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Abstract: The present study aims to design, develop and characterize kNGR (Asn-Gly-Arg) peptide-
conjugated lipid–polymer-based nanoparticles for the target-specific delivery of anticancer bioac-
tive(s), i.e., Paclitaxel (PTX). The kNGR-PEG-DSPE conjugate was synthesized and characterized
by using spectral analysis. The dual-targeted PLGA–lecithin–PEG core-shell nanoparticles (PLNs-
kNGR-NPs) were synthesized using a modified nanoprecipitation process, and their physiological
properties were determined. The results support that, compared to other NPs, PLNs-kNGR-NPs
are highly cytotoxic, owing to higher apoptosis and intracellular uptake. The significance of ratio-
nal nanoparticle design for synergistic treatment is shown by the higher tumor volume inhibition
percentage rate (59.7%), compared to other designed formulations in Balb/c mice in the HT-1080
tumor-induced model. The overall results indicate that the PLNs-kNGR-NPs-based hybrid lipid–
polymer nanoparticles present the highest therapeutic efficacy against solid tumor overexpressing
the CD13 receptors.

Keywords: kNGR peptide; hybrid nanoparticles; targeted therapy; intracellular delivery;
polymer-lipid CD13 receptor
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1. Introduction

Cancer is one of the leading causes of death throughout the globe. Scientists are explor-
ing new treatment possibilities for the successful management of cancer. Chemotherapy is
one of the important regimens for cancer therapy [1]. The limited success of conventional
monotherapy concurrent with toxicity and drug resistance led to the development of combi-
nation therapy. Nevertheless, commercially available cytotoxic agents possess several side
effects and create toxicity due to non-specificity towards normal and cancerous cells [2].
The targeted delivery system(s) has been explored specifically to target the tumor cells,
hence overcoming the side effects of conventional chemotherapy. These systems mainly
consist of targeting ligand, a carrier system, and bioactive moiety [3]. Many nanomodules
and newer fascinating devices, namely: liposomes, polymeric nanoparticles, dendrimers
or lipidic nanoparticles, polymer–lipid hybrid nanoparticles (PLNs), micelles, carbon nan-
otubes, and nanotubes have been crafted for enhancing the transport of therapeutic cargo to
treat the tumor cells [4–6]. These nanoparticles have been used for drug administration by
combining the advantages of polymeric core particles, liposomes, and polymer–lipid–PEG
hybrids [7]. They show significant benefits, such as higher drug loading, and can incorpo-
rate both hydrophilic and hydrophobic molecules [8–12]. These nanosystems consist of a
hydrophobic PLGA core, a lipid monolayer shell (lecithin) around the polymer core, and a
PEG-linked lipid interposed in the lecithin layer, which forms the outer of the nanocarrier
hydrophilic [13,14]. The lipid monolayer offers stability issues and outward diffusion
of the encapsulated drug, providing support for attachment of specific diseased ligands,
which aids in the targeted delivery of bioactives compounds [15,16]. The characteristics
of nanoparticles may be altered by changing the material composition to customize them
to specific medicinal needs. The PLNs emerged as a promising carrier system due to
their excellent stability and targeting abilities, as many ligands can be attached [17,18].
Numerous targeting alternatives have been discovered that selectively detect and bind to
the tumor cell receptors that are overexpressed [19,20]. CD13 is a multifunctional protein
receptor involved in tumor angiogenesis, invasion, and metastasis [21,22]. NGR-based
peptides have been used to deliver the cancer drug DOX, apoptotic peptides, and cytokines
such as the tumor necrosis factor for transporting the tumor or tumor vasculature and
augmenting the therapeutic efficacy [23,24]. The NGR (Asn-Gly-Arg) is a short peptide that
can recognize and bind with a specific isoform of CD13 receptors and has a high-affinity
interaction with the NGR peptide [25,26]. The broad usage of NGR peptide sequences
as ligands for NGR-targeted drug and gene delivery applications has been attributed to
CD13 proteins.

