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Abstract: In recent decades, the demand for replacement of damaged or broken tissues has increased;
this poses the attention on problems related to low donor availability. For this reason, researchers
focused their attention on the field of tissue engineering, which allows the development of scaffolds
able to mimic the tissues’ extracellular matrix. However, tissue replacement and regeneration are
complex since scaffolds need to guarantee an adequate hierarchical structured morphology as well
as adequate mechanical, chemical, and physical properties to stand the stresses and enhance the
new tissue formation. For this purpose, the use of inorganic materials as fillers for the scaffolds has
gained great interest in tissue engineering applications, due to their wide range of physicochemical
properties as well as their capability to induce biological responses. However, some issues still need
to be faced to improve their efficacy. This review focuses on the description of the most effective
inorganic nanomaterials (clays, nano-based nanomaterials, metal oxides, metallic nanoparticles) used
in tissue engineering and their properties. Particular attention has been devoted to their combination
with scaffolds in a wide range of applications. In particular, skin, orthopaedic, and neural tissue
engineering have been considered.

Keywords: nanomaterials; clays; bioceramics; magnetic nanoparticles; metal oxides; metallic nanopar-
ticles; tissue engineering

1. Introduction

In today’s medicine world, there is an increasing demand for promising biomaterials,
which could lead to more accurate treatments. Tissue engineering is gaining great interest
as it represents a multidisciplinary approach for creating 3D polymeric substitutes, with the
ultimate aim to induce repair and regeneration of injured tissues. However, the polymeric
materials alone often result in poor elasticity and resistance to mechanical stress, leading to
scaffold failure and/or inadequate cell adhesion and proliferation. For this reason, new
nanomaterials need to be explored in order to improve the scaffolds’ mechanical properties
and biocompatibility.

Inorganic nanomaterials have recently gained great attention in tissue engineering,
in particular to dope polymeric scaffolds. In fact, they have unique properties, such as
magnetic and antibacterial ones, and thus they have been widely used to improve tissue
conduction, to support and enhance the cell growth, to load drugs, or to guide magnetic
and thermal pulses [1]. Inorganic materials can be classified based on their interaction
with the tissues as bioinert, bioactive, or bioresorbable materials. Bioinert inorganics
are generally used as structural prosthesis and do not interact with the tissues; on the
other hand, bioactive inorganics can create bonds with the adjacent tissues, while the
bioresorbable materials can be gradually absorbed in vivo and, consequently, they are
replaced by the newly formed tissues over time [2].
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Inorganics are generally used in tissue engineering as nanomaterials (nanoparticles,
smaller than 100 nm in at least one dimension [3]), since materials in nanoscale can effi-
ciently support biological responses. In particular, they can interact with the biomolecules
onto the cell surface and be taken up into the cytoplasm. In fact, nanoparticles can affect
biological systems in many ways, by stimulating cellular metabolic pathways, as well as by
penetrating the cell membrane resulting in the change of cellular activity [1,4].

Due to their biological properties and high surface area to volume ratio, inorganic
nanomaterials can be used as drug delivery systems, for antibody labeling, bio-imaging,
and tissue regeneration (Figure 1). In particular, the development of scaffolds doped with
inorganics allows to obtain suitable mechanical and physiological properties, that could
result in the formation of composite structures with adequate strength, osteoconductivity,
and bioresorbability [2,5].
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The inorganic materials widely used as main factors for tissue regeneration could
be grouped in few categories: clays, carbon-based nanomaterials, metal oxides, such as
bioceramics, bioglasses, and magnetic nanoparticles, and the metallic nanoparticles.

Carbon-based nanomaterials, metal oxides, and metallic nanoparticles possess high
strength and a low elasticity modulus, which make them suitable to repair or substitute
damaged hard tissues, such as part of the musculoskeletal system. Moreover, bioceramics
are generally considered for their biocompatibility, osteoconductivity, and osteogenic
capacity [3,6].

This review will be focused on the description of promising inorganic nanomaterials,
in particular clays, carbon-based nanomaterials, metal oxides, and metallic nanoparticles,
and their application in different fields of tissue engineering, from soft tissues to hard
tissues. The effect of these materials on the scaffolds’ physico-chemical properties has
been reviewed; in particular, the enhancement of elasticity and resistance to mechanical
stress has been taken into account. Along with these, the safety and the efficacy of these
nanomaterials in preclinical models have been considered with a particular attention to the
cell behavior and immune response.

2. Clays

Natural or synthetized clays have been widely used as pharmaceutical and cosmetic
ingredients. In particular, clay minerals are considered useful excipients for the production
of drug delivery systems, due to their capacity to interact with drug molecules, their good
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biocompatibility and swelling properties, low toxicity, and low cost [7]. However, recent
studies investigated new and advanced applications of these materials, suggesting the
potential of clay minerals to provide new approaches for cell-based regenerative strategies
due to their beneficial effects on cellular adhesion, proliferation, and differentiation [8,9].

Phyllosilicates are a group of clay minerals, that can be natural or synthetic, and
typically present a layered silicate structure [10].

From a chemical point of view, clay minerals are hydrated aluminosilicate consisting
of aluminum and silicon oxides, and they also contain a great number of cations such as
Mg2+, K+, Ca2+, Na+, and Fe3+. From a structural point of view, clay minerals are formed
by stratified layers generally constituted by continuous tetrahedral and octahedral sheets.
Each tetrahedron is formed by a cation, usually Al3+, Si4+, and Fe3+, and is linked to the
adjacent tetrahedra through the basal oxygen atoms to form a two-dimensional hexagonal
pattern (Figure 2a). On the other hand, the octahedrons are connected by sharing edges
to form hexagonal or pseudohexagonal layers (Figure 2b). These are generally formed by
metal cations such as Al3+, Fe3+, Mg2+, and Fe2+. The apical oxygen atom of the tetrahedral
sheet (T) connects the tetrahedral and octahedral (O) sheets [10–13].
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Figure 2. Schematic representation of (a) basic phyllosilicate tetrahedron and spatial disposition of
tetrahedral sheets (T); (b) basic phyllosilicate octahedron and spatial disposition of octahedral sheets
(O); (c) phyllosilicates layer structures 2:1 (T:O:T) and 1:1 (T:O). Adapted with permission from [13].
CC BY 4.0.

Depending on the type of association that occurs between the layers, clay minerals
can be classified as 1:1, (T:O) or 2:1 (T:O:T) (Figure 2c).

The arrangements of the layers and their physical connections could lead to different
morphologies, such as fibers, tubules, laths, and plates.

