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Abstract: Dental caries, a preventable disease, is caused by highly-adherent, acid-producing biofilms
composed of bacteria and yeasts. Current caries-preventive approaches are ineffective in controlling
biofilm development. Recent studies demonstrate definite advantages in using natural compounds
such as trans-cinnamaldehyde in thwarting biofilm assembly, and yet, the remarkable difficulty in
delivering such hydrophobic bioactive molecules prevents further development. To address this
critical challenge, we have developed an innovative platform composed of components with a proven
track record of safety. We fabricated and thoroughly characterised porous silicon (pSi) microparticles
to carry and deliver the natural phenyl propanoid trans-cinnamaldehyde (TC). We investigated its
effects on preventing the development of cross-kingdom biofilms (Streptococcus mutans and Candida
albicans), typical of dental caries found in children. The prepared pSi microparticles were roughly
cubic in structure with 70–75% porosity, to which the TC (pSi-TC) was loaded with about 45%
efficiency. The pSi-TC particles exhibited a controlled release of the cargo over a 14-day period.
Notably, pSi-TC significantly inhibited biofilms, specifically downregulating the glucan synthesis
pathways, leading to reduced adhesion to the substrate. Acid production, a vital virulent trait for
caries development, was also hindered by pSi-TC. This pioneering study highlights the potential to
develop the novel pSi-TC as a dental caries-preventive material.

Keywords: acidogenicity; biofilm; caries; trans-cinnamaldehyde

1. Introduction

The oral cavity is home to several bacteria and fungi, which include both beneficial
and harmful species. However, the formation of a highly adherent plaque biofilm with an
increase in pathogenic species (dysbiosis) results in costly diseases such as dental caries [1,2].
Fluoride compounds are the most-used caries-preventive agents due to their effects on
the remineralisation of dental hard tissues. Unfortunately, fluorides only have limited
effectiveness against biofilms [3]. More importantly, fluoride-resistant microbial strains
have already emerged, adding to the global challenge of antimicrobial resistance [4]. On
the other hand, antiseptics such as chlorhexidine potentially amplify dysbiosis by their
broad-spectrum microbicidal effects [5,6]. Therefore, there is a critical need to develop
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novel, non-microbicidal strategies that can inhibit biofilm development and caries-related
virulence [7].

Trans-Cinnamaldehyde (TC) is a bioactive flavonoid with antimicrobial activity against
several bacterial and fungal species [8–13]. We recently demonstrated that TC reduced
biofilm development in Gram-positive bacteria such as Streptococcus mutans [11] and Ente-
rococcus faecalis [12] monocultures. TC can destroy the polysaccharide component of the
cell wall thereby affecting the cell membrane integrity and cell division. However, we and
others have reported that a sub-inhibitory concentration of TC inhibits quorum sensing
in bacteria and thereby inhibits several quorum sensing-mediated virulence phenomena
(including adhesion, biofilm formation, and the reduced production of extracellular poly-
meric matrices) in Gram-positive bacteria such as Streptococcus mutans and Enterococcus
faecalis [8–13]. However, the major challenge in using TC is its hydrophobicity, which
impedes its availability in biofilms, requiring rather high concentrations (500 µg/mL) for
the biofilm-inhibitory effects [11]. Therefore, it is critical to develop novel delivery methods
that can enhance the biofilm-inhibitory effects of TC.

Micro and nanoparticles are efficient methods of increasing the availability of water-
insoluble or sparingly soluble bioactive molecules. Such particles can be fine-tuned to allow
for the controlled release of the drug and elicit target-specific action, while dramatically
reducing the concentration of the drugs required for their action [14]. Porous silicon
(pSi) particles are a combination of oxygen (53.3%) and silicon (46.8%) [15,16]. They are
considered excellent drug carriers due to their favourable properties including large surface
area, easily modifiable surface, and tunable pore size [17]. Additionally, the remarkable
biocompatibility of pSi and its tunable resorbability mean it is an ideal candidate for drug
delivery, making it useful in a variety of medical applications [18]. Despite such promising
properties, pSi remains to be exploited as a carrier of natural antibiofilm molecules. Once
developed, this drug delivery platform can be readily incorporated into varnishes and pit
and fissure sealants in high-risk areas to prevent cariogenic biofilm development.

