targeted delivery, as well as their biological
activities and applications in obesity treatment, are systematically summarized. Finally, based on
the systematic analysis of biomaterial-based obesity therapeutic strategies, the future prospects and
challenges in this field are proposed.

Keywords: biomaterial; drug delivery; obesity

1. Introduction

Obesity is a chronic metabolic disease defined as an excessive or abnormal accumu-
lation of body fat that adversely affects health. The incidence of obesity has continued to
rise worldwide in the last few decades, causing a serious public health crisis [1,2]. The
body mass index (BMI) is commonly used clinically to assess the degree of obesity, which
is calculated by the formula: BMI = weight(kg)/height(m)2. A BMI above 25 kg/m2 is
defined as overweight, above 30 kg/m2 is defined as obese, and over 35 kg/m2 is defined as
severely obese [3]. According to relevant statistics, more than 1.5 billion adults worldwide
are already overweight, of which at least 300 million are considered clinically obese. In the
United States, nearly 40% of adults suffer from obesity, and the rate is as high as 18.5% in
children and adolescents [4]. As a developing country, in China, with its rapid economic
rise and the improvement of living standards, the consequent problem of excess nutritional
intake has led to a rapid increase in obesity rates, with 11.1% of the population affected
by obesity and 7.9% being teenagers [5,6]. Experts predict that, according to the current
epidemic trend, by 2025, the obesity rate of the world’s population will exceed 39%, and
the rate of severe obesity will exceed 15% [7].

Obesity can cause various short-term adverse effects on physiological functions, such
as hypercholesterolemia, high triglycerides, insulin resistance, and increased peripheral
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vascular resistance. More seriously, by tracking large numbers of obese children and ado-
lescents to adulthood, it has been found that obesity can lead to various complications,
such as type 2 diabetes (T2D), hypertension, cardiovascular disease, and so on [8–11]. In
addition, obesity also increases the incidence of tumors such as prostate, uterine, and breast
cancers [12]. Based on etiology and pathogenesis, obesity can be simply divided into simple
obesity and pathological obesity [13]. Simple obesity is linked to poor lifestyle behaviors.
This group of people, on the one hand, overeat high-fat and high-calorie food; on the other
hand, they live a sedentary life and lack physical exercise, thus leading to systemic fat
accumulation. Pathological obesity is mainly caused by endocrine diseases, congenital
diseases, metabolic syndrome, and others, including Cushing’s syndrome, hypothyroidism,
hepatitis, etc. [14,15]. Some drugs, such as antipsychotic drugs, antidepressants, antiepilep-
tic drugs, hormones, and other endocrine drugs, can also lead to pathological obesity. Some
medicines, such as antipsychotic drugs, antidepressants, antiepileptic drugs, and hormones,
can also lead to pathological obesity [16,17]. In fact, simple obesity can further aggravate
and produce pathological changes if left untreated. It is evident that obesity and its related
comorbidities not only seriously damage the physical and mental health of patients but
also negatively affect economic and social development.

Bariatric surgery has been practiced for over 60 years. It has grown in popularity
with the improvement and prevalence of laparoscopic surgery, for example, gastric bypass
surgery, and implantable devices such as the adjustable Lap-band® and the Realize Gastric
band® [18,19]. The procedures involved are usually highly invasive. They are mainly used
to treat patients with severe obesity and one or more comorbidities. Although surgical
treatment has improved the quality of survival and reduced the incidence of obesity-related
deaths to some extent, it cannot be ignored that this induces long-term side effects, such
as micronutrient deficiencies of iron, vitamin B12, folic acid, and vitamin D, as well as the
development of associated disorders, such as anemia, neurological syndromes, dementia,
and depression [20–22]. Behavioral intervention is a relatively safe way to lose weight.
It requires patients to follow a scientific and appropriate diet to reduce energy intake
and increase effective exercise intensity at the same time to consume excess body fat and
energy. However, most of them are challenging to stick with for long. For those who are
non-responsive to lifestyle intervention within six months and suffer from obesity-related
diseases, pharmacological treatment is recommended [23,24].

2. Pharmacological Treatment of Obesity

There are three main mechanisms of action of anti-obesity drugs: one is by acting on
neural pathways to suppress appetite, another is by acting on the gastrointestinal tract to
inactivate lipase, thereby inhibiting fat absorption, and the third is by converting white
adipose tissue (WAT) into brown adipose tissue (BAT) to increase energy consumption
(Figure 1) [25,26]. Despite substantial financial investment and considerable effort, the
development of anti-obesity therapeutic agents has not gone very well. The United States
Food and Drug Administration (FDA) has approved a variety of anti-obesity drugs, such
as aminorex, rimonabant, sibutramine, dexfenfluramine, etc. Unfortunately, these drugs
have been recalled due to their low efficacy, high price, and various side effects, such
as myocardial infarction, stroke, and severe neuropsychiatric side effects [27–29]. There
are only a few drugs currently on the market approved for obesity treatment, including
orlistat (Xenical®), phentermine (Adipex-P®), lorcaserin (Belviq®), liraglutide (Saxenda®),
semaglutide (Wegovy®), naltrexone/bupropion sustained-release (Contrave®), and phen-
termine/topiramate extended-release (Qsymia®) (Table 1). For safety reasons, only three of
them, orlistat, liraglutide, and naltrexone/bupropion (Mysimba®), are approved for use by
the European Medicines Agency (EMA). Most of these available drugs focus on molecular
targets in the central nervous pathway to reduce appetite, except for orlistat, which works
on the gastrointestinal tract and inhibits fat absorption by suppressing lipase activity [30,31].
Orlistat and liraglutide are approved for long-term use, while others are used for short-term
weight loss owing to their side effects [26,32]. Nevertheless, the usage of orlistat is limited
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to no more than two years due to adverse effects such as irregular bowel movements [33,34].
For drugs that act on the nervous system such as Phentermine, Lorcaserin, and Nal-trexone,
they are mainly plagued by adverse effects such as insomnia, dizziness, nausea, and dry
mouth [35–40]. Liraglutide is a glucagon-like peptide-1 receptor (GLP-1R) agonist that
delays gastric emptying by enhancing insulin secretion and inhibiting glucagon secretion
while reducing food intake through central appetite control. In addition to gastrointestinal
side effects, liraglutide has been reported to increase the risk of pancreatitis as well as
to increase heart rate [41–43]. Another GLP-1R agonist, semaglutide, was approved for
marketing as an anti-obesity drug in recent years. It demonstrated outstanding weight loss
benefits while significantly reducing classical risk factors, such as lipid and glucose levels
and blood pressure for heart disease and diabetes, resulting in improved overall quality of
life for patients. It was noted that the side effects of the drug were only mild to moderate
nausea and diarrhea [44–46]. These two GLP-1R agonists are currently administered by
injection, and oral formulations are now under development.
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Figure 1. Main mechanisms of action of anti-obesity drugs.