Paclitaxel (PTX)/Taxol (Figure 1) is an anticancer drug widely used for its significant
anti-cancerous activity, including melanoma, non-small cell lung carcinoma, head and
neck cancer, ovarian and breast cancer, and AIDS-related cancer [27]. However, PTX has
a shorter circulation half-life, low water solubility, and drug resistance, leading to side
effects. However, its clinical potential is compromised due to its side effects and nonspecific
transport in-vivo when delivered in conventional formulations [28]. The purpose of this
research is to provide proof-of-concept for the hypothesis that kNGR-modified PLGA-
Lecithin-PEG (PLNs-kNGR) nanoparticles containing paclitaxel can attach precisely to the
tumor endothelial cells and inhibit the proliferation of tumor cells. Here, HUVEC (Human
umbilical vein endothelial cell) and HT-1080 (Human fibrosarcoma cell line) were selected
to represent the blood endothelial cells and solid tumor cells, and used for further studies.
Furthermore, the in-vitro targeting properties of NGR-modified NPs were investigated by
membrane integrity assay, clonogenic assay, and cellular apoptosis. In addition, the in-vivo
antitumor abilities, plasma distribution study, and other toxicological parameters were
carried out on tumor-induced Balb/c mice bearing the HT-1080 tumor model.
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Figure 1. Chemical structure of paclitaxel/taxol.

2. Materials and Methods
2.1. Materials

Paclitaxel (PTX) and Poly-lactide/glycolide (PLGA) were gifted by the Sun Pharma ad-
vanced research lab, Vadodara, India. kNGR peptide was synthesized and purchased from
USV Ltd. Mumbai, India. 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy
(polyethylene glycol)-200] was procured from Avanti, USA. Fluorescein isothiocyanate
(FITC), DNAse-free RNAse and 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) and Propidium iodide (P.I.) were procured from Sigma Aldrich, St. Louis,
MO, USA.

2.2. Synthesis and Characterization of DSPE–PEG–kNGR Conjugate

DSPE–PEG–kNGR conjugate was synthesized using kNGR peptide and DSPE-PEG2000-
COOH with the previously reported method (Figure 2) [9]. FT-IR was used to characterize
the synthesized DSPE–PEG–kNGR (Thermo Nicolet Nexus 670, Madison, WI, USA).

2.3. Preparation and Physicochemical Characterization of Polymer–Lipid Hybrid N.P.s (PLNs)

PTX loaded PLNs were prepared by a modified nanoprecipitation technique as re-
ported previously in the literature. Polymer–lipid hybrid N.P.s (PLNs) were designed and
structured from Lecithin (P.C.), PLGA, and DSPE-PEG2000-COOH. Optimized polymer–
lipid hybrid N.P.s were characterized for shape and surface morphology by high-resolution
transmission electron microscopy (Leo 435 VP501B, Philips) [29]. Photon correlation spec-
troscopy (PCS) was used to assess particle size, zeta potential, and PDI using a Malvern
Zeta sizer at 25 ◦C and 120 s equilibrium time. The % entrapment efficiency was deter-
mined with the HPLC system (Shimadzu, Japan) following centrifugation (25 × 103 rpm
for 30 min) [30]. The efficiency and density of kNGR on the PLNs’ surface were accessed
using the CBQCA Protein Quantitation Kit [31]. The release of PTX from LPNs was deter-
mined as reported in previous studies in phosphate (pH 7.4) and phthalate buffer (pH 5.0).
The adsorption of protein on the surface of PLNs and hemolytic toxicological studies were
also performed by the previously reported methods (Supplementary Materials).

2.4. Cell Culture

The current work used the human fibrosarcoma cell line (HT-1080) and human um-
bilical vein endothelial cells (HUVEC cells) obtained from the National Centre for Cell
Science in Pune, India. In a 5 percent CO2 incubator, cells were incubated in a new DMEM
medium with 10% FBS. First, the culture flask was removed from the culture cab without
causing any disruption to the media, and the surface was wiped with 90% alcohol. Next,
the medium was removed, and TPVG solution was used to rinse it (0.2 percent trypsin,
0.02 percent EDTA, 0.05 percent glucose in PBS). Finally, the solution was withdrawn, 1ml
of TPVG solution was added, and the flask was held at 37 ◦C until the cells were detached,
after which fresh medium supplements (pH 7–8) were added, aspirated, distributed into
new flasks, and transferred to the CO2 incubator at 37 ◦C and 5% CO2.
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Figure 2. Graphical scheme of synthesis of the DSPE-PEG-kNGR conjugate.

