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Abstract: Chronic inflammation plays a side effect on tissue regeneration, greatly inhibiting the
repair or regeneration of tissues. Conventional local delivery of anti-inflammation drugs through
physical encapsulation into carriers face the challenges of uncontrolled release. The construction of an
inflammation-responsive prodrug to release anti-inflammation drugs depending on the occurrence of
inflammation to regulate chronic inflammation is of high need. Here, we construct nanofiber-based
scaffolds to regulate the inflammation response of chronic inflammation during tissue regeneration.
An inflammation-sensitive prodrug is synthesized by free radical polymerization of the indomethacin-
containing precursor, which is prepared by the esterification of N-(2-hydroxyethyl) acrylamide with
the anti-inflammation drug indomethacin. Then, anti-inflammation scaffolds are constructed by
loading the prodrug in poly(ε-caprolactone)/gelatin electrospun nanofibers. Cholesterol esterase,
mimicking the inflammation environment, is adopted to catalyze the hydrolysis of the ester bonds,
both in the prodrug and the nanofibers matrix, leading to the generation of indomethacin and the
subsequent release to the surrounding. In contrast, only a minor amount of the drug is released
from the scaffold, just based on the mechanism of hydrolysis in the absence of cholesterol esterase.
Furthermore, the inflammation-responsive nanofiber scaffold can effectively inhibit the cytokines se-
creted from RAW264.7 macrophage cells induced by lipopolysaccharide in vitro studies, highlighting
the great potential of these electrospun nanofiber scaffolds to be applied for regulating the chronic
inflammation in tissue regeneration.

Keywords: enzyme-responsive drug release; anti-inflammatory; prodrug; electrospun nanofiber scaffold

1. Introduction

Inflammation is a protective response in human-beings that prevents higher organisms
from infection and injury [1]. The initial acute inflammatory response plays a vital role,
acting as an indispensable phase in tissue healing and regeneration [2–4]. However, if not
regulated tightly, acute inflammation may develop into chronic inflammation, which will
cause an excessive release of noxious by-products and eventually lead to chronic diseases
such as diabetic wounds [5,6], osteoarthritis [7,8], and others. Hence, it is important to
ensure tissue regeneration by regulating chronic inflammation at the correct timing [2].

Clinically, oral administration of nonsteroidal anti-inflammatory drugs (NSAIDs) is
often used to regulate inflammation, among which ibuprofen, indomethacin (IDCM), and
diclofenac are commonly used [9,10]. However, with the existence of the carboxyl moieties
in NSAIDs, long-term intake of NSAIDs can incur severe side effects [11,12], especially

Pharmaceutics 2022, 14, 1273. https://doi.org/10.3390/pharmaceutics14061273 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14061273
https://doi.org/10.3390/pharmaceutics14061273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-7209-7935
https://doi.org/10.3390/pharmaceutics14061273
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14061273?type=check_update&version=2


Pharmaceutics 2022, 14, 1273 2 of 15

dose-dependent gastrointestinal disturbances [13]. For this purpose, it is especially urgent
to alleviate the adverse effects of NSAIDs without limiting their anti-inflammatory activities.
Local delivery of drugs to the injured tissue was intensively studied in recent years through
physically loading drugs into various carriers for sustained release [14–16].

Additionally, anti-inflammation scaffolds have been constructed to regulate the in-
flammatory response during tissue regeneration. Among them, anti-inflammatory elec-
trospun nanofibers play vital roles in the regeneration of skin [17,18], bone [19,20], blood
vessel [21,22], and nerve [23,24] due to the nano-size architecture similar to the extracel-
lular matrix [25] capable of delivering many types of drugs and bioactive materials [26].
For example, polyurethane/pluronic F127 nanofibers containing peppermint extract (an
anti-inflammatory agent)-loaded-gelatin nanoparticles were prepared to promote dia-
betic wound healing [27]. Similarly, Lawsonia inermis was used as an anti-inflammatory
agent and added to the gelatin-oxidized starch to generate nanofibers through electrospin-
ning [28]. Additionally, the anti-inflammation drug ibuprofen was loaded into polylactic
acid nanofibers to inhibit the proliferation of inflammatory macrophages [29].