As the central pathways and pharmacological targets that regulate energy homeostasis
are examined, including central pathways (e.g., the leptin–melanocortin axis and the opioid
system), as well as specific signaling pathways of peripheral ligands acting on the central
nervous system (e.g., the FGF21/FGFR1c/b-Klotho axis), several agents focusing on them
are being investigated [47]. Leptin is a peptide hormone secreted mainly by WAT. It
acts on the leptin receptor (LepRb) expressed in the hypothalamus to suppress appetite,
increase energy expenditure, and inhibit adipogenesis. Protein tyrosine phosphatase 1B
(PTP1B) is the key intracellular factor that negatively controls leptin signaling. A small-
molecule inhibitor of PTP1B (an antisense drug called ISIS-PTP1BRX) has been shown
to reduce body weight and glycated hemoglobin levels in subjects with T2D in clinical
trials [48,49]. The central melanocortin system consists of neurons in the arcuate nucleus
(ARC) that express pro-opiomelanocortin (POMC) and agouti-related protein (AgRP).
The anorectic peptides α- and β-melanocyte-stimulating hormones (α-MSH and β-MSH)
and the orexin AgRP secreted by these neurons target downstream neurons expressing
the melanocortin-4 receptor (MC4R) to regulate physiological functions such as glucose
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homeostasis and thermogenesis. Genetic defects in the MC4R signaling pathway can lead to
severe obesity [50,51]. The results from clinical experiments demonstrate that, in contrast to
the previously developed alpha-MSH and the first-generation agonist MSH LY2112688, the
second-generation MC4R agonist setmelanotide (also known as RM-493 or BIM-22493) has
the ability to activate nuclear factor of activated T cells and restore this signaling pathway
through selected MC4R variants [52]. Thus, it can effectively control overeating induced by
genetic defects in the MC4R signaling pathway without significant side effects or adverse
cardiovascular events, bringing hope to patients with central genetic obesity. Recent genetic
evidence indicates that a locus in the mu-opioid receptor (MOR) gene OPRM1 is associated
with dietary intake of fat [53], and observations from preclinical trials in several animal
models have shown that the MOR antagonist naltrexone in combination with bupropion at
a fixed dose exerts a synergistic weight loss effect, and GSK1521498 alone also has a weight
reduction effect. However, unfortunately, these do not work well on human beings [54,55].
Fibroblast growth factor 21 (FGF-21) is a polypeptide generated mainly by the liver and
adipose tissue, with pharmacological effects primarily in the regulation of glucolipid
metabolism. In diet-induced obese (DIO) mice, intracerebroventricular administration of
FGF21 increased the metabolic rate and insulin sensitivity [56]. FGF21 and its modified
analogs were shown to significantly reduce body weight in both rodent and primate
models [57–59]. In tests on primates, an FGF21 recombinant protein derivative named
LY2405319 significantly induced weight loss by reducing food intake [60,61]. Obese T2D
subjects receiving LY2405319 were found to have elevated levels of β-hydroxybutyrate,
suggesting enhanced fatty acid oxidation and increased total energy expenditure, resulting
in a slight decrease in body weight [62]. Despite the potent pharmacological effects of
FGF-21, some individuals are expected to have FGF-21 resistance, so it would be beneficial
to develop more effective FGF-21 agonists. Ongoing clinical trials and advanced basic
research will provide a sound basis for developing FGF-21 agonists that have therapeutic
value in metabolic diseases.

Table 1. Anti-obesity drugs approved by US FDA.

Drug Mechanism of Action Delivery Mode Side Effects Reference

Orlistat Increase intestinal lipid excretion
and block the absorption of fat

Oral administration

Diarrhea, flatulence [34]

Phentermine

Work through central nervous
system pathways to reduce
appetite

Insomnia, constipation,
palpitation, dry mouth [35,36]

Lorcaserin Headache, dizziness, fatigue,
nausea, dry mouth [37]

Naltrexone/bupropion
sustained-release

Nausea, headache,
constipation, dizziness,
vomiting, dry mouth

[38,39]

Phentermine/topiramate
extended release

Insomnia, constipation,
dizziness, taste disorders [40]

Liraglutide
Induce satiety by delaying
gastric emptying Hypodermic injection

Nausea, vomiting, diarrhea,
constipation, dyspepsia [43]

Semaglutide Nausea, bloating, diarrhea,
and vomiting [45,46]

Given the diverse side effects of synthetic drugs, some researchers have focused on
relatively less toxic phytochemicals, including resveratrol, curcumin, quercetin, capsaicin,
and epigallocatechin gallate, which have shown some potential to combat obesity and asso-
ciated comorbidities [63–65]. These substances decrease body weight mainly by reducing
adipocyte formation, browning adipocytes, increasing lipolysis and energy expenditure,
and inhibiting inflammation and oxidative stress. However, numerous problems, including
low water solubility, poor stability, low bioavailability, and rapid enzyme metabolism in the
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gastrointestinal tract, liver, kidney, and other tissues, have limited their clinical use. Obese
and overweight populations continue to rise worldwide, causing severe global health and
economic burdens. Despite the increasing attention paid to them in medical research, there
are still no highly effective means to prevent the development of these diseases. Therefore,
there is an urgent need to explore safer and more efficient treatment strategies.

3. Biomaterial-Assisted Anti-Obesity Therapy

The evolution of materials science has laid the foundation for the development of biomed-
ical materials. Drug delivery platforms prepared from a variety of materials, such as lipids,
polymers, metals, and nonmetallic inorganic compounds (silica, graphene, etc.) [66–68], are
being systematically used for therapeutic research on various diseases, including cardiovascu-
lar diseases [69], neurodegenerative diseases [70], cancer [71], autoimmunity, and so on [72,73].
These systems can not only deliver different types of drugs, such as chemicals, proteins, and
nucleic acids, in a controlled manner but also promote the effective accumulation of drugs at
the target site, thereby improving therapeutic efficacy and reducing toxic side effects.

This review mainly focuses on applying biomaterials in the treatment of obesity
and its comorbidities. The main therapeutic strategies involved are as follows (Figure 2):
(1) combating obesity by the inherent properties of certain materials, e.g., chitosan and its
derivatives [74–76]; (2) covalently coupling small-molecule agents to natural or synthetic
polymers, which can regulate the release rate and increase the drug’s stability [30]; and
(3) delivering drugs by physically loading them into nanoparticles, hydrogels, transder-
mal microneedles, etc. Nanoparticles are commonly used as oral delivery vehicles for
anti-obesity drugs, which can prevent drug inactivation in the gastrointestinal tract, im-
prove drug stability, and improve the bioavailability of drugs by oral absorption [77–81].
Modification with antibodies, glycosyl groups, etc., can also endow the carriers with ac-
tive targeting capabilities. Liposomes are one of the broadly studied nanocarriers, with
a vesicular structure consisting of a lipid bilayer of phospholipids and cholesterol, and
generally encapsulate hydrophilic drugs in the hollow cavity and hydrophobic drugs in a
bimolecular membrane. For systemically administered drug-loaded liposomes, the surface
decoration of the hydrophilic polymer polyethylene glycol (PEG) can inhibit their uptake
by the reticuloendothelial system, reduce the renal clearance rate, and prolong the retention
time of the drug in the systemic circulation [79]. Microneedles are needle-like structures
with diameters ranging from tens of microns to a few millimeters. The application of
microneedle technology or a microneedle patch enhances the skin penetration of thera-
peutic drugs in a minimally invasive way. It penetrates the stratum corneum but does not
touch the dermis and nerve terminals, allowing the painless delivery of drugs to adipose
tissue and inducing adipose tissue browning [82]. Compared to conventional delivery
approaches, microneedle administration can improve patient compliance and the safety
and efficacy of drug delivery [83,84]. This paper intends to review studies from the per-
spective of phytochemicals and synthetic and biological anti-obesity drugs in terms of their
improved pharmacokinetics and their use in the treatment of obesity and its comorbidities
with the aid of functional materials, expecting to provide a reference for the development
of anti-obesity drugs with better efficacy and fewer side effects.