Streptococcus mutans is the primary driver of the caries process as it produces acids
which cause demineralization of the dental hard tissues [19]. Being acidogenic and aciduric,
it shifts the homeostasis towards a cariogenic environment at the tooth-biofilm interface [20].
Such a problem is also common at the interface between the tooth and restorations, resulting
in secondary caries. Emerging evidence strongly suggests that cross-kingdom synergy
between S. mutans and the yeast Candida albicans results in an increase in the cariogenic
virulence of plaque [21–23] and this cross-kingdom biofilm is typical of dental caries in
toddlers and pre-school children [24]. While some studies have addressed the inhibition
of such cross-kingdom biofilms, no natural compound-based strategy with an enhanced
delivery approach has been developed to inhibit the development and virulence of this
cross-kingdom biofilm.

Therefore, the aim of this study was to encapsulate TC in pSi particles and examine its
efficiency in preventing the development of cross-kingdom biofilms (S. mutans + C. albicans).
We tested the hypothesis that TC-eluting pSi particles (pSi-TC) can prevent the development
of biofilms and inhibit its caries-related virulence phenotype (acid production).

2. Materials and Methods
2.1. Synthesis and Characterization of pSi Particles

Porous silicon wafers were prepared by the electrochemical etching of crystalline
silicon wafers (p++ type boron-doped crystalline, 0.0012 Ω-cm resistivity) in a custom-
made Teflon cell. The etching was performed under a current density of 200 mA/cm2 for
30 min in hydrofluoric acid solution in ethanol (3:1 HF: ethanol, v/v) to create a porous
structure. This porous layer was detached from the bulk wafer with a second etching in
3.1% HF in ethanol, at a current intensity of 4 mA/cm2 for 4 min. The detached layer was
rinsed with ethanol and subjected to sonication for 5 min at 25 Hz in an ultrasonic bath.
All particles were thermally oxidized for 1 h at 400 ◦C to slow the particle resorption in
aqueous solution.
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The microparticles were sterilized with 70% ethanol for 10 min before drying under
sterile airflow. The pSi particles were analyzed by scanning electron microscopy (SEM)
(Analytic FEI Quanta FEG 200) to determine the particle size and pore diameter. An
acceleration voltage of 20.00 kV was used at a pressure of 0.5 Torr. Global porosity was
determined by interferometric reflectance spectroscopy (IRS), using white light at normal
incidence, with reflected light collected by a charge-coupled device (CCD) spectrometer.
Particle oxidation was controlled by Raman spectroscopy using a Witec Confocal Raman
Microscope System alpha 300R (Witec, Ulm, Germany) to register the Raman spectra.
Excitation in the confocal Raman microscopy was assured by a frequency-doubled Nd:
YAG laser (Newport, Evry, France) at 532 nm wavelength (Figure 1).
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2.2. Characterization of Trans-Cinnamaldehyde Loaded pSi Particles

We performed Fourier Transformed Infrared spectroscopy (FTIR) to determine if there
was any chemical interaction between the pSi and TC. The TC-loaded pSi particles were
taken and washed with deionized water three times and then dried the obtained particles
for analysis. The spectra were collected over a range of 4000–400 cm−1 with 30 scans per
sample. The data acquisition was performed by OPUS 7.5 (Bruker, Germany) software.

2.3. Trans-Cinnamaldehyde Loading and Release Kinetics

The pSi particles were loaded with trans-cinnamaldehyde (Sigma Aldrich, St. Louis,
MO, USA) by passive soaking for 24 h under gentle shaking at room temperature. For
loading, a 1:1 dilution of trans-cinnamaldehyde (v/v) in ethanol was used. After 24 h
of incubation in loading solution, the pSi particles were rinsed in ethanol and stored in
70% ethanol solution to prevent particle degradation. Loading efficiency was assessed by
UV-visible spectroscopy at a wavelength of 290 nm.