In particular, it is possible to differentiate between planar clay minerals, such as
montmorillonite, hectorite, or laponite, rolled clay minerals, such as halloysite nanotubes,
and fibrous clay minerals, such as sepiolite and palygorskite or attapulgite.
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The planar clay minerals (Figure 3a) are characterized by interlayer spaces between
each T:O or T:O:T stack, which are of great interest as they provide useful properties.
Due to this space, the clay minerals are able to adsorb water, leading to an increase in
the volume occupied by the clay-water suspension and, consequently, to a swelling in
aqueous environments, behaving as hydrogels. Under certain conditions, the layers can
also completely delaminate, leading to clay mineral exfoliation [12,13].
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Figure 3. Structure and microphotographs of (a) layered clay minerals, (b) tubular clay minerals, and
(c) fibrous clay minerals. Adapted with permission from [13]. CC BY 4.0.

On the other hand, the halloysite nanotubes, rolled clay minerals, result from the
curvature of newly formed halloysite silicate layers in presence of water, which form the
characteristic tubular morphology (Figure 3b).

Lastly, fibrous clays are characterized by a continuous tetrahedral sheet, unlike the
octahedral, which is discontinuous (Figure 3c). The apices of the tetrahedral sheet point
in different directions, forcing spatial modifications of the discontinuous octahedral sheet,
which create channels into the structure. Charges are balanced along the channels by
protons, water, and exchangeable cations [13].

The clay minerals most frequently used are natural products derived from mining,
which means that they are not subjected to treatments. For example, the phyllosilicates
(such as kaolinite, talc, montmorillonite, hectorite, saponite, and sepiolite), and the tectosil-
icates (such as zeolites) are the most used in pharmaceutical preparations. On the other
hand, in some cases clays are subjected to purification or thermal treatments, aimed to
improve specific physical or physicochemical properties, purity, or even to change their
behavior.

Lastly, synthetic clays can be produced from inorganic salts containing the typical
inorganic groups to mimic natural clays [12].

The mechanisms that are involved in the interaction between the natural clays and
the organic molecules are various, and they mainly depend on the clay type and on the
functional groups of the organic molecules involved. The most common mechanism is
the ion exchange caused by charged sites present on clay sheet surface. The exchange is



Pharmaceutics 2022, 14, 1127 5 of 26

mainly pH-dependent, and it involves anions and rarely cations. Other mechanisms could
affect clay minerals interactions, such as drug concentration, pH, temperature, electrolyte
concentration, and dielectric constant of the medium [10].

2.1. Tissue Engineering Applications

Clay minerals are often associated to organic materials to be employed in the biomedi-
cal and tissue regeneration fields. The most useful modification implies the combination
between clays and polymers to improve properties of both, such as swelling, rheology,
mechanical properties, and cellular uptake [10,13].

Various clays represent promising materials for the application in tissue regeneration,
in particular when applied in skin and orthopaedic fields.

2.1.1. Skin Applications

Clay-based scaffolds for skin regeneration represent an interesting option to develop a
suitable environment for dermal cell homing [14]. Thanks to their interesting properties,
many studies have been focused on clay minerals in skin tissue engineering, and several
authors underlined their efficacy. The scaffolds have been manufactured using different
techniques such as lyophilization or electrospinning. In particular, Naumenko et al. em-
ployed the freeze-drying technology for the fabrication of porous biopolymer systems
(based on chitosan agarose and gelatin) combined with halloysite nanotubes. The addition
of the clay improved the mechanical properties and wettability of the scaffold. Moreover,
the nanocomposite systems showed great biocompatibility in a murine model in vivo,
without rejection of the implants and with a complete degradation in six weeks [15].

Yu et al. developed hybrid nanofibers by means of electrospinning, incorporating
amoxicillin in a montmorillonite-poly(ester-urethane) urea system. The systems loaded
with montmorillonite presented an increase in mechanical properties and, most importantly,
they were characterized by a sustained drug release of amoxicillin, which resulted in an
antibacterial activity on a murine model in vivo. In fact, these systems were promising
candidates in both tissue regeneration and antimicrobial drug release [16].

Moreover, clays and biopolymers have been associated in simpler system obtained by
gelation. For this purpose, Massaro et al. designed ciprofloxacin carrier systems based on
hectorite/halloysite hydrogels for wound healing applications. Rheological measurements
highlighted that the introduction of modified halloysite into the gel matrix improved its
properties helping gel formation. Moreover, ciprofloxacin kinetic release tests showed a
slow pH-dependent release and MTT test proved the absence of cytotoxic effects on normal
human fibroblast cell lines [17].

In a paper of ours, polymer films loaded with a carvacrol (CVR)/clay hybrid (HYBD)
were developed for the delivery of CRV in infected skin ulcer treatment. The incorporation
of CRV in palygorskite (PHC) reduced its volatility, preserving its antioxidant properties.
HYBD showed 20% w/w CRV loading capacity and was characterized by improved antimi-
crobial (against S. aureus and E. coli) and cytocompatibility (towards human fibroblasts)
properties with respect to pure CRV. Films were prepared by casting an aqueous dispersion
containing poly(vinylalcohol) (PVA), poly (vi-nylpyrrolidone) (PVP), chitosan glutamate
(CS), sericin, and HYBD. Upon hydration, they formed a viscoelastic gel able to protect the
lesion area and to modulate CRV release [18].

2.1.2. Orthopaedic Applications

The inorganic character and the tridimensional organization of clays render them
particularly interesting in tissue replacement and regeneration in the orthopaedic field,
suitable to guarantee an adequate hierarchical structured morphology and high mechanical
properties capable to stand the stresses during new tissue formation [19]. For these reasons,
they are promising bioactive materials for mineralized tissue applications [20]. The nano-
clay bioactivity is increased, especially when nanocomposites are obtained with superior
physical and mechanical properties. Moreover, clays are osteo-inductive in stem cell



Pharmaceutics 2022, 14, 1127 6 of 26

culture. These findings have been confirmed in a few papers. In particular, Gaharwar A.
et al. showed that the PCL (polycaprolactone)/clay-based scaffolds promoted osteogenic
differentiation on stem cells (MSCs) by increasing alkaline phosphatase activity along with
the production of mineralized matrix. The osteogenic effect increased in a concentration-
dependent manner with a maximum at 10% w/w. Cell proliferation was correlated with
the tensile modulus and an appropriate mechanical strength for stem cell growing was
recorded between 1–5 MPa [21]. Kundu et al. investigated the fabrication of composite
nanoclay-hydroxyapatite-PCL fibers for bone tissue regeneration. The results demonstrated
that mesenchymal stem cells (MSCs) were able to thrive and differentiate onto the scaffolds.
In fact, they observed calcium deposition, and also collagen formation, which are the
main components of the extracellular matrix. The addition of montmorillonite combined
with hydroxyapatite resulted in an increase in cell viability and proliferation. Moreover,
the osteogenic differentiation of MSCs increased in presence of the scaffold loaded with
the clay mineral [22]. Kazemi-Aghdam and co-workers developed an injectable chitosan-
modified halloysite nanotubes hydrogel with enhanced mechanical strength and improved
osteoinductivity for bone tissue engineering. Interestingly, they encapsulated MSCs into
the hydrogels, resulting in enhanced cell proliferation and bone differentiation [23]. Huang
et al. also investigated a hydrogel incorporated with halloysite nanotubes fabricated by
using the photopolymerization method for potential bone tissue engineering applications.
The incorporation of halloysite nanotubes led to an improvement in mechanical properties
while maintaining a good cytocompatibility in vitro. Moreover, the halloysite loading
upregulated the expression of osteogenic differentiation-related genes and proteins of
human dental pulp stem cells, therefore facilitating bone regeneration in calvarial defects
of rats [24].