3.1. Biomaterials with Inherent Anti-Obesity Activity

Some biomaterials exert the effect of weight loss on their own without any drug
loading, as listed in Table 2. Chitosan, a natural polysaccharide composed of glucosamine
and N-acetylglucosamine copolymers, has been shown to have anti-obesity effects [85,86]
and thus can be used as a lipid-lowering dietary supplement [87,88]. The anti-obesity
effect of chitosan was previously thought to arise from its unique fat-binding properties,
which interfere with the absorption of dietary lipids at the intestinal level [89,90]. However,
recent studies suggest that the anti-obesity function of chitosan involves a more complex
endocrine mechanism; that is, it works by regulating the concentrations of adipokines,
including serum leptin and c-reactive protein (CRP) [73]. As mentioned above, leptin is a
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hormone secreted by adipocytes. When body fat increases or the body is in a high-energy
state, the serum leptin level will increase, and the brain’s hypothalamus will receive a signal
to stop eating. Leptin resistance refers to the fact that although the body produces a large
amount of leptin, the leptin receptors in the brain are insensitive to leptin and fail to sense
warning signals sent by adipocytes [91]. Chitosan oligosaccharide (COS) is a small-molecule
derivative of chitosan with better water solubility than chitosan, and its absorption rate
in the intestinal tract is close to 100% [92]. COS has varying biological activities, such as
anti-inflammatory, anti-tumor, and antioxidant effects [93–95], and in several studies on
obese animals, COS also showed valid hypolipidemic and anti-obesity effects [96–98]. A
mechanistic study revealed that chitosan oligosaccharide capsules (COSCs) could alleviate
the leptin resistance status, inhibit adipogenesis, and reduce lipid accumulation by acti-
vating the leptin signaling pathway (Janus kinase-2-signal transducer and activators of
transcription-3, JAK2-STAT3). It is suggested that COSCs could be a potential candidate for
obesity prevention or treatment [75]. Peroxisome proliferator-activated receptor gamma
(PPARγ) is an important member of the nuclear receptor transcription factor superfamily,
which is involved in the control of metabolic disorders (including obesity, insulin resistance,
and cardiovascular disease) and plays a key role in regulating lipid metabolism [99,100]. It
has been shown that COS can regulate the disorder of hepatic glucose and lipid metabolism
by inhibiting obesity-related inflammatory responses and upregulating the expression of
PPARγ. It reveals the potential application of COS in the prevention and treatment of
glucolipid metabolism-related diseases [76].
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Poly(lactide-co-glycolide) is a synthetic degradable polymer that can be processed
into various forms, such as nanoparticles, hydrogels, and scaffolds, for drug delivery and
tissue engineering [101–104]. PLG materials have good biocompatibility, and it was found
that the porous PLG scaffold was well integrated with the tissue after implantation into the
epididymal fat pad [105]. Surprisingly, implantation of the empty scaffold without loading
any drug induced the increased expression of the proteins glucose transporter protein
1 and insulin-like growth factor I, involved in wound healing, as well as the increased
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expression of glucose transporter proteins Glut1 and Glut4, which regulate blood glucose
levels, which in turn led to enhanced glucose uptake in the epididymal fat pad and reduced
blood glucose levels in mice, confirming that the PLG scaffold could protect mice from
diet-induced obesity and glucose intolerance [106]. It is evident that PLG scaffolds are a
promising platform for treating advanced metabolic diseases, and their therapeutic function
can be further enhanced by employing this material for pharmacological or cellular delivery.

In addition to polymer materials, some inorganic or metallic materials also have
anti-obesity effects. Gold nanoparticles (AuNPs) have the advantages of easy surface modi-
fication, good stability, and non-cytotoxicity. In a study on high-fat-fed mice, compared
with the untreated control group, intraperitoneal injection of AuNPs could significantly
reduce the accumulation of abdominal fat and alleviate hyperlipidemia as well as poor
glucose tolerance [107]. The underlying mechanism was related to its ability to decrease
macrophage recruitment and activity in adipose tissue and liver and reduce the secretion
of pro-inflammatory cytokines and tumor necrosis factor (TNF)-α, which are associated
with obesity comorbidities. Further studies revealed a similar benefit of AuNP treatment in
mice with pre-existing obesity, implying the promising potential of AuNPs in the treatment
of obesity and obesity-induced glucolipid metabolism disorder [108]. Smilax glabra is a tra-
ditional Chinese medicine with various pharmacological properties, such as anti-diabetic,
anti-jaundice, and anti-cancer activities. It was confirmed that gold nanoparticles synthe-
sized with Smilax glabra rhizome had significant efficacy in obese diabetes rats induced
by a high-fat diet and streptozotocin, helping restore damage to hepatocytes and cardiac
veins and controlling weight gain [109]. Gold nanoshells have photothermal conversion
capacity, which can convert the absorbed near-infrared (NIR) light into thermal energy,
thus being used for photothermal lipolysis. For example, a polypyrrole-coated hollow
gold nanoshell (HAuNS@PPy) was synthesized, where the polypyrrole was employed to
improve the biocompatibility and the photothermal conversion efficiency of the material.
The resultant HAuNS@PPy exhibited favorable photothermal stability and could effec-
tively induce the thermo-mediated death of adipocytes [110]. In another study, hyaluronic
acid was applied to modify the nanogold shell to improve its stability and biosafety, and
adipocyte-targeting peptide (ATP) was decorated on the surface of the particles, which
specifically binds to prohibitin located on the surface of adipocytes [111]. The obtained
(HA-HAuNS-ATP) can target subcutaneous adipocytes after transdermal delivery and
the ablate adipose tissue of C57BL/6 obese mice with NIR laser irradiation. In addition,
porous colloids such as smectite clays and mesoporous silica also have unique bioactivities
in regulating lipid metabolism. They show a weight loss effect in rodent obesity models by
limiting the digestion of lipids through the disruption of the process by which digestive
enzymes such as gastric and pancreatic lipases adhere to the surface of lipid droplets while
also adsorbing dietary lipids and carbohydrates in the gastrointestinal tract to promote
their excretion [112]. Nevertheless, further mechanistic studies are needed to facilitate the
clinical application of these materials in preventing and treating obesity.

3.2. Biomaterial-Encapsulated Phytochemicals for Anti-Obesity Treatment

A wide range of natural products can be valuable sources for developing anti-obesity
drugs, which are characterized by diverse structures, relatively high activity, and mild side
effects, among which phenolic acid, flavonoids, terpenoids, alkaloids, and other natural
products have notable anti-obesity potential (Table 3). They inhibit adipose tissue formation,
increase adipose tissue thermogenesis, and induce WAT browning [113,114]. However,
their clinical application is hampered by unfavorable factors such as poor solubility, stability,
and bioavailability [115].
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Table 2. Biomaterials with inherent anti-obesity activity.

Materials Mechanism of Action Characteristics Main Outcomes Reference

Chitosan and chitosan
oligosaccharide

Upregulates the expression of
serum leptin and CRP to
inhibit adipogenesis and
activates PPARγ expression to
ameliorate glucose and lipid
metabolism disorders

Biodegradable and low
toxicity, with easily
modifiable amino groups

Attenuates obesity and
modulates glucose and
lipid metabolism

[74–76]

PLG implants

Increases the expression of
glucose transporter 1 and
insulin-like growth factor 1
and increases glucose uptake

Synthetic, degradable, and
good biocompatibility

Attenuates obesity and
alleviates glucose
intolerance

[106]

Au NPs

Reduces inflammation,
regulates lipid metabolism,
and ablates fatty tissue with
near-infrared light

Cell regulation, good
biocompatibility, and
photothermal conversion
capacity

Attenuates obesity and
alleviates glucose
intolerance

[107–111]

Smectite clays and
mesoporous silica

Adsorbs digestive enzymes to
limit lipid digestion and
adsorbs fats and carbohydrates
to promote their excretion

Porous colloidal structure Attenuates obesity [112]