To follow the trans-cinnamaldehyde release, the particles were dried to remove the
ethanol and then incubated in Phosphate Buffer Saline (PBS) (Gibco, Thermo Fisher,
Waltham, MA, USA) at 37 ◦C. Release experiments were conducted by incubating 25 mg
of TC loaded with 10 mL of PBS, i.e., 2.5 mg particles/mL of PBS. Supernatants were
collected after one, four, eight, and fourteen days. The recovered samples were analyzed by
High-Performance Liquid Chromatography (Waters 600E HPLC, Waters, Milford, MA, USA)
with the following parameters: a 254 nm UV detector and an elution with 0.1 formic acid
solution in acetonitrile at 0.5 mL/min debit. Various concentrations of TC in ethanol were
used for calibration to determine the retention time (RT). For the elucidation of various
kinetics models, they were tested for best fit after applying data obtained from the release
study. The best-fit kinetic model was selected by comparing their R2

adjusted (R2
adj) values.
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The model that exhibited the R2
adj value closest to one was considered the best-fitted kinetic

model [25].

2.4. Microbial Strains and Culture Conditions

Streptococcus mutans UA159 and Candida albicans ATCC 90028 were acquired from the
American Type Culture Collection (ATCC). S. mutans was maintained in Columbia Blood
Agar (CBA) at 37 ◦C in anaerobic conditions (85%N2, 5%CO2, 10%H2), while C. albicans
was maintained in Sabouraud Dextrose Agar (SDA) at 37 ◦C in aerobic conditions. For all
the experiments, S. mutans and C. albicans were grown overnight in Tryptic Soy Broth (TSB)
at 37 ◦C in a 5% CO2 incubator. Before each experiment, the microbial count was adjusted
to 2 × 106 for S. mutans and 2 × 104 for C. albicans [26].

2.5. Microbial Growth

The effect of pSi-TC on the growth of S. mutans and C. albicans monocultures was
determined by the broth microdilution assay [27]. The stock solution was prepared by
dissolving pSi-TC in TSB. A working concentration of 1.15 mg/mL of pSi-TC was added to
sterile 96-well polystyrene plates and serially diluted up to 0.009 mg/mL. A total of 10 µL
of the inoculum was added to each well. Untreated standard cell suspensions with TSB
were maintained as control. Pilot studies confirmed that pSi particles alone had no effect
on microbial growth. The plates were then incubated at 37 ◦C in a 5% CO2 incubator for
24 h. The microbial growth was determined by measuring the absorbance (OD595) of the
planktonic cells using a DTX 880 Multimode Detector (Beckman Coulter, Brea, CA, USA).

2.6. Biofilm Formation

The effect of pSi-TC on biofilm formation was determined directly by the well-
established Crystal Violet (CV) assay. pSi-TC (100 µL) was added to TSB + 1% sucrose with
10 µL of the standard cell suspension for each of S. mutans and C. albicans and incubated
at 37 ◦C in a 5% CO2 incubator for 24 h. Then, the planktonic cells were removed, and
the biofilms were carefully washed twice with PBS and stained with 0.1% crystal violet.
After washing with PBS, the CV stain absorbed by the biofilm biomass was retained by
adding 95% ethanol, transferred to another 96-well plate, and the absorbance (OD570) was
measured using a multimode detector.

2.7. Biofilm Microbial Composition

The plate count method was used to determine the proportion of S. mutans and
C. albicans in the pSi-TC treated biofilms. Dual-species biofilms were developed on sterile
hydroxyapatite discs (Clarkson Chromatography, PA, USA) in the presence of 0.25 mg/mL
of pSi-TC based on the results of the aforementioned experiment. The treated and untreated
biofilms were mechanically disrupted and dispersed in 1 mL of PBS by uniform vortexing
for 1 min.