Clays are promising bioactive materials not only for hard but also for soft tissue
regeneration [20]. In fact, Bonifacio et al. proved the positive impact of clay minerals
incorporation into the scaffolds also for cartilage repair. In particular, mesoporous silica
provided the best combination in terms of mechanical properties, morphology, and in vitro
cytocompatibility. Moreover, the clay-loaded scaffolds, based on gellan gum, successfully
supported the chondrogenic differentiation in a 3D culture model. These systems were also
able to enhance the antibacterial response in a murine model in vivo [25].

3. Carbon-Based Nanomaterials

Carbon-based nanomaterials are nano composites with a high surface area to volume
ratio and a small size, generally between 1 and 100 nm. They have recently gained atten-
tion due to their unique characteristics, such as chemical stability, low friction coefficient,
thermal and wear resistance, high conductivity, and hardness. Moreover, these can be func-
tionalized at a mass production level rendering them suitable fillers for tissue engineered
scaffolds [26–28].

These characteristics have made them of great interest in different fields such as
imaging, sensing, regenerative medicine, and drug delivery. In particular, carbon-based
nanomaterials have been demonstrated to enhance bone regeneration and mechanical
properties [26,28,29].

For this purpose, carbon nanotubes (CNTs) and carbon nano-onions (CNOs) have
been here described, as they recently became an interesting alternative to reinforce the
mechanical, thermal, and antimicrobial properties of various polymers.

3.1. Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) have emerged from the variety of carbon-based nanoma-
terials as interesting candidates for the enhancement of the tissue-engineered constructs’
mechanical and biological properties.

CNTs are nanocylinders made of carbon, which can be produced by means of several
routes, such as chemical vapor deposition, laser ablation and arc discharge [30]. They can
be composed by different numbers of walls, which can be single, with diameters between
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0.7 and 2 nm, double, or multiwalled, with diameters up to 100 nm (Figure 4). This wide
variability can provide them with different properties interesting for biological, techno-
logical, and material applications, such as drug delivery, ultrasound imaging, and biosen-
sors [28,30]. In particular, CNTs possess unique properties useful for the improvement of
the physical and the biological performance of the scaffolds for tissue regeneration, such
as high thermal (5 × 103 W/m/K) and electrical conductivities (>100 S/cm2). Moreover,
they also possess great tensile strength, up to 200 GPa, and elastic modulus up to 1.34 TPa,
fundamental for the enhancement of the mechanical properties for orthopaedic scaffolds.
In fact, CNTs have been used to improve the physical and the mechanical properties of
polymers such as polystyrene (PS), poly-L-lactide (PLLA), and polycaprolactone (PCL),
actually investigated for the production of scaffolds for hard tissues regeneration [31–33].

Furthermore, the use of CNTs as nanofillers for tissue-engineered constructs has been
widely explored for the enhancement and modulation of the biological response, as they
are able to improve the osteoblastic differentiation and new bone tissue formation. In fact,
despite the concerns about their biocompatibility, substrates containing CNTs have been
demonstrated to support the adhesion and proliferation of various types of cells, such as
osteoblasts, neurons, and smooth muscle, also promoting angiogenesis [28,34–36].
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3.2. Carbon Nano-Onions (CNOs)

Carbon nano-onions (CNOs) are a versatile class of carbon-based nanostructures
composed of multiple concentric shells of fullerenes, that recently aroused great interest
in the scientific community. They are characterized by a cage-within-cage structure, with
smaller fullerenes inside larger ones (Figure 5) [26,38]. They consist of quasi-spherical
nested graphitic layers close to one another with dimensions that can range from 2 to 50
nm, depending on the synthesis method. The distance between the shells is 3.4 Å, which
is slightly different to the distance between two graphitic planes, that is 3.334 Å [39]. The
pentagonal and hexagonal rings that compose the structure consist of two single bonds
and one double bond between the carbon atoms. Moreover, they can contain either C60, a
hollow core, or a metallic core as the innermost shell [26,39,40].
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Interestingly, the synthesis method can determine CNOs physico-chemical properties
that are related to their shape, dimensions, the number of layers, and the distance between
them. In fact, CNOs can be categorized based on their size, shape, and type of core as:

(a) small-sized, which are below 10 nm, or big-sized, which are above 10 nm;
(b) spherical or polygonal;
(c) dense, which are characterized by a core filled with different metals, or hollow, which

have an empty core.

CNOs unique electronic and structural properties make them great candidates for var-
ious applications. In fact, rapid development of these structures has recently occurred due
to their remarkable physico-chemical properties, such as large surface area, high thermal
stability, broad absorption spectra, and ability to reversibly accept multiple electrons [38].
Their surface can also be modified with fluorophores or other ligands for imaging and
targeted drug delivery applications.

Moreover, they have been demonstrated to possess exceptional biocompatibility and
biosafety in vivo, representing an attractive choice as nanofillers for tissue-engineered
scaffolds and biological systems. CNOs have been demonstrated to possess low toxicity,
high pharmaceutical efficiency, and high dispersity degree in aqueous solutions, due to
the introduction of surface functional groups. Furthermore, in preclinical models, they
show the capability to remain in systemic circulation for hours with weak inflammatory
potential, making them exceptional drug carrier candidates [26,41,42].

3.3. Tissue Engineering Applications

As mentioned, CNTs and CNOs have gained great interest in the scientific community
for their ability to increase the scaffolds mechanical properties (Table 1) and biocompatibility
in the field of the bone tissue regeneration. However, since there are a few findings of
in vitro and in vivo safety in the biological conditions, the biocompatibility is a key issue
that deserves to be explored. Despite this, there is some evidence in the literature concerning
the development of scaffolds for tissue reparation and some of those report the in vivo
results obtained in preclinical model.
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Table 1. Mechanical properties of pure polymeric materials scaffolds in respect to the ones loaded
with carbon-based nanomaterials.