3.2.1. Resveratrol

Resveratrol is a natural polyphenolic compound with weight loss properties and is a
representative drug for botanical anti-obesity treatment. However, the bioavailability of
resveratrol is relatively low, with only 1–8% of free resveratrol remaining in the serum after
intragastric administration in C57BL/6J mice [116]. This drug combats obesity mainly by
inhibiting the growth of adipocytes, promoting their apoptosis, and promoting lipolysis.
Y. J. Zu et al. prepared trans-resveratrol (R)-loaded, adipose stromal cell (ASC)-targeting
peptide (CSWKYWFGECASC)-modified nanoparticles (L-Rnano) to induce the differen-
tiation of ASCs into beige adipocytes [117]. Nanoencapsulation and targeted delivery
significantly improved drug solubility, circulation time, and specific uptake by ASC. The
animal experiments showed that L-Rnano was four times more efficient than unmodified
control Rnano in targeting ASC in inguinal WAT of C57BL/6 mice while maintaining mini-
mal liver accumulation and low hepatotoxicity. After five weeks, it was observed that the
targeting group significantly induced ASC to differentiate into beige adipocyte and resulted
in a 40% reduction in adiposity while improving glucose homeostasis and reducing the
inflammatory response. In another study by the group, R-encapsulated lipid nanocarriers
(R-nano) were compared with R-encapsulated liposomes (R-lipo), both of which are biocom-
patible and biodegradable [118]. The results showed that nanoencapsulation increased the
uptake of R by 3T3-L1 adipose precursor cells, resulting in high expression of the browning
marker uncoupling protein 1 (UCP1) and CD137 and low expression of the white marker
IGFBP3. In terms of biological activity, R-lipo outperforms R-nano, probably due to its
higher physical and chemical stability at room and body temperatures. In addition, nanoen-
capsulated resveratrol was prepared with starch particles of horse chestnut, water chestnut,
and lotus stem, and the capsules were added to wheat flour to prepare snacks through an
extrusion process [119]. The encapsulation process prevented the thermal degradation of
resveratrol during preparation compared to the control group with free resveratrol added.
Meanwhile, functional snacks containing encapsulated resveratrol showed significantly
better antioxidant, anti-diabetic, and anti-obesity properties than the resveratrol-free ones.

3.2.2. Capsaicin

Capsaicin is a natural active substance present in chili peppers, which has various
biological effects, such as antioxidant, anti-inflammatory, anti-cancer, and hypolipidemic
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activities. It has been demonstrated in animal models and clinical studies that capsaicin
has a beneficial impact on obesity and insulin resistance [120,121]. However, capsaicin in
standard doses is highly irritating to the gastrointestinal tract and cannot be administered
orally for long-term use. I. Lacatusu et al. prepared nanostructured lipid carriers (NLCs) to
deliver capsaicin. The NLC was composed of flaxseed oil, oleoyl ethanolamine (OEA), and
phenylalanine oleamide (PAO) [122]. Flaxseed oil has anti-inflammatory and triglyceride-
lowering properties. OEA is an endogenous lipid that regulates feeding and body weight
in vertebrates. PAO is a peroxisome receptor analog with weight loss properties. The
system incorporates natural active compounds and endogenous lipids and is an anti-
obesity formulation with better safety and tolerance. C. Bao et al. developed capsaicin-
loaded α-lactalbumin (α-lac) micelles, named M(Cap), and used a microneedle patch for
transdermal delivery that could melt at body temperature [123]. The micelles preferentially
release capsaicin at the acidic pH of adipose tissue. Studies on DIO mice showed that the
microneedle patch effectively delivered M(Cap) to the abdominal subcutaneous adipose
tissue. The micelles were endocytosed by white adipocytes, resulting in significant weight
loss. The mechanism of action is related to the activation of energy metabolism, increased
mitochondrial biogenesis, and the induction of adipocyte browning.

Table 3. Biomaterial-encapsulated phytochemicals for anti-obesity treatment.

Drugs Materials Mechanism of Action Characteristics Main Outcomes Reference

Resveratrol

Lipid nanoparticles
modified with
ASC-targeting peptides;
nanocapsules prepared
from starch particles

Induces browning of
white adipocytes

Increases drug
bioavailability and
decreases toxicity

Attenuates obesity and
reduces inflammatory
response

[117–119]

Capsaicin Liposomes; microneedle
patches

Induces browning of
white adipocytes and
increases
mitochondrial
biogenesis to activate
energy metabolism

Reduces drug
irritation to the
gastrointestinal tract
and increases drug
enrichment in local
adipose tissue

Attenuates obesity and
reduces inflammatory
response

[122,123]

Caffeine Microneedle patches

Reduces the levels of
triglyceride, total
cholesterol, and
low-density
lipoprotein and
stimulates lipolysis

Avoids
gastrointestinal
absorption of the
drug

Attenuates obesity [124]

Allicin
DNA nanoflowers
modified with adipo-8
aptamer

Induces browning of
white adipocytes

Enhance the
biological activity
and stability of the
drug

Attenuates obesity [125]

3.2.3. Caffeine and Allicin

Caffeine is a natural component of tea and coffee with anti-obesity effects and no
adverse effects. However, the first-pass effect of caffeine after oral administration results
in the low bioavailability of the drug. Transdermal administration has the benefit of
bypassing the first-pass metabolism of the liver. Typically, biofilms are used to achieve
transdermal administration of caffeine. However, caffeine undergoes a transition from the
anhydrous to the crystalline form in biofilms, resulting in a maximum loading of no more
than 5.5%. Using hyaluronic acid (HA) as a crystal growth inhibitor in combination with
soluble microneedles inhibited the crystal growth of caffeine and allowed efficient loading
of the drug [124]. After six weeks of administration to DIO mice, there were significant
reductions in triglyceride, total cholesterol, and low-density lipoprotein (HDL) levels
and substantial weight loss of approximately 12.8 ± 0.75%. To achieve adipocyte-targeted
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delivery of allicin, which is a phytochemical capable of inducing browning in adipose tissue,
adipo-8 aptamer-modified DNA-nanoflower-allicin framework (NFA) was assembled using
the isothermal rolling circle technique, which considerably enhanced the bioactivity and
stability of allicin (Figure 3) [125]. Mechanistic studies have shown that the target of allicin
is the G-quadruplex (G4) in the mitochondrial uncoupling protein-1 (UCP1) promoter, and
adipo-8 and allicin play a synergistic role in the activation of targeted thermogenic genes.
NFA’s subcutaneous injection can effectively promote adipocyte browning and systemic
energy expenditure with minimal side effects.
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Figure 3. Schematic illustration of effective obesity restraint through targeted activation of
G4-mediated UCP1 expression. (a) Schematic illustration of the synthesis process of aptamer-
functionalized binary-drug delivery system. (b) The NFA binds to the target receptor (adipocyte
plasma membrane-associated protein) in the cellular membrane. (c) Allicin decreases the stability
of G454 in the UCP1 promoter, increasing UCP1 expression in adipose cells. Upon entering the
cytosol, intracellular target (G454) recognition events trigger the expression of UCP1 of adipose
cells, increasing systematic energy expenditure. Reproduced with permission [126]. Copyright 2022,
American Chemical Society.

The applications of biomaterials in the delivery of anti-obesity phytochemicals such as
resveratrol, capsaicin, caffeine, and allicin are reviewed above. Compared to natural drugs,
the preparation of resveratrol nanoparticles or lipid capsaicin overcomes the drug’s gas-
trointestinal irritation and improves its bioavailability. Additionally, loading caffeine into
microneedles avoids the hepatic first-pass effect. Thus, phytochemical-loaded biocarriers
have promising potential for obesity treatment.
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3.3. Biomaterial-Encapsulated Synthetic Drugs for Anti-Obesity Treatment

This section reviews four synthetic anti-obesity drugs, namely, orlistat, rosiglitazone,
thiopental sodium, and bindarit (Table 4). These drugs exert their anti-obesity effects mainly
by inhibiting the activity of gastrointestinal lipase, inducing WAT browning, preventing
lipid peroxidation, and reducing triglycerides and glucose levels in the body.