The resultant microbial suspension was then serially diluted in TSB, and a 50 µL
aliquot was plated on Sabouraud Dextrose Agar (SDA) and Columbia Blood Agar (CBA)
for C. albicans and S. mutans, respectively, and incubated in an anaerobic chamber and
aerobic incubator, respectively, at 37 ◦C for 24 h. The number of viable cells was determined
by counting the Colony Forming Units (CFU), which were transformed into log10 values.

2.8. Acid Production

Dual-species biofilms were developed in the presence of 0.25 mg/mL of pSi-TC.
Then, the pH of the spent media was determined using a pH electrode (CyberScan pH
500, Thermo Scientific, Waltham, MA, USA), as described previously [28]. Prior to each
measurement, the electrode was rinsed with deionized water and sterilized with 70%
ethanol (v/v).
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2.9. Scanning Electron Microscopic (SEM) Imaging

To directly visualize the biofilm-preventive effect of pSi-TC, biofilms were developed
in the presence of pSi-TC. After 24 h of incubation, the discs were washed with PBS and
fixed with 2.5% glutaraldehyde, following dehydration in ethanol series (75%, 85%, and
95% 100%). Then, the discs were gold sputter-coated and observed using SEM (Hitachi
VP-SEM SU1510) to assess the biofilm architecture [29].

2.10. Gene Regulation Studies

The effect of pSi-TC on the biofilm and virulence-related genes was studied using
Quantitative real-time Polymerase Chain Reaction analysis (qRT-PCR). Biofilms were
developed in the presence of pSi-TC for 24 h. Untreated biofilms served as the negative
control. After incubation, the planktonic and loosely adhered cells were removed by
washing the biofilms twice with PBS. The biofilms were then removed by scraping and
centrifuged at 10,000× g for 10 min.

RNA was extracted as per the manufacturer’s instructions and the quantity of RNA
was assessed using Nanodrop. An iScriptTM cDNA synthesis kit was used to reverse
transcribe RNA to cDNA, following which the qRT-PCR analysis was performed. The
primers used for C. albicans and S. mutans are listed in Table S1. 16srRNA and ACT1
were used as the housekeeping gene for S. mutans and C. albicans respectively. The 2-∆∆CT

method was used for calculating the gene expression changes relative to the control [11].

2.11. Statistical Analysis

Statistical analysis of the data was performed using Prism version 8.0.2 (GraphPad,
San Diego, CA, USA). One-way ANOVA multiple comparison analysis was performed
to compare the significance between the control and treatment groups, while the Mann-
Whitney U-test was applied to the compare the mean pH values between the groups.
p < 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Characterization of pSi Particles

The antimicrobial and anti-biofilm efficacy of essential oils is masked in low con-
centrations as they are relatively unstable and easily degradable [30]. Thus, to enhance
their anti-microbial efficiency by increasing the bioavailability of TC, we loaded them
onto the pSi-particles. Porous silicon and its derivative particles are biocompatible and
biodegradable [18]. pSi-derived microparticles and nanoparticles are considered “penetra-
tion enhancing agents”, which enhance the membrane penetration potential of hydrophobic
drugs that simultaneously increases their bioavailability [31]. These properties of pSi make
it an ideal carrier for the delivery of sparingly soluble essential oils [31–33]. In this work,
we first synthesised P-type porous silicon wafers that were ultrasonicated to yield the pSi-
particles. The acquired pSi particles were then evaluated for particle size, pore diameter,
and porosity.

SEM examination revealed a mean pore diameter of 31 ± 11 nm with a homogeneous
distribution on the surface (Figure 1). The particles were roughly cubic, with a mean
edge size of 27 ± 19 µm. Interferometric reflectance spectroscopy (IRS) showed that the
global porosity ranged between 70–75%, with the whole particles harbouring a porous
structure. The prepared pSi particles were then thermally oxidized to prevent the surface
degradation in aqueous media [30]. An increase in oxidation efficiency was confirmed by
following the augmentation of broad O-Si-O peaks under Raman spectroscopy at 320 cm−1

(scissoring vibration) and at 468 cm−1 (bending vibration) (Figure 2). This oxidation
procedure increased the stability and solubility of the particles [16,34].
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particle formation by sonication).