Despite these progresses, most of the reported drug release systems were based on
physical encapsulation to realize the release of the payloads to the tissues throughout the
regeneration period, instead of in an inflammation-responsive manner. One promising
solution to this problem represented by the prodrug strategies realized by grafting anti-
inflammatory drugs onto the backbone of polymers [30] or peptides [31,32] through covalent
bonding. Compared to normal tissues, inflammatory sites possess unique pathophysiologi-
cal factors, such as reactive oxygen species [33,34], faintly acidic microenvironments [35],
and higher levels of specific enzymes [36]. Among them, cholesterol esterase (CE), secreted
by monocyte-derived macrophages, gradually accumulates to a distinctly high concentration
around inflammatory sites as macrophages gather [37]. Particularly, CE has a remarkable
capacity to cleave ester bonds selectively [38,39]. In this case, the targeted release of NSAIDs
at the inflammatory sites can be achieved by covalently bonding NSAIDs onto polymer
chains through ester bonds, utilizing the carboxylic acid moieties [39–41], which will greatly
alleviate the adverse effects. For example, an anti-inflammatory polyprodrug was produced,
grafting the anti-inflammatory drug IDCM by redox-responsive bonds to amphiphiles,
achieving inflammation-triggered drug release characteristics [1]. Cui et al. produced an
inflammation-sensitive prodrug with ester-linked anti-inflammatory drugs that could be
cleaved by lipase, which is an important regulator during inflammation [40]. The selection
of polymeric matrices needs further improvement to enhance therapeutic efficacy.

In view of the wide application of electrospun nanofibers in tissue regeneration, it’s
feasible to use them as the matrix to load prodrugs. Especially, poly(ε-caprolactone) (PCL)
is a decent candidate for tissue application by virtues of its biocompatible, degradable, and
excellent electrospinning ability [42]. More importantly, the cleavage of ester bond in PCL
can be significantly facilitated under the catalysis of CE, leading to the degradation of the
polymer matrix and accelerated drug release. However, the deficiency in hydrophilicity
and biologically active motifs restricts PCL alone from applying in tissue engineering [6,43].
Compared with a single material, composite nanofibrous scaffolds produced from natural
and synthetic polymers provide better physicochemical properties, with the aim of satisfy-
ing the criteria of tissue regeneration [44]. Large numbers of studies employed PCL and
gelatin as the matrix of electrospun nanofibers because gelatin can enhance cell adhesion
and migration [45,46].

Herein, we present an efficient platform for the on-demand release of anti-inflammatory
drugs for chronic inflammation during tissue regeneration by integrating the inflammation-
sensitive prodrug with the electrospun nanofiber scaffold, as shown in Figure 1. N-(2-
hydroxyethyl) acrylamide (HEAA) was coupled with the anti-inflammation drug IDCM by
mild esterification reaction for the monomer, which was subsequently free radical polymer-
ized to obtain the inflammation-sensitive prodrug (PIDCM). Then, the anti-inflammation
scaffolds were successfully constructed by loading the prodrug PIDCM into the PCL/gelatin
electrospun nanofibers. CE, mimicking the inflammation environment, was adopted to
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catalyze the hydrolysis of the ester bonds both in the prodrug and the PCL/gelatin matrix,
leading to the generation of IDCM and the subsequent release to the surrounding. The
CE enzyme-triggered release profile of the anti-inflammatory drug IDCM from the scaf-
folds and the efficacy of the anti-inflammation scaffolds on relieving the inflammation in
lipopolysaccharide (LPS)-induced RAW264.7 cells model at the cellular level were studied.
The results demonstrate a significant difference in drug release, and much more IDCM
could be triggered to release from the scaffolds with the help of the CE enzyme. Further-
more, upon incubation of the scaffolds with LPS-induced RAW264.7 cells, the scaffolds
could effectively inhibit the cytokines secreted from the RAW264.7 cells and regulate the
inflammatory responses. This work offers a facile and widely-applicable strategy for the
fabrication of smart biomaterials with the stimuli-responsive capability to promote tissue
regeneration by regulating chronic inflammation.
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Figure 1. Schematic illustration of integrating inflammation-responsive prodrug with electrospun
nanofibers for anti-inflammation application. The synthesis procedure of inflammation-responsive
prodrug PIDCM, and schematic illustration of the enzyme-triggered release of IDCM from electrospun
nanofibers loaded with inflammation-responsive prodrug.