3.3.1. Rosiglitazone

Rosiglitazone (Rosi) is a thiazolidinedione (TZD) anti-diabetic drug, which also acti-
vates PPARγ to induce WAT browning. However, the lack of specificity has caused toxic
side effects on the liver, kidney, and brain, limiting its use in anti-obesity therapy [126,127].
Rosi, which is poorly water-soluble, was loaded into nanoparticles with a hydrophilic
polyvinyl alcohol (PVA) surface layer and a poly(lactic-co-glycolic acid) (PLGA) core.
With diameters of ~200 nm, these drug-loaded particles resided in liver Kupffer cells and
macrophages in WAT after preferential uptake by circulating monocytes after systemic
injection [128]. The drug is released specifically in acidified macrophage phagosomes,
upregulates the expression of PPARγ target genes, and attenuates the obesity-induced
inflammatory response in macrophages. Moreover, the agent does not alter the expression
of genes related to lipid metabolism or cardiac function, indicating reduced side effects. As
a monocyte- and macrophage-targeted PPARγ agonist delivery system, this platform pro-
vides a novel approach for treating macrophage-mediated inflammatory states associated
with obesity, atherosclerosis, and other chronic diseases.

Photodynamic therapy (PDT) is a therapeutic method used to treat tumors as well as
some skin diseases, such as psoriasis and acne, by means of photosensitizers that enter the
body and are activated by light of appropriate wavelengths, resulting in a series of photo-
chemical toxic effects, i.e., the generation of singlet oxygen (1O2) and other reactive oxygen
species (ROS) that bind to the corresponding target tissues, leading to tissue damage and cell
death. Local PDT mediated by verteporfin or indocyanine green was previously reported to
reduce fat [129]. PDT acts directly and rapidly but is only applicable to superficial fat due to
the limitation of light penetration. In contrast, the white fat-browning strategy has a more
gradual and widespread effect. To combine these two strategies for complementary effects,
the investigators obtained Pat-HBc VLP by genetically engineering the adipocyte-targeting
peptide (ATP) motif (sequence CKGGRAKDC) on the surface of hepatitis B core (HBc)
protein virus-like particles (VLPs), followed by a disassembly-recombination approach to
loading zinc phthalocyanine tetrasulfonate (ZnPcS4) and the browning agent rosiglitazone
into the particles to prepare Pat-HBc/RSG&ZnPcS4 VLPs, thus enabling simultaneous de-
livery of photosensitizers and browning agents to adipocytes [130]. ZnPcS4 has long-wave
absorption, high quantum yield, good photostability, and a photoacoustic (PA) response, so
it acts as both a photosensitizer and a PA imaging tracer in this system. Ultimately, using
this complex, the investigators successfully implemented a photodynamic damage/white
fat-browning strategy monitored by PA molecular imaging and fully demonstrated the
strategy’s effectiveness, reliability, and safety. Although Pat-HBc is less immunogenic than
wild-type HBc, it still cannot completely avoid the immune response caused by repeated
administration, which needs to be addressed in the follow-up work.

Than et al. developed core–shell structured micro-spear-like polymeric drug reservoirs,
named micro-lances (MLs), using a simple hot-pressing method [131]. The core was based
on PLGA and NaCl loaded with rosiglitazone and CL316243 (a selective β3-adrenergic
receptor agonist), and the surface layer consisted of carboxymethylcellulose and Pluronic
F68. The MLs have a cylindrical shape with a length of ~4mm, a diameter of ~0.23 mm,
and a tip of ~10 µm. They can be easily inserted into the white subcutaneous fatty tissue
with a simple nozzle at a speed of ~1 m·s−1 without causing skin damage or pain or losing
the drug on the skin surface. Compared to transdermal microneedle delivery, this method
allows for slow release of the drug, so its treatment frequency is much lower (only twice a
week). The drug has higher bioavailability and can be administered in precisely controlled
doses. As demonstrated in DIO mice, MLs can effectively inhibit obesity and related
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metabolic disorders. Moreover, they are also expected to be used for the treatment of other
diseases, such as for the delivery of anti-diabetic drugs (e.g., sulfonylureas-glimepiride),
antipsychotic medications (e.g., risperidone), or anti-cancer drugs (e.g., triamcinolone
for breast cancer). In short, this safe, painless, and convenient method of transdermal
drug delivery may provide an unprecedented long-term at-home solution for obesity and
other diseases.

In another study, the browning agent rosiglitazone and antioxidant manganese tetrox-
ide nanoparticles (MnNPs) were integrated into poly(lactic acid)–poly(ethylene glycol)
(PELA) electrospun fibers (SF@Rsg-Mn), which are 1.5 µm wide and 20 µm long [132].
After being injected into the inguinal adipose tissue of DIO mice, MnNPs at the surface
of the fibers continuously scavenged adipose reactive oxygen species (ROS) and attenu-
ated oxidative stress in adipose tissue, and rosiglitazone was continuously released for
30 days to induce adipose tissue browning for energy expenditure, thus synergistically
alleviating obesity.

3.3.2. Orlistat

Orlistat is a commonly used marketed anti-obesity drug. It is a gastrointestinal lipase
inhibitor that inhibits the conversion of dietary fat into lipids that are available for absorp-
tion by the body, resulting in weight loss. However, preventing fat absorption can produce
serious side effects, such as gastrointestinal reactions and diarrhea. As a porous colloidal
material, nanostructured clay (NSC) particles have favorable anti-obesity properties, and
their mechanism of action is the selective adsorption of lipid digestion products, thus im-
peding fat absorption in the small intestine, showing comparable activity to orlistat in DIO
rats [133]. A simulated intestinal lipolysis study performed by observing changes in free
fatty acid concentrations revealed a combined effect of orlistat and NSC particles, which
showed a 6-fold increase in the inhibitory response compared to orlistat alone, suggesting
that NSC significantly enhances the biopharmacological properties of orlistat [134].

3.3.3. Thiopental Sodium

Obese patients often suffer from cardiac overload, leading to myocardial hypertrophy
and ventricular hypertrophy. Myocardial hypertrophy is an essential risk factor for cardio-
vascular disease, in which numerous factors, such as oxidative stress and inflammation, are
involved in the pathophysiological process. Thiopental sodium is a fat-soluble anesthetic
that reduces lipid peroxidation or inhibits the production of reactive oxygen species by
neutrophils and therefore exhibits antioxidant effects. In addition, it also possesses anti-
inflammatory properties. In a study of a high-fat diet-induced cardiac hypertrophy model
in obese mice, it was found that thiopental sodium lipid nanoparticles attenuated cardiac
damage, hypotension, and myocardial hypertrophy induced by obesity-induced cardiac in-
sufficiency by suppressing the inflammatory pathway and also significantly altered cardiac
remodeling function, aortic function, oxidative stress, and the inflammatory response [135].
The cardioprotective effect of sodium thiopental provides evidence for future treatment of
obesity and related cardiovascular complications via inflammatory pathways.