2.5. Trypan Blue Exclusion Assay and Clonogenic Assay

The anticancer activity of nanoparticulate systems was tested using the previously
disclosed Trypan blue exclusion assay and the previously reported technique [32,33]
(Supplementary Materials).

2.6. Cell Apoptosis and Cytotoxicity Assay

The cell cytotoxicity tests were carried out on both HT-1080 and HUVEC cells.
5 × 103 cells per well were sown in a 96 well flat-bottom plate and allowed to mature
for 24 h. The apoptosis activity of the cells was assessed by seeding the cells in 96 well
flat-bottom plates containing a coverslip with 2 × 105 cells /well at 37 ◦C for 24 h [34].

2.7. Cell Cycle Analysis

A cell cycle study was performed on HT-1080 cells, seeded at a density of
5 × 106 cells per well in a 6-well plate and allowed to grow for 24 h, incubated with
1 mL media containing formulations further incubated for 36 h. The cells were washed
in PBS and treated with trypsin-EDTA (200 µL) before being collected and centrifuged
for 5 min at 1500 rpm after the media was removed. Cells were resuspended in cold PBS,
vortexed, and 2 mL absolute ethanol was added drop-by-drop to achieve a final concentra-
tion of 70% v/v. Cells were incubated for 15 min at 4 ◦C, and then resuspended in 250 µL
staining PBS solution (RNAse A (0.1 mg/mL), Triton-X 100 (0.05% v/v) and PI (10 µg/mL).
After incubation for 1hr at R.T. in the dark, cells were analyzed with BD FACS (Bioscience,
USA) after 1 h incubation at room temperature. Data were recorded and analyzed using
Cell quest software.



Pharmaceutics 2022, 14, 1401 5 of 18

2.8. Cellular Uptake of PLNs and Competition Assay

The cellular uptake assessment and competition assay were performed using HT-1080
cells as per the reported procedure.

2.9. In-Vivo Studies

The Institutional animal ethical committee of Dr. Harisingh Gour University, Sagar
(M.P.), authorized the in-vivo experimental procedure for animal experiments through
letter no. Animal Eths. Comm.11/10/87, and the investigations were carried out according
to the protocol approved by the CPCSEA committee.

2.10. In-Vivo Antitumor Activity

Balb/c mice (6–8 weeks, 20–25 gm) harboring HT-1080 cells were used to test the
antitumor effectiveness. 2 × 106 cells were injected S.C. in the flank of mice. The day
when the tumor volume reached about 100 mm3 was designated as day 0 (Supplementary
Materials). Mice were randomly divided into groups as per approved protocol (n = 9) and
treated with one of the dosing regimens. The animals of each group were treated with
a 4-day gap with each respective formulation by tail vein injection. Tumor growth and
weight loss were monitored and measured, and survival time was assessed. In addition,
the percentage regression of tumor volume (P.I.) and percentage tumor weight inhibition
(W.I.) were calculated [35].

2.11. Biodistribution Studies and In-Vivo Toxicological Parameters

The biodistribution of PTX-loaded formulations in plasma and tissue was performed
on tumor-induced Balb/c mice. In addition, the various toxicological parameters, such as
hematological, nephrotoxic, and hepatotoxic effects, were also performed on Balb/c mice
(Supplementary Materials).

2.12. Data Analysis

All the results are expressed as mean ± standard deviation. The treated groups were
compared to the control by analysis of variance (ANOVA), following Dunnet’s test. The
statistical analysis was carried out using Instat 2.1 software, Graph Pad Software Corp.,
San Diego, CA, USA. The p-value < 0.05 was considered significant.

3. Results
3.1. Synthesis and Characterization of DSPE–PEG–kNGR Conjugate

To enhance the specificity and targeting efficiency against the CD13 receptor over-
expressed on HT-1080 and HUVEC cells, the kNGR peptide was conjugated to the carboxyl
group of DSPE-PEG-COOH through the NHS and DCC method. The detailed analysis was
obtained on a supplementary file (Figure S2).