2. Materials and Methods
2.1. Materials

IDCM (99%) and N, N-Dimethylformamide (DMF, anhydrous, 99.8%) were purchased
from Aladdin (Shanghai, China) and Alfa Aesar (Heysham, UK), respectively. Azobi-
sisobutyronitrile (AIBN) and HEAA (98%) were purchased from TCI (Tokyo, Japan). N, N’-
dicyclohexylcarbodiimide (DCC, 99%) and 4-dimethylaminopyridine (DMAP, 99%) were pur-
chased from Acros Organics (Belgium). PCL (Mn = 80 kDa) was obtained from Sigma-Aldrich
(St. Louis, MI, USA). Gelatin (Type B) was obtained from Rousselot (Angoulême, France). Tri-
fluoroethanol (TFE) was purchased from Aladdin (Shanghai, China). LPS (L2880-10MG) and
CE (C9281-100UN) were purchased from Sigma-Aldrich (St. Louis, MI, USA). Cell counting
kit-8 (CCK-8) was purchased from WISSEN. Alpha minimum essential medium (α-MEM),
Dulbecco’s modified eagle medium (DMEM), phosphate buffer saline (PBS, pH = 7.4), and fe-
tal bovine serum (FBS) were purchased from Gibco (New York, NY, USA). MC3T3-E1 mouse
pre-osteoblasts cell, L929 fibroblast cell, and RAW264.7 mouse macrophages cell were pur-
chased from Peking Union Medical College Hospital. 4′,6-diamidino-2-phenylindole (DAPI)
was purchased from Solarbio (Beijing, China). Alexa Fluor 568-phalloidin was purchased
from Invitrogen (CA, USA). Interleukin (IL-6) ELISA kit was purchased from Neobioscience
(Shenzheng, China). Nitrite (NO) detection kit was purchased from Nanjing Jiancheng
Biology Engineering Institute (Nanjing, China).
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2.2. Fabrication of Prodrug Loaded Electrospun Nanofibers
2.2.1. Preparation of IDCM Monomer

The IDCM monomer (labeled as MIDCM) was synthesized by the esterification of
hydroxyl groups of HEAA with carboxyl groups of IDCM. Typically, 2.15 g of IDCM
(6 mmol), 2.07 g of HEAA (18 mmol), and 0.37 g of DMAP (3 mmol) were dissolved in
anhydrous DMF (30 mL) under stirring, followed by moving to an ice-water bath. Then
3.71 g of DCC (18 mmol) was added as a dehydration catalyst. After stirring for 15 min, the
temperature of the water bath was set at 40 ◦C. After 24 h, the reaction was stopped and
the crude product was obtained through precipitating in deionized (DI) water, followed by
purification using chromatography, leading to the final prodrug. The specific experimental
operation was carried out according to the previous report [39].

2.2.2. Preparation of IDCM Prodrug

MIDCM was polymerized by radical polymerization to prepare poly (MIDCM) (fur-
ther labeled as PIDCM) [39]. The molecular weight of PIDCM was controlled by varying
the reaction time. Briefly, 0.5 g of MIDCM (1.1 mmol) and 5 mg of AIBN (0.03 mmol) were
firstly dissolved in 5 mL of DMF under a nitrogen atmosphere and then sealed. After
stirring for 8 h and 36 h in an oil bath at 70 ◦C, respectively, the reactions were stopped,
and the solutions were precipitated in DI water. After drying under vacuum for 24 h,
PIDCM with two different molecular weights were obtained, and the Mn were measured
by gel permeation chromatography (GPC, Waters 1525–2414 system, Wasters Corporation,
Milford, MA, USA). Polystyrene and tetrahydrofuran were the standard reference and the
eluent for calibrating the GPC, respectively. The columns were Waters Styragel HT3 THF,
Waters Styragel HT4 THF, and Waters Styragel HT5 THF. The detector was the 2414 differ-
ential refractive index detector. The prodrugs with a molecular weight of about 3500 g/mol
and 1400 g/mol were prepared and labeled as PIDCM35 and PIDCM14, respectively.