Material Young’s Modulus (GPa) Tensile Strength (MPa) References

UHMWPE 1 1.51 ± 0.01 18.62 ± 0.16
[43]f-SWCNTs/UHMWPE 2 (0.01 wt%) 1.69 ± 0.01 19.20 ± 0.11

f-SWCNTs/UHMWPE (0.1 wt%) 1.74 ± 0.006 28.00 ± 0.11
GelMA 3 7.12 ± 3.1 157.81 ± 3.91 [44]CNOs/GelMA 41.19 ± 3.78 356.12 ± 3.67

AN-PEEK 4 9.9 ± 0.3 195.4 ± 1.1

[45]

AN-PEEK/CNOs
(1.5 wt%) 24.1 ± 0.8 351.1 ± 3.5

AN-PEEK/CNOs
(2.5 wt%) 31.3 ± 0.4 552.9 ± 6.1

AN-PEEK/CNOs
(5 wt%) 43.2 ± 1.1 891.4 ± 8.2

PCL 0.041 ± 0.0009 41.20 ± 0.89

[46]
PCL/CNOs

(0.2 wt%) 0.06 ± 0.0013 60.10 ± 1.27

PCL/CNOs
(0.5 wt%) 0.084 ± 0.0011 84.70 ± 1.14

1 UHMWPE: ultra-high molecular weight polyethylene; 2 f-SWCNTs: functionalized single-walled CNTs; 3

GelMA: gelatin methacryloyl; 4 AN-PEEK: anilinated-poly (ether ether ketone).

3.3.1. Skin Applications

Generally, the scaffold doping using carbon-based nanomaterials has the overall aim
to reinforce the polymer based structure, increasing elastic behavior. A matrix based on
chitosan and polyvinyl alcohol (PVA) loaded with oxidized CNOs (CS/PVA/ox-CNO) was
developed by Tovar et al. as a nanocomposite film for tissue engineering application. They
demonstrated that the introduction of ox-CNOs enhanced the stability of the CS/PVA scaf-
fold. The mechanical properties of the matrix enriched with CNOs significantly improved.
In particular, an increase in the ox-CNO content led to an increase of about 38% in Young’s
modulus and 27% in tensile strength. Moreover, the biocompatibility was tested in vivo
using rat subcutaneous tissue implantation. No allergic response or pus formation was
observed in the rats after 30 days of implantation. In all cases, repair of the surgical defects
and hair were observed, demonstrating a normal biosorption process. The histological
study also demonstrated that the scaffold was biocompatible and biodegradable, even
with a high content of ox-CNO. Hence, the CS/PVA/ox-CNO scaffold demonstrated tissue
regeneration capability [41].

Patra et al. developed polyaniline (PANI) nanofibers enriched with CNTs to regenerate
tissues providing the hydrophobicity/hydrophilicity balance that could supply nutrients
and growth factors to the seeded cells. The scaffold showed excellent biocompatibility
in vitro on fibroblasts. Moreover, the system demonstrated sensitivity to inflammation
and capability to respond to loco-regional acidosis that delay the wound healing process,
representing a suitable option for cell grafting and tissue regeneration [47].

3.3.2. Orthopaedic Applications

The carbon-based nanomaterial doping of scaffolds for the orthopedic tissue not only
increases the elasticity of the systems but also the hardness and the resistance to compressive
forces. Pan et al. developed a composite scaffold based on polycaprolactone (PCL) and
reinforced with multi-walled CNTs. The addition of the CNTs increased the tensile strength
and compressive moduli of the scaffolds. The compressive modulus increased by 54%
compared to the systems of PCL alone, while the tensile modulus increased from 85 to
100 MPa. Moreover, the scaffolds could promote the proliferation and differentiation of
rat bone-marrow-derived stroma cells more than pure PCL control group, representing
potential tools to be used in bone tissue regeneration [32]. Collagen sponges with a multi-
walled CNTs coating have been also developed for bone tissue engineering by Hirata
et al. Primary rat osteoblasts were cultured onto the matrices and calcium and osteopontin
contents were evaluated. The osteoblasts grown on the CNTs-coated sponge differentiated
earlier in respect to the uncoated one, demonstrating favorable biocompatibility with bone.
Moreover, the calcium and osteopontin content of the CNTs-coated matrix after seven days
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was significantly higher than that of the uncoated one. Therefore, they concluded that CNTs
coating of a 3D collagen scaffold would be suitable for bone tissue engineering [48]. In a
further study, Duan et al. incorporated CNTs in poly(L-lactide) acid (PLLA) nanofibrous
scaffolds to investigate its osteoinductive properties. The scaffold enriched with CNTs
demonstrated remarkable cell adhesion and proliferation, and significantly increased the
osteogenic differentiation of bone mesenchymal stem cells in respect to the not-loaded
scaffold. Moreover, in vivo experiments also revealed that CNTs-loaded matrices could
induce osteogenesis and remarkably enhance the expression of both osteogenesis-related
proteins and type I collagen more than pristine PLLA matrices [49].

3.3.3. Neural Applications

Also in neural application, the scaffold doping with carbon-based nanomaterials
has the primary goal to reinforce the structure. Fundamental for this application is the
carbon-based nanomaterials conductivity that act as a template to guide cell proliferation.
PLLA-CNT based scaffolds have been investigated to modulate neuronal differentiation
by Scapin et al. The systems demonstrated good mechanical flexibility, necessary for
implant purposes, full biocompatibility, and support of cell growth. In particular, the
scaffolds supported cell adhesion and neuronal differentiation better than pristine PLLA
ones, representing interesting candidates for implantable systems for autologous neuronal
differentiation [50]. Gupta et al. developed aligned chitosan scaffolds combined with multi-
walled CNTs by means of electric field alignment technique. The aligned conformation
improved the elastic modulus, yield strength, and ultimate tensile strength by 12.7%, 21.9%,
and 11.2%, respectively, if compared with the random structure. Moreover, the alignment
of the CNTs led to higher anisotropic electrical conductivity along fibers direction, which
is fundamental for the cell guidance in the right direction. The CNTs-loaded scaffolds
were biocompatible with an increase in viability. Moreover, 50-60% of neurons were found
to be aligned in the CNTs alignment direction of the matrices, which could result in a
repopulation of regions characterized by acute neuronal loss [51].

CNTs were also studied dispersed within collagen hydrogels by Lee et al. to provide
suitable microenvironmental conditions for stimulating mesenchymal stem cells in neural
regeneration. The CNTs not only did not induce toxicity to the mesenchymal stem cells, but
also improved their proliferative potential. The CNTs-loaded hydrogels also increased the
cells expression of neural markers, and significantly promoted neurotrophic factors, in par-
ticular nerve growth factor and brain derived neurotrophic factor, leading to enhancement
in neurite outgrowth behaviors [52].