Analysis of the product by FT-IR showed important peaks for DSPE–PEG–kNGR
at 1745 cm−1 (ester conjugated C=O), 2851 and 2929 cm−1 (aromatic C=C bending and
stretching), 807.5 cm−1 (aromatic C-H bending), 3327 cm−1 (N-H stretch of primary amine
and amide), and 1418 cm−1 (C-N stretching) (Figure S1).

3.2. Physicochemical Characterization of PLNs

The modified nano-precipitation technique was used to fabricate self-assembled PLNs
with an inner polymeric PLGA core (hydrophobic), stealth shell of DSPE–PEG (hydrophilic
polymer), and lecithin monolayer at the interface of core and shell (Figure 3A). The aqueous
phase self-assembled on the surface of the hydrophobic PLGA core consisted of P.C. and
PEGylated phospholipids (DSPE–PEG2000) in a suitable molar ratio. It can provide the
aqueous solubility, composite integrity, and diffusion barrier for encapsulated drugs. The
lipid aided the thermal and mechanical energy and scattered as a layer around the PLGA
core [36]. The hydrophilicity of PLNs restricts the RES uptake and accumulation of the
PLNs, acting as a linker for surface conjugation. The morphology of PLNs-kNGR was
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observed using SEM, which showed a smooth, spherical shape, nanometric in size range
(Figure 3B). Table 1 summarizes the physicochemical features of the PLNs. The mean
diameter of ligand-conjugated PLNs had a larger size, 205 nm, with a higher drug %
EE 82.21% compared to unconjugated PLNs. In addition, the ligand-conjugated PLNs
demonstrated slightly more negative zeta potential.
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nanoparticles (B) SEM photograph of PLNs-kNGR.

Table 1. Physicochemical characteristics of various PTX-loaded NPs.

Formulation Code Size (nm) PI (Polydispersity
Index)

Zeta
Potential

(mV)

%EE
(Entrapment
Efficiency)

CE%
(Conjugation

Efficiency)

Surface
Density (P)

(Average
Distancein

nm) D

PTX-NPs
(Polymer-based
nanoparticles)

163.5 ± 5.52 0.128 ± 0.011 −22.4 ± 1.8 72.24 ± 4.43 — — —

PLNs (Polymer–lipid
hybrid nanoprtaicles

without ligand)
178.8 ± 8.41 0.126 ± 0.012 −26.6 ± 1.9 78.88 ± 5.38 — — —

PLNs-kNGR
(Ligand-conjugated

Polymer–lipid hybrid
nanoprtaicles)

205.1 ± 9.1 0.117 ± 0.011 −31.3 ± 2.3 82.21 ± 3.75 34.7 198 ± 6.8 16 + 1.4
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As indicated in Table 1, the effectiveness of kNGR peptide conjugation was 34.7 percent,
while the surface density on the PLNs’ surface was 198. This is due to the multivalent
array of kNGR peptidic ligand on the surface of N.P.s, which allows for better binding to
CD13 receptors. As shown in Figure S2, the PLNs and PLNs-kNGR exhibited an initial
fast release, followed by sustained drug release from PLNs at pH 7.4 and pH 5.0. About
27.7% PTX from targeted kNGR-oriented PLNs was released in PBS at pH 7.4 (Figure S2a),
while 46.5% of the drug was removed from PLNs-kNGR at pH 5.0, respectively, in 24 h
(Figure S2b).

The plasma protein adsorption studies suggest that the particle size of PLNs and PLNs-
kNGR remained nearly unchanged after 24 h incubation with either 5% FBS or 2% BSA
media, due to steric prevention of outer PEG; the adsorption of protein of the plasma is not
permitted, hence clumping could be prevented (Figure S3). The hemolytic study suggests
that in the case of PLNs-NPs and ligand-conjugated N.P.s (PLNs-kNGR), considerably
decreased hemolysis is observed at all concentrations (Figure S4). The presence of the PEG
layer and ligand moiety on the PLNs surface accounts for the lower hemolytic activity.

3.3. Cell Membrane Integrity and Anticancer Activity

Figure S5 presents the normalized membrane integrity in the case of PLNs-kNGR-
NPs on prolonged incubation. Among the PTX formulations, PLNs-kNGR-NPs showed a
higher diminishing effect on membrane integrity. When administered in the concentration
range of 2.5 µg/mL in HT-1080 cells, the PLNs-kNGR produced much greater hazardous
and cell-eradicating outcomes. While in the case of HUVEC cells the PLNs-kNGR-based
treatment presented lower PE 1.54 and 1.34-fold than PTX-NPs and PLNs-based treatments
(Figure S6).