3.2. Drug Loading and Release Kinetics

The assessment of TC loading by UV-Vis spectroscopy revealed an average TC loading
of 45% in pSi particles (w/w). In addition, the maximal possible loading determined
according to porosity (70–75%), molecular weight (MWCinnam = 132 g/mol), density
(dCinnam = 1.05), and dilution of pSi-TC particles. According to this, the maximal theo-
retical loading was found to be 0.3 g TC/g of particles.

HPLC was used to track the drug release kinetics in PBS over 14 days of analysis at
four time points (Figure 3). Samples of supernatants collected after day 1, day 4, day 8 and
day 14 were analyzed by HPLC for TC concentration based on the determined Retention
Time, and according to the area under the curve. HPLC calibration allowed to determine
Retention Time RT = 3.51 min for TC and RT = 3.40 min for cinnamic acid, with the
calibration curve according to the concentration. This concentration can be proportionally
related to the area under the curve according to Beer-Lambert law, thus permitting the
assessment of even small concentrations.

The TC concentrations recovered at the different time points were Cd1 = 10 mg/L,
Cd4 = 3.5 mg/L, Cd8 = 2.3 mg/L and Cd14 = 1.2 mg/L, as measured with the 3.51 min peak.
Another peak was observed at 3.40 min, corresponding to cinnamic acid, a degradation
product of cinnamaldehyde (oxidized form of cinnamaldehyde). The concentration of
cinnamic acid increased over time, while the cinnamaldehyde concentration decreased.
Thus, the drug release kinetics showed a sustained and controlled release of TC from
the pSi over a period of 14 days. Nevertheless, from the kinetics modelling (Figure 4)
it has been observed that the pSi-TC exhibited Korsmeyer–Peppas kinetic as the best-fit
model (R2

adj) = 0.998, n = 0.228, which confirmed that the pSi-TC formulation followed a
pseudo-Fickian transport [35].



Pharmaceutics 2022, 14, 1428 7 of 14
Pharmaceutics 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 3. HPLC analysis of trans-cinnamaldehyde release over time. (a) Analysis of supernatants 
with representative chromatograms after one, four, eight, and fourteen days. The peak at 3.40 min 
and 3.51 min correspond to cinnamic acid and trans-cinnamaldehyde respectively. Trans-cinnamal-
dehyde release is maximal after one day, and decreases over time, with a slight release still visible 
after 14 days. (b) Cumulative drug release pattern of pSi-TC NPs, depicting that pSi-TC NPs able to 
deliver TC over a 14-day period of sustained release manner. 

The TC concentrations recovered at the different time points were Cd1 = 10 mg/L, Cd4 
= 3.5 mg/L, Cd8 = 2.3 mg/L and Cd14 = 1.2 mg/L, as measured with the 3.51 min peak. An-
other peak was observed at 3.40 min, corresponding to cinnamic acid, a degradation prod-
uct of cinnamaldehyde (oxidized form of cinnamaldehyde). The concentration of cin-
namic acid increased over time, while the cinnamaldehyde concentration decreased. Thus, 
the drug release kinetics showed a sustained and controlled release of TC from the pSi 
over a period of 14 days. Nevertheless, from the kinetics modelling (Figure 4) it has been 
observed that the pSi-TC exhibited Korsmeyer–Peppas kinetic as the best-fit model (R2adj) 
= 0.998, n = 0.228), which confirmed that the pSi-TC formulation followed a pseudo-Fick-
ian transport [35]. 

 
Figure 4. Graphs showing different drug release kinetic models for pSi-TC nanoparticles during the 
14 days.  