2.2.3. Fabrication of Electrospun Nanofibers

PCL and gelatin were used as the matrix to fabricate the PIDCM prodrug-loaded
electrospun nanofibers. Electrospinning was carried out according to the previous re-
port [45,46], and the type of spinning machine was purchased from Beijing Xinrui Baina
Technology Co., Ltd. (TEADFS-103, Beijing, China). In brief, PCL and gelatin (50/50 w/w)
were dissolved in TFE to prepare the homogeneous electrospinning solution, and then
the prodrugs PIDCM35 and PIDCM14 in the range of 0–60 wt.% were separately added to
the electrospinning solutions. The solution was added to a 10 mL syringe and fed by a
syringe pump at a rate of 1 mL/h. At the same time, a roller wrapped with aluminum foil
was applied as the collector, and the rotating rate was set to 270 rpm. Between the needle
and the grounded collector, a high voltage (12 KV) was applied. The distance between
the needle and the ground collector was set as 15 cm. As shown in Table 1, the prepared
electrospun nanofibers with PIDCM35 of 20 and 60 wt.% were labeled as PGPI3520 and
PGPI3560, respectively. The electrospun nanofibers with PIDCM14 of 20, 40, and 60 wt.%
were labeled as PGPI1420, PGPI1440, and PGPI1460, respectively. As a control, PCL/gelatin
electrospun nanofiber was also prepared, which was labeled as PG0.

Table 1. The abbreviations for PGPI35 and PGPI14.

Abbreviations PIDCM35 (wt.%) PIDCM14 (wt.%)

PGPI3520 20 0
PGPI3560 60 0
PGPI1420 0 20
PGPI1440 0 40
PGPI1460 0 60
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2.3. Morphology Characterization of Electrospun Nanofibers

The morphology of the electrospun nanofibers was characterized by scanning electron
microscopy (SEM, S4800, Hitachi, Japan). The diameter of electrospun nanofibers on the
SEM micrographs was measured by Image J software according to the previous report [47].

2.4. Chemical Characterization of Electrospun Nanofibers

The surface characterization of electrospun nanofibers was investigated by energy
dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS), which could
provide the information of different elements on the surface. The Cl content of the electro-
spun nanofibers’ surfaces was investigated by EDS, which was carried out on a HORIBA
X-Max20 detector (HORIBA Corporation, Kyoto, Japan) attached to the SEM. At the same
time, the surface composition and functional groups of the electrospun nanofibers were
investigated by XPS, which was performed on an ESCALAB 250 (Thermo Electron Corpo-
ration, Waltham, MA, USA) according to the previous report [48,49].

2.5. Hydrophilicity Characterization of Electrospun Nanofibers

The water contact angles of the electrospun nanofiber scaffolds were determined
by a SL200A type Contact Angle Analyzer (SOLON TECH., Shanghai, China) at room
temperature according to the previous report [45].