3.4. Evaluation of Cell Apoptosis Activity

The apoptotic morphology of HT-1080 and HUVEC cells was studied after different
formulations were treated. The results suggest that the percentage of the apoptotic cells
was much higher in the case of kNGR peptide-conjugated PLNs for both types of cells
(Figure 4).

3.5. Cytotoxicity Assay

PLNs-kNGR exhibited the maximum inhibitory effect on the proliferation of HT-1080
and HUVEC cells among various formulations at all concentrations (Figure 5). The anti-
proliferation ability of the different formulations followed the order: PLNs-kNGR > PLNs
> PTX-NPs > P.S (Table 2).

3.6. Cell Cycle Analysis

Because PTX inhibits cell division during the G2/M phase, the G2/M phase rise and
G2/M phase seizure suggest cell division inhibition and cell growth restraint [37]. Flow
cytometry was used to investigate the impact of several PTX-based PLNs on the cell cycle
in HT-1080 cells. As shown in Figure 6, treatment of HT-1080 cells with PTX formulations
for 36 h induced a G2/M phase arrest of the cell cycle significantly. The percentage of cells
with the G2/M phase was increased from 9.92 ± 0.78 (for the control group) to 20.17 ± 1.23
(for PLNs-kNGR). In the sub-G0/G1 phase, the DNA content in PTX-NPs, PLNs, and
PLNs-kNGR is observed at 23.54%, 28.16%, and 34.54%, respectively, at 36 h after treatment
with various PTX-based N.P.s, respectively (Figure 6A,B).

3.7. Cellular Uptake of N.P.s and Competition Assay

The qualitative cellular uptake of different FITC-loaded N.P.s in HT-1080 cells was
further detected using fluorescent microscopy, as shown in Figure 6C. The various cells
treated with another category of PLNs displayed fluorescence analogous to the type of
formulation. The results show that PLNs-kNGR exhibited higher fluorescence intensity due
to kNGR functionalization particles, considerably aiding the N.P.s uptake by HT-1080 cells
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(Figure 6C(c,d)). The presence of free kNGR peptide competitively inhibits the uptake of
kNGR-modified PLNs to a level lower than the nonspecific cellular uptake of unconjugated
PLNs (Figure 6e,f), which further confirmed that the uptake of PLNs-kNGR was specifically
done by the conjugation of peptide and CD13 proteins over-expressed on HT-1080 cells.
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Figure 5. In-Vitro cytotoxicity at different concentration of various PTX-based formulations as
free PTX solution (PS) PTX-based Nanoparticles (PTX-NPs), unconjugated polymer–lipid hybrid
nanoparticles (PLNs) and kNGR-conjugated polymer–lipid hybrid nanoparticles (PLNs-kNGR) of
PTX against different cells (a) 24 h (b) 48 h (c) 72 h and in HT-1080 cells (d) 24 h (e) 48 h (f) 72 h in
HUVEC cells.

Table 2. IC50 value of various PTX-loaded formulations on HUVEC and HT-1080 cell lines following
24, 48 and 72 h treatment, respectively.

Time (h)
HUVEC Cell Line, IC50 µg/mL) HT-1080 Cell Line, IC50 (µg/mL)

PS PTX-NPs PLNs PLNs-kNGR PS PTX-NPs PLNs PLNs-kNGR

24 22.5 23.5 18.8 9.6 18.5 19.8 12.9 7.6

48 19.3 13.8 8.9 3.3 17.2 9.0 5.6 2.4

72 12.1 7.2 2.72 0.98 9.25 4.8 2.2 0.85
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Figure 6. (A) Representative photomicrographs of cell cycle distribution in HT-1080 cells. Cells were
incubated in the presence of various PTX-loaded formulations at equivalent drug concentration of
0.5 µg/mL for 36 h and analyzed by flow cytometry. Areas P2, P3, P4 and P5, represent sub-G0/G1,
G0/G1, S and G2/M phases, respectively, of the cell cycle. (A) (a) Control (b) PS (c) PTX-NPs (d) PLNs
(e) PLNs-KNGR. (B) Kinetics of distribution of the G2/M and sub-Gs0/G1 population induced by
PTX-based formulations. (C) Cellular association of various formulations in HT-1080 cells (a–d) as
showed CLSM using FITC as the fluorescence probe. (a) PTX-NPs (b) PLNs (c) Targeted kNGR-PLN-
NPs in HT-1080 (d) kNGR-PLNs in the presence of excess kNGR in HT-1080 cells. Microscopic images
were taken as 20X magnification.