3.3.4. Bindarit

WAT in obese patients releases large amounts of pro-inflammatory cytokines, includ-
ing tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β), and monocyte chemotactic
protein-1 (MCP-1), leading to chronic low-grade inflammation and promoting the de-
velopment and progression of obesity and its comorbidities [136–138]. Monocytes in
peripheral blood were shown to be recruited to inflammatory adipose tissue, fatty liver,
and atherosclerotic plaques [139], suggesting that monocyte-mediated drug delivery might
be employable to combat obesity and its associated diseases. Our group developed a
laminarin-modified bindarit nanoparticle (LApBIN) based on this strategy (Figure 4) [140].
Laminarin specifically recognizes the Dectin-1 receptor present on the surface of monocytes
and macrophages. Bindarit (BIN) is a selective inhibitor of MCP-1/CCL2 and TNF-α
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synthesis and has been shown to be effective in the treatment of obesity, acute pancreatitis,
rheumatoid arthritis, and other MCP-1/CCL2-induced inflammatory diseases. However,
the poor water solubility and low oral bioavailability of BIN limit its practical application.
Animal experiments confirm the successful preventive effect of the developed LApBIN
oral targeted delivery system on high-fat diet-induced obesity, insulin resistance, fatty
liver, and atherosclerosis with only half of the original dose of 100 mg/kg every three days.
Nevertheless, further studies are needed to elucidate the transport mechanism of LApBIN
from intestinal lymphoid tissue to peripheral blood mononuclear cells.
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Table 4. Biomaterial-encapsulated synthetic drugs for anti-obesity treatment.

Drugs Materials Mechanism of Action Characteristics Main Outcomes Reference

Rosiglitazone

PLGA nanoparticles,
virus-like particles
(VLPs) modified with
the ATP motif,
PLGA/NaCl
micro-lances, and
PELA electrospun
fibers

Induces browning of
white adipocytes and
reduces inflammatory
responses mediated by
macrophages

Targeted drug delivery
to adipocytes,
reducing drug toxicity
and side effects

Attenuates obesity and
reduces inflammatory
response

[128,130–
132]

Orlistat Nanostructured clay
particles

Inhibits lipase activity
and hinders fat
absorption

Reduces toxic side
effects such as
gastrointestinal
irritation

Attenuates obesity [134]

Thiopental
sodium Lipid nanoparticles Reduces inflammatory

responses
Improves drug
bioavailability

Ameliorates
obesity-induced
cardiac dysfunction
and cardiac
hypertrophy

[135]

Bindarit Laminarin-modified
nanoparticles

Reduces inflammatory
responses

Specifically identifies
monocytes and
macrophages and
improves drug
bioavailability

Prevents obesity,
insulin resistance, fatty
liver, and
atherosclerosis

[140]
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Compared with the original small-molecule drugs, formulations with integrated func-
tional carriers can dramatically reduce toxic side effects and improve drug bioavailability.
For example, using PVA/PLGA nanoparticles to deliver rosiglitazone can solve the problem
of its poor water solubility and achieve macrophage-targeted enrichment of the drug, thus
reducing the inflammatory response of macrophages induced by obesity; combining orlistat
with NSC particles can reduce the irritation response to the drug in the gastrointestinal tract
and significantly improve the drug activity; LApBIN, which specifically recognizes mono-
cytes and macrophages after oral administration, has demonstrated excellent therapeutic
effects on a variety of inflammatory diseases, such as obesity and rheumatoid arthritis.
Therefore, the functionalized drug delivery system has unique advantages in developing
new dosage forms of anti-obesity drugs, and its application is expected to increase the
number of weight loss drugs currently used in clinical practice, offering broad prospects
for the treatment of obesity and its complications.

3.4. Biologic Drugs for Anti-Obesity Treatment

Numerous biological drugs, such as peptides, miRNAs, cytokines, etc., have the
functions of inhibiting the development of inflammation, controlling lipid metabolism, and
regulating glucose uptake (Table 5). For example, interleukins IL-4 and IL-10 induce an
increase in M2 macrophages and a decrease in the secretion of pro-inflammatory cytokines;
the pro-apoptotic peptide KLA disrupts cellular mitochondrial function, resulting in the
release of cytochrome C and the induction of apoptosis. PDBSN, a bioactive peptide, can
inhibit adipocyte differentiation, and miRNA drugs such as miR33 and miR-130b can
regulate lipid metabolism. However, these biological drugs all face stability and targeting
problems in vivo. To address this problem, researchers have coupled small-molecule drugs
to polymers or applied carrier materials such as liposomes and polymeric scaffolds to
prolong the half-life of drugs, alter drug release profiles, absorption, and distribution, etc.,
to improve the drug utilization rates and safety.

3.4.1. Targeting Adipose Tissue Macrophages

Adipose tissue macrophages (ATM) play a vital role in developing obesity-induced
chronic inflammation. The proportion of macrophages infiltrating adipose tissue in obese
populations is substantially higher than in normal individuals. These macrophages sur-
round adipocytes in a coronal structure. They are predominantly M1 type and release large
amounts of pro-inflammatory factors that cause obesity-related chronic diseases such as
T2D and atherosclerosis [141,142].

Interleukin-4 (IL-4) has been shown to induce an increase in M2-type macrophages,
as well as Th2 and regulatory T cells [143,144]. Porous poly(lactide-co-glycolide) (PLG)
implants coated with human interleukin-4 (hIL-4)-expressing lentivirus were transplanted
into epididymal WAT of HFD-induced early obese mice [145]. It was found that lo-
cally expressed HIL-4 would induce an anti-inflammatory phenotype in adipose tissue
macrophages, and an increased proportion of helper T cells was observed in adipose tissue,
revealing its potential in regulating adipose tissue inflammation and metabolism. The anti-
inflammatory cytokine interleukin-10 (IL-10) reduces the secretion of pro-inflammatory
cytokines in macrophages through a STAT3-dependent pathway. It has therapeutic ef-
fects on diabetes and various inflammations, such as psoriasis and inflammatory bowel
disease [146,147]. Delivering it to macrophages in adipose tissue is expected to alleviate
obesity-related chronic inflammation. However, the short half-life of IL-10 makes this
a challenge. Phosphatidylserine (PS) is an “eat me” signal expressed on the surface of
apoptotic cells and can be recognized by various phagocytosis receptors on the surface of
macrophages. R. Toita et al. prepared liposomes with PS modified on the surface (PSL) to
deliver IL-10 to macrophages, and IL-10-conjugated PSL (PSL-IL10) had a high affinity for
macrophages [148]. Experiments on HFD-induced obese mice showed that PSL-IL10 signif-
icantly reduced total serum cholesterol, altered adipocyte size, and inhibited the secretion
of pro-inflammatory cytokines such as IL-6 and TNF-α in adipose tissue compared with
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IL-10 and PSL alone, revealing the good efficacy of the synergistic effect of IL-10 and PSL
on obesity.

Sea cucumber saponins, secondary metabolites of sea cucumber, have been shown
to alleviate obesity and hepatic steatosis and restore glucose tolerance in DIO mice [149].
They are highly water-soluble, which reduces their permeability and absorption in the
intestine and largely limits their bioavailability. The use of liposomes can overcome this
drawback. Studies have shown that sea cucumber saponins loaded into liposomes exhibit
better performance than the common form of sea cucumber saponins in terms of weight
loss, hypolipidemia, and alleviation of insulin resistance. In addition, sea cucumber
saponin liposomes can reduce the release of pro-inflammatory cytokines and macrophage
infiltration in obese mice, thus effectively reducing adipose tissue inflammation, which is
not possible with their common form [150].