2.6. Cytotoxicity and Proliferation of Cells on the Surfaces

MC3T3-E1 and L929 cells are typical cells for testing cytotoxicity [50,51]. The viability
of the cells proliferated on the electrospun nanofiber scaffolds loaded with PIDCM35 and
PIDCM14 were evaluated using MC3T3-E1 osteoblasts and L929 fibroblasts by using CCK-
8 assay, respectively. Briefly, the electrospun nanofiber scaffolds were cut into 13 mm
diameter sheets with a 13 mm diameter cutter, sterilized by an Ultraviolet lamp, then fixed
in a 24-well plate, and 4.0 × 103 cells were plated onto the surfaces of samples carefully,
followed by moving to an incubator at 37 ◦C. The number of cells that proliferated on
the scaffolds at a determined time interval (day 1, 3, 5, and 7) was quantified using
the CCK-8 assay referring to previous reports [39,52]. As for the electrospun nanofiber
scaffolds loaded with PIDCM35, the samples co-cultured with cells were firstly washed
with PBS three times, followed by fixing cell morphology via 3% glutaraldehyde. After
dehydration and lyophilization, the morphology of MC3T3-E1 cells on the scaffolds loaded
with PIDCM35 was observed by SEM. As for the electrospun nanofiber scaffolds loaded
with PIDCM14, the samples co-cultured with cells were washed with PBS three times, and
then L929 cells were stained by DAPI and Alexa Fluor 568-phalloidin and observed under
a fluorescent inverted microscope (Axio Observer 3).

2.7. Drug Release Profiles

The drug release profiles of the PGPI3520 and PGPI3560 were determined as follows.
Each sample was cut into 13 mm round discs, and all the samples were accurately weighed.
Then, the samples were incubated at 37 ◦C in 1 mL PBS (pH 7.4) with or without CE
(10 U/mL) to investigate the release kinetics of IDCM. High-performance liquid chromatog-
raphy (HPLC) was used to detect the amount of released IDCM [39]. The percentage of
IDCM release from triplicate samples was then determined based on the amount of IDCM
in the prodrug incorporated into electrospun nanofiber scaffolds.

2.8. In Vitro Anti-Inflammatory Activity

RAW264.7 cells were used to evaluate the anti-inflammatory effect of the electrospun
nanofiber scaffolds. Briefly, RAW264.7 cell suspension (5 × 105 cells/mL, 1 mL/well) was
added to a 24-well plate. After incubation for 24 h, LPS was added to the DMEM solution
with 10% FBS at a concentration of 5 µg/mL, followed by replacing the old culture medium.
After incubation for another 24 h, the LPS-treated RAW264.7 cells were incubated with PG0,
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PGPI3520, and PGPI3560 for 24 h and 48 h, respectively. Finally, the levels of IL-6 and NO in
the supernatants were determined by the ELISA kit and Griess reaction, respectively [39].

2.9. Statistical Analysis

All quantitative data were expressed as mean ± standard deviation. OriginPro 8 soft-
ware (Hampton, OriginLab) was used to perform the statistical analyses. The statistical
differences between independent samples were performed by using the student’s t-test.
* p < 0.05, ** p < 0.01, and *** p < 0.005 were regarded as statistically significant among
independent groups.

3. Results and Discussion
3.1. Characterization of Prodrug

To investigate the influence of the different molecular weights of prodrugs on the
anti-inflammatory properties of the electrospun nanofiber scaffolds: firstly, two PIDCM
prodrugs with the molecular weight of 1400 g/mol and 3500 g/mol were readily obtained
via free radical polymerization, respectively. The molecular weights of the two PIDCM
prodrugs were measured using GPC, as shown in Figure 2, indicating the low polydispersity
index. Then, the as-synthesized prodrug was incorporated with PCL/gelatin matrix to
prepare the PIDCM-loaded electrospun nanofibers through electrospinning.
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3.2. Characterization of Electrospun Nanofibers Loaded with the Prodrug
3.2.1. Morphology of the Electrospun Nanofibers