3.8. In-Vivo Antitumor Activity

In-vivo antitumor activity of PTX-based formulations was evaluated in Balb/c mice
bearing HT-1080 tumor cells. As seen in Figure 7a, all treatment groups slowed tumor
development compared to the control group; nevertheless, tumor sizes varied significantly
across groups. For example, the tumor volume of PTX-NPs, PLNs, and PLNs-kNGR was
1.22-fold, 1.38-fold, and 1.83-fold smaller than the P.S.-treated group (Figure 7a).
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Figure 7. In-Vivo antitumor efficacy of the different PTX formulations in HT-1080 cell-induced tumor
in Balb/c mice by changes of (a) tumor volumes (b) % body weight changes of Balb/c mice by
bearing HT-1080 tumor cells (c) the effect of free PTX and PTX-loaded formulations on volume
growth percentage inhibition (% VI) of different treatments (d) The effect of various formulations on
tumor weight growth percentage inhibition (%WI) of different treatments on growth of established
HT-1080 tumor-induced Balb c/mice at the end of therapy (e) Kaplan–Meier survival curves of
HT-1080 cell-bearing mice treated with different PTX formulations.

The body changes were used as one of the markers for safety. As shown in Figure 7b,
the bodyweight of mice treated with various PTX-based N.P.s increased. On the other hand,
the P.S.-treated group showed a serious decrease in body weight (13.4%) due to its lethal
side effects [38].
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The tumor volume of the PTX-treated groups was significantly lower than the saline group
after 28 days, and they followed the sequence: PLNs-kNGRs < PLNs < PTX-NPs < P.S. < saline.
The tumor volume growth percentage inhibition (%VI) of PLNs-kNGR, PLNs, PTX-NPs,
and P.S. were calculated to be 59.7%, 46.4%, 39.5%, and 26.2% (Figure 7c), while tumor
weight growth percentage inhibition (% W.I.) treated with PLNs-kNGR was 2.25-fold
higher than those of PTX-NPs (Figure 7d). The antitumor efficacy of the ligand-anchored
formulation was superior to that of other nanoparticulate systems or free PTX injection in
the mice model.

Kaplan–Meier survival curves’ survival experiment assay was performed on tumor-
induced Balb/c mice (Figure 7e). The median survival time of mice treated with kNGR
ligand-targeted PLNs-kNGR (49 days) was significantly extended than with physiological
saline (28 days, p < 0.001), free drug solution (P.S.) (32 days, p < 0.001), and PTX-NPs
(33 days, p < 0.001) and PEGylated PLNs (37 days, p < 0.001) through log-rank analysis,
respectively (Table 3).

Table 3. The effect of free PTX drug and PTX-loaded PLNs on tumor volume growth inhibition (%VI),
tumor weight growth percentage inhibition (%WI), and survival time of different treatments on
growth against HT-1080 tumors in Balb c/mice at the end of therapy. ns = not significant, ** p < 0.01,
*** p < 0.001.

Formulation
Code

Dose
(mg/kg)

%VI %WI
Median
Survival

Time (days)

Mean
Survival

Time (days)

Standard
Error

95%
Confidence in

Interval

Increase in
Survival

Time (% IST)

Log Rank Test

Saline PS PTX-NPs PLNs

Saline — — — 28 28.3 0.516 27.791–28.875 — — — — —

PS 10 26.2 ± 1.2 14.6 ± 1.0 32 31.7 0.422 30.583–32.751 14.3 ** p < 0.01 — — —

PTX-NPs 10 39.5 ± 1.5 22.8 ± 1.4 33 32.7 0.422 31.583–33.751 17.9 *** p < 0.001 ns (p >0.05) — —