3.4.2. Inhibition of WAT Angiogenesis

Hypertrophy and hyperplasia of adipocytes in WAT is the main feature of obesity
development, and this process requires neovascularization to provide adequate nutrients
and oxygen. Therefore, obesity and its related diseases can be treated by inhibiting angio-
genesis in WAT [151]. The antiproliferative protein prohibitin (PHB) is overexpressed in
the vascular system of obese mice as well as in human WAT. It can be used as a target for
the delivery of cytotoxic drugs to vascular endothelial cells to inhibit angiogenesis and re-
verse obesity [152]. CKGGRAKFC peptide, also known as adipose homing peptide (AHP),
exhibits high specificity for PHB. Injection of AHP-coupled pro-apoptotic peptide KLA
(AHP-KLA) into DIO mice and monkeys resulted in significant weight loss and the reversal
of obesity [153,154]. After AHP-KLA enters cells through receptor-mediated endocytosis, it
disrupts mitochondrial function and leads to the release of cytochrome c, which in turn acti-
vates the caspase-3 pathway to induce apoptosis. However, chimeric peptides are unstable
in vivo and require higher doses to maintain efficacy. Moreover, long-term systemic admin-
istration will cause the body to produce antibodies against chimeric peptides, resulting in
lower efficacy in later stages. The application of nanocarriers can increase the stability of
peptide drugs. For example, liposomes composed of phosphatidylcholine and cholesterol
were loaded with KLA, and the surface of the liposomes was modified with AHP. After
18 days of treatment, PHB-mediated endothelial cell uptake of the liposomes resulted in a
significant reduction in body weight of 14% in DIO mice [155], compared to 5% when using
AHP-KLA itself [153]. The decline in body weight in mice was accompanied by decreased
leptin levels, reduced macrophage numbers, and reduced angiogenic clusters. None of
these changes were evident in mice treated with AHP-KLA during the same period.

3.4.3. Regulation of Signaling Pathways

The AMPK (AMP-activated protein kinase) pathway is a signaling pathway that
coordinates adipogenic differentiation and plays an important role in maintaining metabolic
homeostasis [156]. PDBSN (sequence GLSVADLAESIMKNL) is a bioactive peptide found
to inhibit adipocyte differentiation by activating the AMPK pathway. The peptide was
encapsulated in liposomes with surface-modified visceral tissue-targeting peptide and
cell-penetrating peptide for in vivo delivery, thus improving its circulation stability and
specificity to adipose tissue [157]. Experiments on DIO mice showed that the treatment
significantly reduced adipose tissue mass, especially visceral adipose tissue. In addition,
glucose metabolism and dyslipidemia were modified.

miR33, a microRNA, controls lipid metabolism by regulating the expression of leptin,
insulin, and lipoproteins. To transfer miR33 to efficiently target cells for successful gene
therapy, a degradable, biocompatible block copolymer poly (citric acid)-glycerol-polylysine
(PCG-EPL) was synthesized (Figure 5) [158]. In vitro cellular experiments demonstrated
that the self-assembled PCG/miR33 anti-obesity nanocomplex formed could effectively
deliver miR33 to adipocytes and reduce the expression of IL-1β, which is associated with
obesity. Therapeutic experiments on DIO rats showed that the nanocomplex reduced the
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expression of inflammatory factors such as IL-1β, TNF-α, and IL-6 and enhanced lipid
metabolism in rats without suppressing their appetite, effectively reducing body weight.
This study certainly brings good news for obese patients who cannot control their weight
through an autonomous diet. miR-130b also exerts a regulatory effect on lipid metabolism.
After intravenous injection of microvesicle-packaged miR-130b (miR-130b-MV) into a DIO
C57BL/6 mouse model, miR-130b was detected to be delivered to epididymal adipose
tissue, where it downregulated PPARγ protein content while upregulating lipolytic genes,
hormone-sensitive lipase, monoglyceride lipase, and leptin [159]. This resulted in a signifi-
cant reduction in fat deposition and the partial restoration of glucose tolerance. Further
studies are needed to assess the cytotoxicity and half-life of miR-130b-MV in blood to
facilitate the development of corresponding drugs.
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3.4.4. Regulation of Hormone Levels

As mentioned, leptin is a hormone secreted by adipocytes and acts upon the brain’s
hypothalamus to regulate appetite and energy metabolism. The progression of obesity leads
to a decrease in the transport of leptin across the blood–brain barrier (BBB). To improve the
binding efficiency to its receptor, leptin with N-terminal amine modification of Pluronic P85
(LepNP85) was prepared [160]. Leptin with N-terminal amine modification of PEG (LepN-
PEG5K) was synthesized for use as a control. Intranasal administration (INB) was adopted
to bypass the BBB. After dosing, LepNP85 conjugates accumulated significantly more in
the hypothalamus and hippocampus of the brain than natural leptin and LepNPEG5K,
suggesting that Pluronic P85 modification combined with INB administration improved
brain delivery of leptin. In addition, a non-covalent mixed intranasal formulation of leptin
and cell-penetrating peptides (CPPs) was also developed [161]. An amphiphilic CPP was
used here, namely, L-permeabilin (sequence RQIKIWFQNRRMKWKK). The non-covalent
mixing method was used with consideration of the difference in the mode of cellular
internalization of the two, where an energy-independent pathway mainly mediates the
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cellular internalization of peptide drugs, and CPPs can enter the cells through endocytosis
(e.g., micropinocytotic action). Animal experiments have shown that leptin in combination
with L-permeabilin can effectively accumulate in the anterior part of the brain, suppress
appetite and weight gain in rats, and reduce plasma triglyceride levels. These are achieved
by stimulating Stat3 phosphorylation of leptin receptors [162].

Oxyntomodulin (OXM), a 37-amino-acid peptide enteroendocrine hormone, is a dual
agonist of the glucagon receptor (GCGR) and glucagon-like peptide 1 (GLP-1) receptor
(GLP-1R) with effects on the regulation of glucose metabolism, insulin secretion, food
intake, and energy expenditure [163]. Natural OXM is rapidly degraded in vivo within
minutes and quickly cleared by the kidneys, limiting its further clinical application. A
series of new OXM analogs were prepared by modifying the structure of the middle and
C-terminus of the peptide sequence to enhance the affinity for the receptor, and these
analogs were further chemically coupled with PEG to prolong their half-life for sustained
release in vivo [164]. Pharmacological studies of these PEGylated analogs in a dietary
obesity mouse model showed that analog 10 had the most potent hypoglycemic and
weight-lowering efficacy, normalizing lipid metabolism and hepatic steatosis. Thus, they
are up-and-coming candidates for anti-T2D and anti-obesity treatments.

3.4.5. Genetically Engineered Drug Delivery

Islet amyloid polypeptide (IAPP) and irisin are potential browning hormones for
the treatment of obesity. IAPP, also known as pancreatic precipitin, is released from the
pancreas, increasing energy expenditure [165]. Iridin effectively converts WAT to brown
adipose tissue and improves glucose tolerance, triggering a thermogenic program [166].
However, protein-based drugs have a short half-life, require frequent administration, and
might even cause harmful immune responses. Therefore, plasmids containing both IAPP
and iridoid gene structures were developed. Linear polyethyleneimine was used as a gene
delivery vehicle, which is considered the gold standard for polymer-based gene delivery
with low toxicity, easy modification, low immunogenicity, and lysosomal escape. It was
confirmed that combinatorial gene therapy had a synergistic effect on weight loss in DIO
mice [167]. Delivery of this gene therapy system by intraperitoneal injection enhanced
the anti-obesity thermogenic program, increased energy expenditure, and enhanced the
expression of the browning genes Ppargc1a, Prdm16, and Pparg. This cationic polymer-
based dual-browning gene vector exemplifies the advantages of combination therapy
against obesity, a complex disease caused by multiple factors.

Fibroblast growth factor 21 (FGF21) is an endocrine hormone produced mainly by
the liver and adipose tissue with the function of regulating glucose metabolism, lipid
metabolism, and insulin resistance. Natural FGF21 has therapeutic potential for obesity
and diabetes. Its plasma half-life is quite short, ranging from 0.5 to 5 h, depending on the
administration route and species, which is a great challenge as a therapeutic protein [168].
Coupling protein drugs to PEG is an effective strategy to extend their half-life, but this
raises the cost of PEG derivatization and the in vitro covalent coupling and purification
steps. Moreover, PEG accumulation in vivo can cause side effects such as renal epithelial
vacuolization. The polypeptide fusion technique was used to combine a polypeptide (PsTag)
containing a repeatable sequence of five amino acids (Pro, Ser, Thr, Ala, and Gly) with
FGF21 for fusion expression in E. coli. PsTag has physicochemical properties resembling
PEG, i.e., uncharged, hydrophilic, and flexible. In addition, it has no potential cumulative
toxicity. Studies on DIO mice found that the PsTag-FGF21 fusion protein had an extended
half-life of 12.9 h and produced significantly better weight loss and hypoglycemic effects
than natural FGF21 while reversing hepatic steatosis [169].