As shown in Figure 3a, SEM micrographs show that the PG0 nanofibers were ran-
domly arranged with smooth surfaces, whereas the surfaces of PGPI3520 and PGPI3560
nanofibers contained needle-like bumps, and the number of the bumps increased with
the increase in the content of PIDCM35. The average fiber diameters of PG0, PGPI3520,
and PGPI3560 were 0.58 ± 0.10, 0.63 ± 0.11, and 0.78 ± 0.26 µm, respectively, as shown
in Figure 3b. We also tested the fiber diameter distribution of PGPI3520 and PGPI3560
including the needle-like bumps in Figure S1, the average fiber diameters of PGPI3520
and PGPI3560 including the needle-like bumps were 0.72 ± 0.11 and 1.06 ± 0.27 µm, re-
spectively. On the contrary, SEM micrographs (Figure 3c) of the PGPI1420, PGPI1440, and
PGPI1460 nanofibers showed smooth topography and no apparent drug crystals. As shown
in Figure 3d, the average diameters of PGPI1420, PGPI1440, and PGPI1460 were 0.46 ± 0.17,
0.50 ± 0.09, and 0.76 ± 0.18 µm, respectively, and the diameters of the nanofibers were
increased with the increase in PIDCM14 content. Due to the higher molecular weight of
PIDCM35 than PIDCM14, it was easier for PIDCM35 to precipitate from the nanofibers
during electrospinning.
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3.2.2. Chemical Properties of the Electrospun Nanofibers

As shown in Figure 4a,c, the presence of Cl in PGPI3520, PGPI3560, PGPI1420, PGPI1440,
and PGPI1460 were revealed by EDS, and their atomic percentages were 0.44, 1.01, 0.52,
0.85, and 1.13 at.%, respectively. As for the Cl in PG0, the atomic percentage was only
0.01 at.%, which was attributed to impurities or test deviation. The presence of Cl elements
in PGPI3520, PGPI3560, PGPI1420, PGPI1440, and PGPI1460 electrospun nanofibers further
indicated that PIDCM was dispersed within the PCL/gelatin matrix completely at the
molecular level.
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To further confirm the successful preparation of the PIDCM loaded into electrospun
nanofibers, the surface composition and functional groups on electrospun nanofibers were
investigated by XPS. Figure 4b,d show the C 1s spectra of the electrospun nanofibers. In the
C 1s spectrum, the surface of pure PG0 nanofibrous mats presented four expected peaks
with binding energy at 283.7, 284.6, 286.8, and 287.6, indicating the existence of four carbon
regions of C–C, C–N, N–C=O, and O–C=O, respectively. After loading with PIDCM35 and
PIDCM14, the chemical compositions of the nanofiber surfaces were significantly changed.
For the other five samples, one new C 1s peak with the binding energy of about 285.4, 285.4,
286.55, 286.55, and 286.65 eV appeared, which could be attributed to the new carbon region
of C–Cl for PGPI3520, PGPI3560, PGPI1420, PGPI1440, and PGPI1460, respectively. These
results suggested that PIDCM35 and PIDCM14 were loaded in the PCL-gelatin nanofibers.
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3.2.3. Effects of PIDCM Encapsulation on Hydrophilicity of Scaffolds

Hydrophobicity of materials plays a vital role in tissue regeneration [45]. The hy-
drophilicity of the scaffolds was investigated by the water contact angles test, as shown
in Figure 5. Among them, the water contact angles of the electrospun nanofiber scaffolds
loaded with PIDCM35 or PIDCM14 were increased with the increase in PIDCM content.
Specifically, PGPI3520 and PGPI1420 had good hydrophilicity, and their water contact angles
were 26.0◦ and 28.5◦, respectively, smaller than the contact angle of PG0 without drug
loading. The hydrophilicity property of the scaffolds could provide them with a stronger
protein adsorption capability, which plays an important role in providing cues to interact
with cells and surrounding tissues.
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3.3. In Vitro Biocompatibility of Electrospun Nanofibers Loaded with Prodrug