PLNs 10 46.4 ± 1.7 31.6 ± 1.7 37 36.7 0.76 34.712–38.621 32.1 *** p < 0.001 *** p < 0.001 *** p < 0.001 —

PLNs-
kNGR 10 59.7 ± 2.1 51.3 ± 1.9 49 49.2 0.477 47.940–50.394 75 *** p < 0.001 *** p < 0.001 *** p < 0.001 *** p < 0.001

3.9. Biodistribution Studies and In-Vivo Toxicological Parameters

The curves showing blood clearance for PTX-loaded N.P.s after i.v administration
to Balb/c mice are shown in Figure S7. After 48 h, the % recovered dose in plasma for
PTX-based nanoparticulate formulations was 0.54 ± 0.03 and 1.56 ± 0.17 for PLNs and
PLNs-kNGR, respectively. No PTX was identified in the case of PTX-NPs after 24 h.

Figure S8 shows the biodistribution characteristics of the different formulations in
organs up to 48 h after injection. The accumulation of the PTX-NPs, PLNs, and PLNs-
kNGR within the tumors was 4.5, 21.4, and 23.9 times higher than that of the P.S.-treated
group at 24 h post-injection, respectively (Figure S8a) (Detailed information found in
supplementary file). Free PTX showed a noticeable reduction in blood cell count due to
direct exposure to blood cells for the designated period. The hematological toxicity of
several nanoparticulate formulations (such as PTX-NPs, PLNs, and PLNs-kNGR-NPs)
was reduced (Table S1). The serum urea and creatinine level elevation were much less in
animals administered with PLNs-kNGR-NPs formulation. The PLNs-kNGR-NPs (SGOT
12.8 ± 2.9 IU/L; SGPT 14.8 ± 2.6 IU/L; ALP 71.4 ± 6.4 IU/L concentration) revealed an
insignificant change in the activity of enzymes compared with control animals (Table S2).

4. Discussions

The progression of solid tumors has critically depended on getting adequate blood
supply by newly generated blood vessels. However, the proliferation of the endothelial
cells contributed to tumor angiogenesis. A previous study reported that among various
receptors, CD13 receptors are overexpressed on tumor angiogenic blood endothelial cells,
as well as in tumor cells, and play an important role in tumor angiogenesis, invasion, and
metastasis. It has been demonstrated that NGR peptides could bind to the CD13 receptors
at their presentation site. The kNGR is a novel peptide made up of 5 amino acids (KNGRG)
and presents higher tumor-targeting capability. Here, a novel dual-targeting polymer–
lipid hybrid nanoparticle was developed by conjugating with kNGR peptide, which was
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specifically bound to CD13 receptors and delivered the drug at the targeted site [39]. The
ex-vivo and in-vitro findings reveal that PLNs-kNGR enhanced cellular uptake in HT-1080
cells and HUVEC cells and their higher accumulation in HT-1080 cell-bearing tumor-
induced mice in-vivo. Nanoparticles conjugated with kNGR peptide resulted in a larger
particle size than unconjugated nanoparticles, due to the outer orientation of the kNGR
peptidic moiety. In addition, peptidic moiety resulted in the slightly more negative zeta
potential of ligand-conjugated PLNs than unconjugated PLNs. The PEG group facilitates
the presentation of the carboxylic acid on the N.P.s’ surface (Figure 8) [40].
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tumor cells and tumor endothelial cells.

The in-vitro release profile supported the initial fast release of surface-associated PTX.
In contrast, the sustained and controlled release depended on drug diffusion from within
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the inner core of hydrophobic PLGA. The lipid layer on the outer region of PLNs acts as a
boundary marker. It constrains water molecules away from the core, preventing hydrolysis
and erosion, ultimately slowing down drug release. The drug release results suggest that
PTX molecules remain encapsulated during circulation, causing lower systemic toxicity.
Furthermore, drug release was increased in acidic tumor environments and intracellular
organelles, owing to pH sensitivity [41].