Silencing fatty acid-binding protein 4 (fabp4) ameliorates metabolic abnormalities and
results in weight loss in DIO mice [170]. To selectively silence fabp4 in white adipocytes,
a CRISPR interference (CRISPRi) system (dCas9/sgFabp4) modified with a fusion pep-
tide composed of ATP motif and 9-polyarginine (ATS-9R) was developed [171]. After
intraperitoneal injection, the accumulation of (dCas9/sgFabp4)-(ATS-9R) in adipose tissue
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and CRISPRi system-mediated Fabp4 silencing were observed in obese mice, resulting
in reduced inflammation in adipose tissue, weight loss, and the restoration of hepatic
steatosis. This reveals that directing the CRISPRi system of catalytically dead Cas9 and
Fabp4 sgRNAs to adipose tissue by using adipose tissue-targeting peptides is a potentially
effective strategy to treat obesity and obesity-induced metabolic syndrome (Figure 6).
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Figure 6. Schematic illustration representing nonviral CRISPR interference system delivery to white
adipocytes. The dCas9 plasmid and sgRNA against the Fabp4 gene formed complexes with ATS-
9R peptide via electrostatic interaction. The highly cationic ATS-9R functions as a targeting and
condensing peptide to deliver dCas9/sgRNA to white adipose tissues, and dCas9 plasmid contains
nuclear localization signals (NLSs) on both the N-terminus and C-terminus for delivery to the nucleus.
Reproduced with permission [171]. Copyright 2019, Cold Spring Harbor Laboratory Press.

Biological drugs have the characteristics of high pharmacological activity and minor
side effects. However, their use is limited by their poor stability, tendency to deactivate in
acid–base environments or by the action of enzymes in vivo, or their inability to cross the
BBB. Combining these drugs with targeted biomaterials can improve the stability of drugs
and reduce side effects on normal tissues. For example, hIL-4-expressing lentivirus was
loaded onto a PLG scaffold for sustained release to modulate adipose tissue inflammation;
IL-10, a small anti-inflammatory molecule, was loaded into liposomes modified with
phosphatidylserine (PS), specifically recognized by macrophages to exert anti-inflammatory
functions; leptin uptake in the brain was increased by coupling a membrane-penetrating
peptide with it and using an INS delivery strategy to bypass the BBB; a PsTag-FGF21 fusion
protein was prepared using a polypeptide fusion technique to significantly increase the
half-life of FGF21. These studies provide effective and diverse strategies for developing
more clinically available anti-obesity biologics, which are expected to alleviate the distress
of obese patients.
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Table 5. Biologic drugs for anti-obesity treatment.

Strategies Drugs Materials Mechanism of Action Characteristics Main Outcomes Reference

Targeting adipose
tissue macrophages

HIL-4 PLG implants

Induces an
anti-inflammatory

phenotype in macrophages,
increase the proportion of

helper T cells

Acts locally and
long-lastingly on

WAT

Attenuates obesity
and reduces

inflammatory
response

[145]

IL-10
Liposomes with

surface modified by
phosphatidylserine

Inhibits the secretion of
pro-inflammatory factors
such as IL-6 and TNF-α

High affinity for
macrophages

Attenuates obesity
and reduces

inflammatory
response

[148]

Sea cucumber
saponins Liposomes

Inhibits secretion of
pro-inflammatory
cytokines, reduces

macrophage infiltration,
and increases glucose

uptake

Improves drug
bioavailability

Attenuates obesity,
reduces

inflammatory
response, and

alleviates glucose
intolerance

[150]

Inhibition of WAT
angiogenesis

Pro-apoptotic
peptide KLA

Adipose homing
peptide; liposomes

modified by fat
homing peptide

Inhibits angiogenesis Targeting the WAT
vascular system Attenuates obesity [153–155]

Regulation of
signaling pathways

Bioactive peptide
PDBSN

Liposomes
modified with

visceral
tissue-targeting

peptide

Activates AMPK pathway
to inhibit adipocyte

differentiation

Targeting white
adipocytes

Attenuates obesity
and modulates

glucose and lipid
metabolism

[157]

Regulation of
signaling pathways

miR33 PCG-EPL micelles
Regulates leptin, insulin,

and lipoprotein expression
and controls metabolism

Delivers miRNA to
adipocytes

Attenuates obesity
and alleviates

glucose intolerance
[158]

miR-130b Cellular
microvesicles Regulates lipid metabolism

Delivers miRNA to
epididymal adipose

tissue

Attenuates obesity,
alleviates glucose

intolerance
[159]

Regulation of
hormone levels

Leptin Pluronic P85
Acts on the hypothalamus

to regulate appetite and
energy metabolism

Polymer
modification to

extend the half-life
of the drug

Attenuates obesity [160]

Oxyntomodulin
analog PEG

Regulates glucose
metabolism and insulin

secretion

Polymer
modification to

extend the half-life
of the drug

Attenuates obesity,
reduces blood

glucose level, and
reverses liver

steatosis

[164]

Genetically
engineered drug

delivery

Plasmids containing
both IAPP and

iridoid gene
structure

Linear
polyethyleneimine

Induces browning of white
adipocytes and triggers
thermogenic procedures

Synergistic effects
of combination gene

therapy
Attenuates obesity [167]

FGF21 PsTag polypeptide

Regulates glucose
metabolism, lipid

metabolism, and insulin
resistance

Preparation of E.
coli fusion

expression proteins
of cytokines and
polypeptides to

extend the half-life
of protein drugs

Attenuates obesity,
reduces blood

glucose level, and
reverses liver

steatosis

[169]

fabp4
dCas9/sgFabp4

CRISPRi
interference system

Silencing the gene of Fabp4

CRISPRi
interference

technology for
selective regulation

of
metabolism-related

genes

Attenuates obesity
and reverses liver

steatosis
[171]

4. Conclusions

Over the past decades, although researchers have made great efforts, conventional
obesity treatments are still inadequate to maintain metabolic homeostasis and prevent
life-threatening complications, so there is an urgent need for therapies with higher efficacy
and specificity. The continuous development of drug delivery systems is essential for
advances in agent-based disease treatment, and various types of carrier materials, such
as liposomes, micelles, or vesicles, and transdermal microneedles have been developed.
Combining anti-obesity drugs with these materials can improve drug stability, prolong
their half-life, increase drug enrichment in specific cells or tissues, and reduce adverse
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effects. While these biomaterial-engineered targeted agents have achieved good efficacy
in mouse models of high-fat diets, clinical transformation is still a challenge. Further
comprehensive assessments are required to determine whether the use of these materials
in humans raises safety issues and whether they have good efficacy in humans and require
long-term administration to achieve stable weight loss. This means that specific criteria
are needed to assess the safety and effectiveness of these dosage forms in humans. Finally,
it should be emphasized that the selection of appropriate animal models in therapeutic
studies of obesity and its comorbidities is highly influential. There are many types of
obesity models available, including genetic animal models (monogenic, polygenic, and
transgenic obesity models) and non-genetic animal models (diet-induced, exotic, large
animals, and surgical obesity models). They each have their own advantages but are also
accompanied by limitations, so the study should be selected according to the specific type
of obesity and the etiologic/pathologic mechanism of the particular comorbidity.
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