Figure 3. HPLC analysis of trans-cinnamaldehyde release over time. (a) Analysis of supernatants
with representative chromatograms after one, four, eight, and fourteen days. The peak at 3.40 min and
3.51 min correspond to cinnamic acid and trans-cinnamaldehyde respectively. Trans-cinnamaldehyde
release is maximal after one day, and decreases over time, with a slight release still visible after
14 days. (b) Cumulative drug release pattern of pSi-TC NPs, depicting that pSi-TC NPs able to deliver
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3.3. FTIR-Spectra of Trans-Cinnamaldehyde Loaded pSi Particles

The surface functional groups and chemical interaction of pSi and the pSi-TC were
evaluated by FTIR spectroscopy (Figure 4). The broad band at 1083.19 cm−1 is attributed to
Si-O-Si asymmetric stretching; the sharp peaks at 796 cm−1, 964.99 cm−1, and 470.82 cm−1

correspond to the O-Si bond, observed in the spectrum of pristine pSi particles [36]. In
the pure TC spectrum, 3008 cm−1 is ascribed to the aromatic C–H bond; 2924 cm−1 due
to the =C–H bond; 2854 cm−1 is assigned to the C–H bond of the carbonyl groups [25].
It was observed that in the TC-loaded pSi particles, all the peaks remained intact, and
the 3008 cm−1 and 2924 cm−1 peaks were suppressed because of the high-intensity pSi
particles (Figure 5). Thus, from the FTIR-spectra it is evident that pSi-particles are stable
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after the TC loading and there is no strong covalent chemical bond between the pSi and TC,
thereby facilitating drug release.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

3.3. FTIR-Spectra of Trans-Cinnamaldehyde Loaded pSi Particles 
The surface functional groups and chemical interaction of pSi and the pSi-TC were 

evaluated by FTIR spectroscopy (Figure 4). The broad band at 1083.19 cm−1 is attributed 
to Si-O-Si asymmetric stretching; the sharp peaks at 796 cm−1, 964.99 cm−1, and 470.82 cm−1 
correspond to the O-Si bond, observed in the spectrum of pristine pSi particles [36]. In the 
pure TC spectrum, 3008 cm−1 is ascribed to the aromatic C–H bond; 2924 cm−1 due to the 
=C–H bond; 2854 cm−1 is assigned to the C–H bond of the carbonyl groups [25]. It was 
observed that in the TC-loaded pSi particles, all the peaks remained intact, and the 3008 
cm−1 and 2924 cm−1 peaks were suppressed because of the high-intensity pSi particles (Fig-
ure 5). Thus, from the FTIR-spectra it is evident that pSi-particles are stable after the TC 
loading and there is no strong covalent chemical bond between the pSi and TC, thereby 
facilitating drug release. 

 
Figure 5. FTIR spectrum of pSi, TC and TC-loaded pSi. 

3.4. Sub-Inhibitory Concentration of pSi-TC Potently Inhibits Biofilms and Acid Production 
Microbial growth studies showed that 0.5 and 1.15 mg/mL pSi-TC inhibited S. mutans 

by 78% and 85%, respectively, and 97% and 98%, respectively, for C. albicans (Figure 6a). 
Concentrations below 0.5 mg/mL exhibited minimal growth inhibition of both species. It 
has been shown previously that cinnamaldehyde at >0.5 mg/mL and 0.6 mg/mL is lethal 
to S. mutans [37] and C. albicans [38,39], respectively. The as-prepared pSi particles had no 
effect on planktonic cells (Figure S1). Most pathogens develop an antimicrobial resistance 
to conventional antimicrobials as these drugs target the growth of the microbes rather 
than the virulence pathways [40]. Furthermore, thwarting biofilm assembly could be a 
more promising approach to caries prevention than indiscriminate microbicidal activity. 
Therefore, we interrogated if sub-inhibitory concentrations of pSi-TC, i.e., concentrations 
below 0.5 mg/mL, could inhibit biofilms. 
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3.4. Sub-Inhibitory Concentration of pSi-TC Potently Inhibits Biofilms and Acid Production