4. Metal Oxides

Metal oxides have been studied over the years for different applications, such as
catalytic, dielectric, electromechanical, and only recently research studies have been targets
to explore their use in biomedical applications [53,54].

Metal oxides can exist in different shapes and sizes, which are correlated to their
synthesis. When they present nano-dimensions, ranging from 1 to 100 nm, they are
characterized by unique properties, particularly interesting for biomedical application.
Nanoparticles having diameters less than 20 nm could more easily enter the cell membrane
and the cellular organelles and could also cross the brain barrier. Moreover, they could
even penetrate the bacterial cells and release toxic metal ions [55].

Ideally, the metal oxide nanoparticles for biomedical applications should be chemically
stable, should not easily dissociate in metal ions, should not present toxicity, correlated
to the size and surface properties, and lastly and importantly, they should be biocompat-
ible [56,57]. To assure these characteristics, the use of metal oxides has recently reached
internationally recognized standards. For example, zirconium dioxide must be prepared
following international standard reference ISO 13356, which specifies the requirements and
the related test methods for the production of biocompatible nanomaterials intended for
biomedical applications [54]. The most important examples of metal oxide nanoparticles
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employed in biomedicine are represented by bioceramics and bioglasses and by magnetic
nanoparticles.

4.1. Bioceramics and Bioglasses

The bioceramics are biomaterials used to treat, augment, or replace the damaged
tissues, in particular the hard ones. They are characterized by properties that make them
body friendly substitutes, such as biocompatibility, degradation, and high mechanical
strength, suitable to improve the mechanical properties of the scaffolds.

The success of bioceramics in biomedicine is due to their biofunctionality and biocom-
patibility. In fact, the formation of apatite on their surface after implantation makes easier
the bonding of the substrates with the body tissues [58].

The bioceramics are mainly classified according to the tissue response into three
subclasses: bioinert, bioactive, and bioresorbable ceramics (Figure 6) [59–61].
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Bioinert ceramics are characterized by stable physicochemical properties and good
biocompatibility especially with the hard tissues. They keep both their mechanical and
physicochemical properties once implanted in the host, without causing an immunological
rejection. The main use of bioinert materials is the production of structural supports, such
as bone plates or screws, due to their ability to resist fractures [58]. In particular, alumina
and zirconia, both alone and combined, are traditionally used for dental and orthopaedic
applications, due to their improved mechanical and morphological properties and suitable
biocompatibility [62,63].

Bioactive ceramics, such as bioglasses or glass ceramics, can interact with the host
tissues, inducing a specific biological response that improves tissue regeneration [58,64].
Once implanted, they form a hydroxyapatite layer similar to the inorganic phase of the
native bones, which can bond both the collagen fibrils of the tendons and the bone. Glass
ceramics are mainly constituted by CaO and P2O5, which are also the main constituents of
the bone mineral phase. For this reason, they are characterized by an optimal effectiveness.
Bioglasses are widely used as implants, as they have a positive effect on living cells and
tissues, due to chemically stable bonds with the skeletal system of the host. Moreover, the
microstructure of bioglasses increases the bending strength and the compressive strength
of the implanted material, and they also have been referred as enhancers of angiogenesis,
which is a crucial step for the wound healing process [65–68].

Lastly, bioresorbable ceramics interact with the host tissues and are also able to degrade
rapidly once they meet the biological fluids. Their chemical structure is broken by the tissue
fluids, and they are completely absorbed by the body without producing any toxic effect.
For this reason, they do not require second surgery for implant removal. The main materials
of this class are hydroxyapatite (Ca10(PO4)6(OH)2) and calcium phosphates, which have
been used mainly in orthopedics as bone substitutes, due to their stability, biocompatibility,
and osteo-conductivity [58,68,69].
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4.2. Magnetic Nanoparticles

The magnetic nanoparticles recognized as non-toxic in the medical field, thanks to their
oxidative stability, are mainly represented by magnetite (Fe3O4) and maghemite (Fe2O3).

Magnetic nanoparticles have been extensively used for biomedical applications with
different purposes, such as magnetic resonance imaging (MRI) diagnosis, drug delivery
control, cell/tissue targeting, and hyperthermia in cancer treatment [68,70,71]. Recently,
there is evidence that their inclusion into scaffolds results in unique properties to control
cell signaling both in vitro and in vivo, in particular when they have small size (<100 nm)
and narrow size distribution [72].

Interestingly, iron oxide nanoparticles are characterized by a superparamagnetic
behavior, namely they show magnetism if an external magnetic field is applied. This is of
interest as the nanoparticles lose magnetism after removing the field. Moreover, magnetism
retention is strongly related to particles size: 10–50 nm nanoparticles can be affected by an
external magnetic field [68].

The supposed mechanism of magnetic nanoparticles embedded in scaffolds for or-
thopaedic reparation is mechano-stimulation. The nano-movement induced by the mag-
netic field on the scaffolds seems able to cause forces in the range of pN, and cells act in
response to those mechanical stimuli according to four major biochemical pathways: ion
channels activation, ATP release, contraction of the cytoplasmatic actin and alteration of
protein expression in particular FAK (focal adhesion kinase), which is the basis of biochem-
ical signals, that stimulate the cells remodeling and differentiation. In this context, the
magnetic scaffolds could guide the mechano-transduction signals allowing deeper tissue
reparation [73,74].

4.3. Tissue Engineering Applications

Metal oxide nanoparticles has gained attention in the recent decades since they ideally
could combine reparative effectiveness with antimicrobial ones [75].

4.3.1. Skin Applications

Bioactive glasses proved to be beneficial for wound healing in skin tissue engineering,
due to their capability to stimulate hemostasis, angiogenesis, and fibroblasts proliferation
both in vitro and in vivo [67,76]. Different types of formulation and particles have been
considered. Wang and colleagues studied bioactive glasses nanoparticles mixed with
gelatin for the production of hydrogels intended for wound dressing. The mixture was
able to promote faster tissue regeneration and a more effective wound healing, due to the
synergic effect of the bioactive glass and gelatin, within seven days after implantation in
a murine model [77]. Samadian et al. developed an electrospun cellulose scaffold loaded
with hydroxyapatite (HP) by means of electrospinning technique. The results showed that
the concentration of HP affected the porosity, water contact angle, water uptake, water
vapor transmission rate, and cells proliferation. In vivo studies showed that all dressings
had higher wound closure percentage than the sterile gauze, as the control, reaching values
of closure of 93.5% [78]. Babitha et al. investigated the stability of TiO2 nanoparticles
incorporated in a zein-polydopamine nanofibrous scaffold as potential wound dressing
material. The scaffold mimicked the network of the natural extracellular matrix (ECM),
promoting cells adhesion and proliferation. Moreover, the in vivo evaluation of the wound
healing potential proved the system as suitable for wound healing in tissue engineering
applications, since complete re-epithelialization was achieved on day 15 in the group
treated with the system loaded with TiO2 [79].