For cell-material interactions, attachment and proliferation are the first stages, thus the
biocompatibility of material has a significant effect on the proliferation and morphology
of cells [45]. Among them, MC3T3-E1 cells and L929 cells are widely used to test the
biocompatibility of materials [45,46]. Thus, the cell proliferation assay of PG0, PGPI3520,
and PGPI3560 was tested by MC3T3-E1 cells. Meanwhile, the cell proliferation assay of
PGPI1420, PGPI1440, and PGPI1460 was tested by L929 cells. As shown in Figure 6a, the
numbers of MC3T3-E1 cells progressively increased during the 7 days, indicating that
MC3T3-E1 cells were adhered and in a proliferative state on PG0, PGPI3520, and PGPI3560.
Similarly, PG0, PGPI3520, and PGPI3560 had good effects on promoting cell proliferation
and showed good biocompatibility. At the same time, the morphologies of the MC3T3-E1
cells proliferating on PGPI3520 for 1, 3, 5, and 7 days were observed by SEM (Figure 6b),
respectively. The expanding area of MC3T3-E1 cells on the surface of the electrospun
nanofibers increased with the extension of the co-culture time, and the cells on the surface
of the PGPI3520 reached 70–90% confluence on day 7.

As shown in Figure 6c, the numbers of L929 cells on PG0, PGPI1420, PGPI1440, and
PGPI1460 were continuously increased during 7 days of incubation, indicating the scaffolds
loaded with prodrugs were nontoxic and supported cell proliferation. As shown in the
fluorescence microscopy images (Figure 6d), the cells reached 70–90% confluence after incu-
bation for 7 days. Furthermore, L929 cells exhibited healthy morphologies after incubation
with all groups. We can conclude that the PGPI1420, PGPI1440, and PGPI1460 could support
the proliferation of L929 cells.
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from the nanofibers through diffusion due to its smaller molecular weight, which means 
a less controllable release manner [40]. Our study aimed to design an inflammation-
responsive scaffold, which could release anti-inflammatory drugs under the stimulation 
of the inflammation to regulate the excessive inflammation. Therefore, we chose PGPI3520 
and PGPI3560 to study the release profile of IDCM from the electrospun nanofiber 
scaffolds upon enzyme stimulation. 

Firstly, we tested the drugs after released from prodrugs by mass spectrum (Figure 
S2), in which the peak at 358.0845 was corresponding to IDCM. As shown in Figure 7, the 
enzyme-rich body fluid of living organisms during the occurrence of inflammation was 
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Figure 6. (a) O.D. values of MC3T3-E1 cells adhered to PG0, PGPI3520, and PGPI3560 for 1, 3, 5,
and 7 days, respectively. (b) SEM micrographs of MC3T3-E1 cells proliferated on PGPI3520 for 1, 3,
5, and 7 days, respectively. (c) O.D. values of L929 cells adhered to PG0, PGPI1420, PGPI1440, and
PGPI1460 for 1, 3, 5, and 7 days, respectively. (d) Fluorescence images of the L929 cells cultured on
PG0, PGPI1420, PGPI1440, and PGPI1460 for 7 days, respectively. The F-actins of the cells were stained
with Alexa Fluor 568-phalloidin (red), whereas cell nuclei were stained with DAPI (blue).

3.4. In Vitro Drug Release Profile of Electrospun Nanofibers Loaded with Prodrug

The prodrug encapsulation efficiency is significantly influenced by the interaction
between the PCL/gelatin polymer matrix chains and PIDCM prodrug molecules [45].
PIDCM is hydrophobic, contains carbonyl groups and amide bonds, and is capable of
interacting with the hydroxyl and carboxyl groups of gelatin chains via hydrogen bonding.
In the system, the cleavage of ester groups depended on the slow hydrolytic and fast
enzymatic cleavage. Compared to PIDCM35, PIDCM14 was more likely to be released
from the nanofibers through diffusion due to its smaller molecular weight, which means
a less controllable release manner [40]. Our study aimed to design an inflammation-
responsive scaffold, which could release anti-inflammatory drugs under the stimulation of
the inflammation to regulate the excessive inflammation. Therefore, we chose PGPI3520
and PGPI3560 to study the release profile of IDCM from the electrospun nanofiber scaffolds
upon enzyme stimulation.