Microbial growth studies showed that 0.5 and 1.15 mg/mL pSi-TC inhibited S. mutans
by 78% and 85%, respectively, and 97% and 98%, respectively, for C. albicans (Figure 6a).
Concentrations below 0.5 mg/mL exhibited minimal growth inhibition of both species. It
has been shown previously that cinnamaldehyde at >0.5 mg/mL and 0.6 mg/mL is lethal
to S. mutans [37] and C. albicans [38,39], respectively. The as-prepared pSi particles had no
effect on planktonic cells (Figure S1). Most pathogens develop an antimicrobial resistance
to conventional antimicrobials as these drugs target the growth of the microbes rather
than the virulence pathways [40]. Furthermore, thwarting biofilm assembly could be a
more promising approach to caries prevention than indiscriminate microbicidal activity.
Therefore, we interrogated if sub-inhibitory concentrations of pSi-TC, i.e., concentrations
below 0.5 mg/mL, could inhibit biofilms.
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Figure 6. Effect of pSi-TC on (a) planktonic S. mutans and C. albicans cultures. Concentrations ranging
from 1.15–0.009 mg/mL were tested and showed a reduction in growth at 0.5 and 1.15 mg/mL for
both S. mutans and C. albicans when compared to the control, (b) heatmap representing the biomass
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of S. mutans, C. albicans mono-species and in combination, showing significant reduction in biomass
when compared to control (c) microbial composition of the dual-species biofilm: Log10 changes in
a number of C. albicans and S. mutans after treatment, shows a significant reduction in cell number,
(d) pH of the spent media showing the reduced acid accumulation when compared to control, denoted
by neutral pH when treated with pSi-TC. *** denotes p ≤ 0.0005, ** denotes p ≤ 0.005, * denotes
p ≤ 0.01, ns denotes not significant p > 0.05.

Notably, 0.25 mg/mL significantly reduced biofilm development (p ≤ 0.05) in com-
parison to the control, whereas in S. mutans and C. albicans mono-species biofilms, a 50%
biomass reduction was observed at concentrations of 0.25 mg/mL and 0.009 mg/mL, re-
spectively (Figure 6b). Additionally, pSi-TC resulted in a 4.3 log reduction in C. albicans and
a 1.5 log reduction in S. mutans (Figure 6c) within the biofilms developed on hydroxyapatite
discs. Taken together, these results indicate that the reduction in biofilm biomass by pSi-TC
is due to a reduction in the cell numbers, as the cells were no longer held together by the
biofilm matrix. This hypothesis is supported by the microscopic images, wherein biofilms
developed in the presence of biofilm inhibitory concentrations of pSi-TC for dual- (Figure 7)
and mono-species biofilms (Figure 7) showed scarce and scattered S. mutans and C. albicans
cells with no dense aggregates or matrix. On the other hand, the control group showed
dense aggregates of cross-kingdom biofilms, held together by the extracellular matrix.
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Figure 7. Scanning Electron Microscopic examination of biofilms of S. mutans, C. albicans and Dual-
species biofilms with and without treatment with pSi-TC, showing dense biofilm aggregates with a
thick biofilm matrix in the untreated control, while pSi-TC treated biofilms show scattered microbial
cells and an overall reduction in the number of cells, indicating no biofilm formation.

In cariogenic biofilms, a low pH due to acid production causes tooth demineralization
which eventually leads to irreversible cavity formation [41]. In oral microbial communi-
ties, S. mutans can efficiently ferment a wide range of sugars via the glycolytic pathway,
thereby releasing lactic acid. Such acid production is further enhanced in presence of
C. albicans [41–43]. Our results showed a moderate, but significant increase (p ≤ 0.005) in
the pH of the spent media, indicating decreased acid production within biofilms that were
exposed to pSi-TC (Figure 6d). pSi-TC also reduced lactic acid production by 25.11% in
dual-species biofilms (Figure S2).
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The concentration of TC in 0.25 mg/mL of pSi-TC is 87.5 µg/mL. This is an important
finding since a six-fold reduction in the TC concentration was sufficient to inhibit dual-
and mono-species biofilms of S. mutans compared to 500 µg/mL of TC needed to inhibit
S. mutans biofilms and acid production as reported previously [11]. The improvement in
the antibiofilm and anti-virulence efficacy of TC may be attributed to its reduced hydropho-
bicity when encapsulated in pSi-particles, thereby increasing its availability in biofilms.
Furthermore, oxygenating the pSi particles has been shown to increase the wettability of
hydrophobic compounds [15,16]. Therefore, it is apparent that the controlled drug-releasing
mechanism and close microbial interactions of pSi-TC are effective against dual-species
cross-kingdom biofilms containing S. mutans and C. albicans. Taken together, our pheno-
typic results clearly demonstrate that pSi-TC prevented biofilm development and inhibited
its caries-related virulence phenotype (acid production).