4.3.2. Orthopaedic Applications

Metal oxides have been widely considered for their capability to stimulate bone tissue
repair, due to their bonding to the living tissues once implanted [68,80] and there are in vivo
proofs of concept that suggest the rational for the use of metal oxides in orthopaedic tissue
engineering.
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In particular, Covarrubias and colleagues reported that the incorporation of bioglasses
into a chitosan-gelatin matrix showed excellent cytocompatibility and enhanced the crystal-
lization of bone-like apatite in vitro. Moreover, in vivo implantation of the scaffolds into
bone defect models demonstrated that the systems significantly increased the amount of
new bone production [81]. Li et al. produced a multifunctional poly(citrate-siloxane) (PCS)
elastomer loaded with bioactive glass with intrinsic biomineralization activity and photolu-
minescent properties for potential bone tissue regeneration. The nanocomposite showed
significantly enhanced mechanical properties, hydrophilicity, photoluminescence prop-
erties, biomineralization activity, improved osteogenic differentiation ability, osteoblasts
biocompatibility, and low inflammatory response in vivo [82].

The efficacy of HP was also widely proven in tissue engineering application for
tendon and bone regeneration. The combination of HP with various carriers, such as
porous [83] and electrospun [84,85] scaffolds or hydrogels [86] showed enhancement of
cellular activity. In particular, the research underlined the HP capability of increasing the
mechanical properties of the scaffolds and of supporting cell adhesion and differentiation
into osteo-like cells, able to produce ECM.

4.3.3. Neural Applications

One of the most promising applications of metal oxides is in nerve tissue engineering
and neuroregeneration [68]. Various studies have been performed particularly on magnetic
nanoparticles, in order to make cells magnetically sensitive and allow cell migration,
proliferation and differentiation (Figure 7) [87–89].
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sion from [89]. Copyright 2022 American Chemical Society.

Recently, superparamagnetic iron oxide combined with gold nanoparticles were func-
tionalized with nerve growth factor (NGF) for neuron growth and differentiation. The
functionalized systems provided higher PC12 neuronal growth and orientation under
dynamic magnetic fields compared to static magnetic fields, confirming the potential of
non-invasive magnetic neuron stimulation for promoting neuronal growth [90].

Magnetic nanoparticles have also been used by Chang et al. to control collagen
fiber orientation in situ by applying an external magnetic field. In vitro, the magnetically
activated neurons extended their neurites along the aligned nanofibers. This increased the
cell density, and consequently also the NGF concentration, together with myelination. In a
rabbit sciatic nerve model, the scaffold showed superior nerve recovery and less muscle
atrophy in comparison with autograft [91].

In another study conducted by Vinzant et al., Fe2O3 was conjugated with a peptide
antisauvagine-30 (ASV-30), since iron oxide nanoparticles are capable to efficiently cross the
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blood-brain barrier. The infusion of ASV-30 reduced anxiety-like behavior of rats through
binding to corticotropin releasing factor type 2 receptors. In vivo results demonstrated
that systemic application of iron oxide combined with ASV-30 decreased anxiety with no
impact on locomotion, representing a novel approach for the peptide delivery across the
blood-brain barrier [92].

One example of metal oxide recently recognized for its relevance in nerve reparation
is represented by cerium nanoparticles [93]. In fact, it presents both antioxidant and
anti-inflammatory effects, which could lead to cell protection and differentiation, when
combined with a polymeric scaffold. Marino and coworkers developed gelatin-based
nanofibers loaded with cerium oxide nanoparticles. Both topographical and antioxidant
cues were confirmed. The feature of the fibers, such as their porosity, high surface area and
biodegradability, permitted the ion exchange necessary for the reduction reaction of Ce3+ to
Ce4+ and consequently the antioxidant effect. Meanwhile, the aligned fibers supported the
axonal guidance and outgrowth of neuronal cells. They observed that the presence of metal
phase at low concentration did not disturb the fiber alignment and size but increased their
mechanical properties. These phenomena are fundamental for mediating the mechano-
transduction pathways, such as phosphorylation of FAK, cytoskeletal rearrangements, and
nuclear deformations, all outcomes observed in the differentiated SH-SY5Y nerve cells
grown onto the fibers surface. Moreover, cerium nanoparticles showed beneficial effect not
only on ROS control, but also on neural differentiation by releasing β3-tubulin protein [94].

5. Metallic Nanoparticles

Metallic nanoparticles represent an attractive tool for various applications in the field
of nanotechnology, as they provide a link between bulk materials and molecular or atomic
structures [95]. In fact, they are versatile agents currently employed in diagnostics, cancer
targeting, tissue engineering, disease treatment, and many more applications, due to their
unique physicochemical characteristics: high surface area-to-volume ratio, presence of
edges and corners, electron storage capacity, high surface energy, high dangling bonds, and
high energy atoms located on their surface area [96–100]. However, it is also of fundamental
importance to identify the risks associated with these nanoparticles before their use to
minimize the toxicity and maximize their potentialities. In fact, the cytotoxicity of metallic
nanoparticles depends on their concentration, on the exposure time and cell sensitivity, and
it occurs by the induction of oxidative stress through disturbance of ionic and electronic
flux, disruption of the permeability transition pores, and reduction of the level of cellular
glutathione [101–104]. For this reason, it is of fundamental importance the manufacture
and the modification of the metallic nanoparticles utilizing different functional groups,
which provide conjugation of antibodies, ligands, and drugs [105,106]. Recent research
also attempted to use stabilizing agents, such as polyvinylpyrrolidone, polyvinyl alcohol,
and polyacrylic acid, which could be adsorbed onto the nanoparticles surface to form a
layer that minimizes particle aggregation and enables synthesis of a stable solution of the
metallic nanoparticles [107].

The preparation of engineered nanoparticles is of scientific interest to modulate cellular
events for tissue engineering applications. For example, metallic nanoparticles uptake is
inversely correlated to their particle size. In fact, 30–50 nm particles show higher cellular
internalization compared to 50–200 nm particles, influencing the biological function, such
as stem cells differentiation and toxicity [107,108]. The surface charge is also implicated
with cellular internalization. In particular, a positive charge, unlike a neutral or negative
one, can allow a quicker entrance into the nucleus avoiding lysosome degradation [109].