Firstly, we tested the drugs after released from prodrugs by mass spectrum (Figure S2),
in which the peak at 358.0845 was corresponding to IDCM. As shown in Figure 7, the
enzyme-rich body fluid of living organisms during the occurrence of inflammation was
mimicked by the CE enzyme. The cumulatively released percentage of IDCM at different
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time points was determined and calculated according to the standard curve [39]. For
PGPI3520 and PGPI3560, the loaded amounts were 0.371 ± 0.033 µg and 0.305 ± 0.014 µg in
one sample, respectively. In the absence of CE, both PGPI3520 and PGPI3560 showed an
extremely slow release of IDCM and the total amounts of released IDCM were less than
50% in 24 h. In contrast, both PGPI3520 and PGPI3560 showed a significantly rapid release
of IDCM in the presence of CE. Specifically, 100% IDCM was released from PGPI3520 in
the first 8 h, and 100% IDCM was released from PGPI3560 in 24 h, showing the enzyme-
triggered release behavior of the PGPI3520 and PGPI3560. Therefore, it can be concluded
that the PGPI3520 and PGPI3560 had the capabilities of delivering the drug component
IDCM under the stimulation of the CE enzyme, allowing for the smart and on-demand
drug release to avoid the chronic inflammation that occurs during tissue regeneration.
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3.5. In Vitro Evaluation of the Anti-Inflammatory Effect of Electrospun Nanofibers Loaded
with Prodrug

RAW264.7 cells can secrete various kinds of cytokines under the stimulation of
LPS [1,36], such as IL-6 and NO [53]. The anti-inflammatory effect of PGPI3520 and
PGPI3560 were evaluated using the inflammation model according to the previous study [39].
As shown in Figure 8, compared with the blank group, the concentration of IL-6 and NO
were remarkably decreased when the RAW264.7 cells were cultured with PGPI3520 and
PGPI3560, indicating that they could successfully suppress the inflammation reaction. With
the extension of the co-culture time of PGPI3520 and PGPI3560 with RAW264.7 cells, the
levels of IL-6 (Figure 8a) and NO (Figure 8b) secreted from the LPS-induced cells were
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decreased, demonstrating that more content of IDCM was released from PGPI3520 and
PGPI3560 through the inflammation-triggered release. There was no significant differ-
ence between PGPI3520 and PGPI3560, indicating the anti-inflammatory efficiency was
similar between these two groups, due to the concentration of CE enzyme secreted from
the RAW264.7 cells was in a certain level, which limits the amounts of ester linkages of
PGPI3520 and PGPI3560 that could be cleaved by the CE. Taken together, the electrospun
nanofiber scaffold loaded with the prodrug could inhibit the inflammation response, which
will be beneficial for tissue regeneration.
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expressions of (a) IL-6 and (b) NO secreted from LPS-induced RAW264.7 cells, respectively. Cells
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* p < 0.05, ** p < 0.01, and *** p < 0.005).

4. Conclusions

In summary, enzyme-sensitive prodrugs were synthesized through the free radical
polymerization of the IDCM-containing precursor and then loaded into PCL/gelatin elec-
trospun nanofibers to develop an inflammation-responsive nanofiber scaffold. A large
amount of IDCM was released from the anti-inflammation electrospun nanofiber scaffold
under the stimulation of CE, whereas there was a minimal release of the drug in the absence
of enzyme. Moreover, the inflammatory response could be significantly attenuated after
incubating the scaffolds with LPS-treated RAW264.7 cells. CE was secreted by macrophages
to a distinctly high concentration around inflammatory sites, further triggering the hy-
drolysis of ester bonds both in the prodrug and PCL/gelatin, resulting in the intensified
degradation of the matrix and the rapid release of generated IDCM to relieve the chronic
inflammatory response. This study offers a feasible and wide applicable strategy to deliver
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drugs in a smart, responsive, and effective manner and demonstrates great potential to
be applied for regulating chronic inflammation during tissue regeneration. In addition
to nanofiber scaffolds, the prodrug can also be incorporated into other types of scaffold
matrix, such as 3D printed scaffolds and hydrogels, to suit different applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics14061273/s1, Figure S1. (a) SEM micrographs and (b) fiber
diameter distribution of PGPI3520 and PGPI3560 including the needle-like bumps, respectively. Figure
S2. The mass spectrum of the solution containing the released drug.
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