3.5. Gene Expression Analysis

To understand the underlying mechanism of these biofilm-inhibitory and acid producti
on-reducing responses of pSi-TC, gene expression analysis was performed (Figure 8). qRT-
PCR analysis showed that pSi-TC significantly downregulated (p < 0.05) the S. mutans
genes that regulate inter-species communication and biofilm development (~1.5 fold)
(LuxS), genes governing heat and acid-induced stress (>2.5 fold) (DnaK and AtpD) [11],
and oxidative stress tolerance (two-fold) (Nox1) [44]. The LuxS/AI-2 signalling is a major
quorum-sensing pathway in S. mutans and controls interspecies biofilm formation, acid
tolerance, and stress tolerance mechanisms [45], which were significantly downregulated
(p < 0.05), corroborating strongly with our phenotypic results.
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Figure 8. Gene expression in S. mutans and C. albicans after treatment with pSi-TC.

Notably, pSi-TC also significantly downregulated the genes that encode for Glucosyl
transferases (>2.5 fold) (Figure 8). The genes GtfB and GtfC contribute markedly to glucan
production, which forms the bulk of the EPS matrix. In addition, these genes also regulate
biofilm development and facilitate bacterial adhesion to the salivary pellicle and micro-
colony formation, which further enhance the adhesion of C. albicans to the biofilms [46,47].
In fact, it has been shown that a GtfB mutant strain of S. mutans was unable to syner-
gize with C. albicans, preventing the development of serious carious lesions in animal
models [42]. Furthermore, C. albicans also produces glucans, which are regulated by Bgl2,
Phr1 and Phr2 genes, all of which were significantly downregulated by pSi-TC [48–50].
C. albicans also activates S. mutans GtfB to produce more glucans, forming a well-organized
biofilm model [45]. By reducing the number of C. albicans cells by >4 log in dual-species
biofilms, it is likely that pSi-TC prevented the synergism between S. mutans and C. albicans
by inhibiting the glucan synthesis which leads to decreased adhesion to the substrate.
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While we did not characterise the cytotoxicity in this study, there is ample evidence
from us and others, to support that pSi and TC are both remarkably safe compounds. The
biocompatibility of pSi to several cell types has been demonstrated previously by us [51–53]
and others [54]. In fact, pSi is considered so cytocompatible, that it is a recommended
scaffold for the adhesion and proliferation of stem cells. Well-established evidence also
shows that pSi is non-toxic, bioresorbable, and biodegradable. It degrades into silicic acid,
which is a major form of silicon in the human body [51,55]. Similarly, TC is a food-derived
constituent and is categorised by the U.S. FDA as Generally Recognised as Safe (GRAS).
We [11] and others [56] have previously reported the excellent biocompatibility of TC to
macrophages at concentrations significantly greater than those used in this work.

A limitation of this work was that we used a representative cross-kingdom biofilm
that is typical of early childhood caries. While the use of microbes from two kingdoms
strengthens the validity of the results, it does not recapitulate the complexity of the oral
ecosystem and the caries microbiome, considering that oral biofilm houses more than
700 microbial species. Thus, further studies will interrogate the effects of pSi-TC on complex
biofilm models in the presence of salivary conditions to better replicate the host environment.
Such studies will provide insights into how pSi-TC can modulate microbial ecology.

4. Conclusions

This pioneering in vitro study demonstrated that:

1. Porous silicon particles are an innovative and effective approach to carrying and
releasing TC.

2. pSi-TC successfully inhibited the development of cross-kingdom biofilms of S. mutans
and C. albicans and its acid production.

The newly developed pSi-TC holds remarkable promise to be further developed as a
caries-preventive agent.
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