So far, a significant interest for the applications in tissue engineering and regenerative
medicine has been directed primarily to gold (Au) and silver (Ag) nanoparticles, also due
to their capability of modulation of stem cell proliferation and differentiation.
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5.1. Au Nanoparticles (Au NPs)

Au NPs are currently widely used in various biomedical applications, such as ge-
nomics, clinical chemistry, laser phototherapy of cancer cells, targeted delivery of drugs,
and many more (Figure 8), due to the favorable chemical and physical properties, in
particular the high stability and facile synthetic preparation techniques [110,111].
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Au NPs possess a wide range of unique properties, in particular the tunable optical
resonances, easy surface functionalization, and well-controlled size and shape, that make
them versatile platforms for different applications [111–114].

Due to their characteristics, biocompatibility, and low toxicity, Au NPs represent useful
systems for tuning stem cell fate, and consequently tissue regeneration. In fact, they proved
able to promote the differentiation of mouse embryonic stem cells (ESCs) into dopaminergic
neurons, due to the activation induction of the mTOR/p70S6K signaling pathway [115].
Moreover, nanofibrous scaffolds loaded with Au NPs demonstrated to increase the neurite
length and axon elongation [116].

The shape, size, and surface characteristics of Au NPs could also induce the osteogenic
differentiation of mesenchymal stem cells (MSCs) and human adipose stem cells (hASCs).
In particular, 50-70 nm Au NPs promoted the osteogenic differentiation of MSCs and
hASCs [107]. In another study, miR-29b-delivered polyethyleneimine (PEI)-capped AuNPs
efficiently promoted the osteogenic differentiation of human bone marrow-derived MSCs
and MC3T3-E1 cells with almost no toxicity. This ability to induce osteogenic differentiation
was evidenced through the upregulation of the genes related to osteogenic differentiation,
i.e., alkaline phosphatase, osteopontin, osteocalcin, and Runt-related transcription fac-
tor 2 [117].

5.2. Ag Nanoparticles (Ag NPs)

Ag NPs are one of the most widely used metallic nanoparticles for biomedical appli-
cations due mainly to their antimicrobial properties. In fact, the use of Ag nanoparticles
could be a safety measure to prevent bacterial infections, which are a significant risk in
tissue engineering [68,118].
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There are various mechanisms that the Ag NPs employ to cause their antimicrobial
effect (Figure 9). First of all, the Ag can anchor the bacterial cell all and penetrate it,
causing structural changes in the cell membrane and causing its death. This occurs by
the accumulation of nanoparticles on the cell surface and the consequent formation of
cavities [119]. Another mechanism could be the formation of free radicals. Various studies
on electron spin resonance spectroscopy evidenced that Ag NPs formed free radicals when
in contact with the bacterial cell wall. The free radicals make the cell membrane porous
and damage it, leading to the cell death [120,121].
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Ag NPs could also modulate the signal transduction in bacteria. In fact, they alter the
phosphotyrosine profile of bacterial peptides, which is noted only in the tyrosine residues
of the Gram-negative bacteria, leading to the signal transduction inhibition and consequent
inhibition of growth [122]. Since Ag is a soft acid, it could also interact with sulfur and
phosphorous residues, which are soft bases and are the main components of cell DNA. The
effect of nanoparticles on these soft bases leads to DNA destruction and cell death, due to
the inhibition of DNA replication [123].

Finally, it has also been suggested that nanoparticles in contact with bacterial cells
could release Ag ions, which interact and inhibit several cell functions that damage the
cells. In particular, the inhibition of a respiratory enzyme, which occurs by the inactivation
of the thiol groups, generate reactive oxygen species that attack the cell [124–126].

5.3. Tissue Engineering Applications

Au and Ag NPs seem able to effectively guide cell behavior, enhancing cell differentia-
tion and intracellular delivery, and to impart unique properties to scaffolds where they are
embedded [127].

5.3.1. Skin Applications

The enhancement of the mechanical properties and the antimicrobial activity towards
bacteria and fungi are the main properties of Au and Ag NPs, which make these nanoparti-
cles excellent candidates for the regeneration of chronic wounds highly prone to infections.
In fact, metallic nanoparticles could directly act or be functionalized with antibiotics, an-
tioxidants, and ROS scavengers, and directly applied topically in tissues, leading to the
improvement of wound healing process [127,128].
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Zi-Wei et al. conducted a study to clarify the specific biological mechanisms promoted
by Ag NPs loaded in chitosan oligosaccharide/poly(vinyl alcohol) nanofibers for wound
healing (PVA/COS-Ag). The human skin fibroblast response was studied treating the cells
with the supernatant derived by the nanofiber at different concentrations. They proved that
PVA/COS-Ag nanofibers promoted the secretion of fibroblast transforming growth factor
TGF-β1, thus improving their adhesion and proliferation by inducing the S and G2/M
cycles in cells. Moreover, the nanofiber treatment significantly up-regulated the collagen
and fibronectin synthesis in a dose-dependent manner. Finally, the authors confirmed that
PVA/COS-Ag nanofibers activated the key signal TGF-β1/Smad transduction, that is an
important pathway affecting the early stages of wound healing [129].

Tian et al. studied in vivo the impact of Ag NPs on burn and diabetic wounds as
potential wound healing enhancer. They found that the delivery of Ag both showed
antimicrobial effect and increased healing rate. They provoked deep burns, normally cured
after 35.4 ± 1.29 days, in male BALB/c mice, then treated a group with silver sulfadiazine
(SSD) and the other with Ag NPs (ND). The treatment with SSD determined a slowing
down of the healing period to 37.4 ± 3.43, while Ag NPs enhanced the healing process to
26.5 ± 0.93 days (Figure 10).
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They also discovered that Ag NPs could regulate the cytokines associated in burn
wound healing. Significant decrease in neutrophils was found in wounds treated with
ND compared to SSD groups, which indicate effect of Ag NPs to decrease the local and
systemic inflammatory response [130].

Wang et al. studied the combination of Ag NPs with poly(gamma-glutamic acid)
(g-PGA) hydrogel copolymer to improve the development of wound dressings. They
found that hydrogels could continuously release antibacterial factors. Moreover, the system
demonstrated to promote wound healing in vivo on male BALB/c mouse in comparison
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with control groups. Histological analysis revealed collagen deposition and intact epidermis
layer formation were observed after 14 days of impaired wound healing [131].

5.3.2. Orthopaedic Applications

Particularly interesting in orthopedics is Au NPs, recently proposed in tissue engineer-
ing to enhance bone regeneration, due to their potential to promote cell differentiation [132].