The cytotoxicity of the free drug and PLNs-NPs was assessed using HT-1080 cells and
HUVEC cells [42,43]. The results indicate that the targeted system presented maximum
cytotoxicity effect, rather than HUVEC cells, due to the higher density of CD13 receptors in
HT-1080 cells [44]. The population-doubling rate of HUVEC cells is 30 h (longer cell cycle),
while HT-1080 doubles in 18 hrs. I and thus PTX-PLNs are more sensitive to HT-1080 cells.
The apoptosis study strongly demonstrated that among the various PTX-based N.P.s, the
PLNs-kNGR is the most efficacious formulation due to higher apoptosis in tumor cells [45].
The MTT and cell apoptosis assay confirmed that HT-1080 tumor cells were more sensitive
to PTX-based formulations [46].

The cell cycle analysis strongly demonstrated that among the various PTX-based NPs,
the PLNs-kNGR is the most efficacious formulation that induced cell growth arrest. The
data reveal that the enhanced cytotoxicity observed for targeted PLNs results from an
enhanced intracellular PTX concentration due to their receptor-mediated endocytosis and
confirmed their superior antitumor activity. Hence, the findings demonstrate that kNGR
peptide-mediated endocytosis of PTX-loaded PLNs play a pivotal role in PTX-induced
apoptosis and cell arrest in the G2/M phase [47]. Thus, the results show that cell cycle
arrest was formulation-dependent. Furthermore, the cellular uptake of PLNs in HT-1080
cells was enhanced by conjugating kNGR peptidic moiety. The results also state that the
internalization of PLNs-kNGR was ligand-dependent; in addition, pre-conditioning of
cells with kNGR peptides results in reduced uptake, as CD13 receptors were competitively
binding with kNGR peptide. To verify the dual-targeting effects of PLNs-kNGR in-vivo,
HT-1080 cell-induced tumor-bearing Balb/c mice were used. The PLNs show a greater
tumor growth inhibitory effect than free PTX. Enhanced accumulation through receptor-
mediated uptake in tumor cells may be linked to higher anticancer efficacy of the targeted
PLNs [48].

Furthermore, the results indicate that the targeting ligand kNGR could markedly
improve the antitumor effect of the PLNs-NPs. Compared to other treated groups, the %VI
and % W.I. was considerably greater after 28 days of experimental treatment due to the
superior antitumor efficacy of ligand-anchored formulations. Furthermore, compared to
other nanoparticulate systems, the PLNs-kNGR-treated group had considerably longer
animal survival times because of the enhanced concentration of PTX in the tumor tissue via
the EPR effect and ligand–receptor interaction [49].

The plasma concentration profile of PLNs and PLNs-kNGR indicated greater in-vivo
stability of the formulations, as the formulation has a longer systemic circulation time. This
suggests that nanoparticulate systems had slowed the drug release almost in a sustained
manner compared to other formulations [50]. The tissue biodistribution studies show that
the different extent in tumor PTX disposition was formulation design-dependent. The
targeted kNGR peptide-anchored PLNs presented maximum drug accumulation in tumor
tissue due to ligand–receptor interaction. Previous studies supported that combination
of passively targeted systems and actively targeted systems may alter the biodistribution
pattern of the encapsulated drug remarkably with enhanced antitumor efficacy.

The overall study findings reveal that kNGR peptide-mediated lipid–polymer-based
nanoparticles play an important role for targeting the tumor cells, as well as tumor endothe-
lial cells. Literature cited that CD13 receptors are overexpressed by both tumor cells and
tumor endothelial cells. Our ex-vivo studies also support that designed kNGR-conjugated
nanoparticles specifically bound to CD13 receptors and delivered the drug at the targeted
site and enhanced the therapeutic efficacy.
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5. Conclusions

The present study proposed and synthesized successfully engineered dual-targeting
PLNs-kNGR to augment the intracellular delivery of hydrophobic drugs, i.e., PTX. It was
concluded that kNGR-functionalized PLNs facilitated the intracellular delivery retention
of loaded PTX in HT-1080 cells and HUVEC cells that over-expressed CD13 receptors and
enhanced cytotoxicity and G2/M phase arrest well. Furthermore, the in-vivo study further
exhibited a higher survival period for tumor-induced mice in the case of PLNs-kNGR. As a
result, the current formulation of polymer–lipid hybrid N.P.s functionalized with kNGR
has a strong potential to be a more effective dual-targeting drug carrier(s) for treating
solid tumors.
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