In this frame, Heo et al. developed a biodegradable hydrogel (based on methacrylated
gelatin) loaded with Au NPs for bone tissue regeneration. The system promoted in vitro the
proliferation, differentiation, and alkaline phosphate activities of human adipose-derived
stem cells, which differentiated in osteoblasts cells. Moreover, the hydrogels loaded with
high concentrations of Au showed in vivo osteogenic differentiation and consequent new
bone formation [133]. Analogously, Li et al. conjugated 2,2,6,6-Tetramethylpiperidine-N-
oxyl (TEMPO) with 40 nm Au NPs. The conjugated was used to investigate the effect on
ROS scavenging, proliferation, and differentiation of MSCs. The systems were efficiently
taken up by MSCs and reduced the overproduction of ROS at low dosages. Moreover, they
enhanced osteogenic differentiation of MSCs while inhibiting the adipogenic differentiation.
Consequently, it could be used for ROS-induced dysfunctions while regulating the desired
differentiation type [134]. Similarly, del Mar et al. reported the impact of Au NPs on MSCs
migration and proliferation. MSCs were able to colonize fibrin and PCL-based scaffold and
osteogenic differentiation was observed in comparison with the untreated cells used as a
control [135].

5.3.3. Neural Applications

Au NPs have been also investigated in neural application since they are characterized
by a surface that could be easily conjugated with biomolecules facilitating the targeted
delivery of growth factors, such as nerve growth factor (NGF) and genes (DNA and
RNA) [136]. In this context, Au NPs immobilized with silica spheres were investigated by
Park et al. to deliver electrical stimulation to nerve cell cultures in vitro. If the silica supports
were of about 100 µm diameter, the PC 12 cells extended neurites on the Au NPs in presence
of an electrical stimulation, whereas if the silica supports were lower in dimensions (20 µm)
the neurite outgrowth was enhanced also without electrical stimulation [137]. Moreover,
these findings were also confirmed by Alon et al. [138] and Nissan et al. [139]. In parallel,
substrates coated with Ag NPs demonstrated to act as scaffolds to sustain the growth of
neuroblastoma cells. This seems related to the surface properties of Ag NPs, that present
anchoring sites for neuroblastoma cells and significantly increase the neurite outgrowth.
Furthermore, this result was conceivably attributed to particle density with a maximum
effect for the 45 nanoparticles/µm2 sample, suggesting that the coating with Ag NPs
combined with an adequate topography could be attractive for neuronal repair [140].

6. Antimicrobial Properties

Metallic nanoparticles and metal oxides, such as Ag, Au, copper (Cu), titanium
(Ti), and zinc (Zn), are well known to inhibit the growth of several species of bacteria,
fungi, and viruses. Moreover, nanoparticles shapes and sizes have been described as key
elements for the control of bacterial growth. Furthermore, microorganisms resistant to
the most used antibiotics, that represent a great threat to human health, are generally
sensitive to these aspecific components. For these reasons, the combination of proliferation
enhancement and antimicrobial properties renders metallic and metal oxides nanoparticles
very important for biomedical applications to prevent microbial infections and to promote
tissue regeneration [118].

In particular, the nanoparticle properties could affect their antimicrobial potency.
Smaller sized nanoparticles demonstrated to cause higher bacterial inhibition [141]. This
could be attributed to the size of bacterial cell, which is in micrometer range, while their
membrane pores are in nanometric dimensions and could be more easily entered by smaller
nanoparticles to denature the intercellular proteins and consequently kill the bacteria [118].
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Krishnaraj et al. have reported the anti-microbial activity against E. coli and Vibrio
cholera of 20–30 nm Ag NPs [142]. Similarly, hydrophobic and cation-functionalized Au
NPs showed a strong bactericidal activity against both Gram-negative and Gram-positive
multiple drug resistant bacteria [143].

Cu nanoparticles (Cu NPs) also possess a great prospective to act as anti-microbial
agents. The anti-microbial activity of Cu NPs was evaluated against bacteria such as
Micrococcus luteus, S. aureus, E. coli, K. pneumoniae, and P. aeruginosa, and against fungi such
as Aspergillus flavus, Aspergillus niger, and Candida albicans [144]. Table 2 summarizes the
antimicrobial activities and studies caried out on various types of nanoparticles containing
inorganic compounds.

Table 2. Antimicrobial activity of nanoparticles based on inorganic compounds.

Nanoparticles Antimicrobial Activity References

Ag Salmonella typhi, Salmonella paratyphi,
V. cholera and S. aureus [145]

Ag
B. subtilis, Klebsiella planticola,

K. pneumonia, Serratia nematodiphila, and
E. coli

[146]

Ag B. subtilis, K. pneumonia, E. coli,
P. aeruginosa and S. aureus [147]

Au BCG 1 and E. coli [148]
Au S. aureus, E. coli, K. Pneumonia and P. aeruginosa [149]
Cu E. coli and C. albicans [144]
Cu E. coli, K. pneumonia and S. aureus [150]

Cu S. typhi, B. subtilus, S. aureus, K. pneumoniae and E.
coli [151]

Cu S. aureus and P. aeruginosa [152]
Zn E. coli and S. aureus [153]

TiO2 E. coli and S. aureus [154]
TiO2 E. coli, S. aureus and K. pneumonia [155]

Fe2O3
S. aureus, E. coli, P. aeruginosa and Serratia

marcescens [155]

Iron E. coli, Salmonella enterica, Proteus mirabilis and
S. aureus [156,157]

1 Bacillus Calmette-Guérin.

The antimicrobial activity mechanisms are not yet clearly understood. It is hypothe-
sized that nanoparticles accumulate near the microbial cell membrane and enter thanks to
membrane damage or cavity formation on the membrane. After entering the bacterial cell
membrane, nanoparticles produce free radicals or interact with proteins inside the bacterial
cells, thus determining enzyme inactivation and, consequently, cell death (Figure 9) [118].

7. Conclusions and Future Perspectives

Extensive studies were devoted to the development of scaffolds doped with inorganic
components. They have been proposed as medical devices in regenerative medicine and
tissue engineering for both soft and hard tissues applications.

The inorganic nanomaterials possess unique physical, chemical, optical, mechanical,
and electrical properties, which render them interesting substrates especially in biomedical
field. Inorganic nanoparticles actually play a crucial role in disease diagnostics, therapy,
tissue engineering and theranostics. The size, shape, morphology, and surface chemistry
of the nanoparticles have also demonstrated to alter their properties and behavior in
biological systems.

Among different types of nanomaterials, inorganic nanoparticles, and in particular
clays, carbon-based nanomaterials, metal oxides and metallic nanoparticles, allowed a
significant improvement in the scaffold properties, together with direct effect on the growth
of different types of cells and antimicrobial effectiveness. Therefore, as it has been shown in
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this review, inorganic nanomaterials can be successfully applied for skin, orthopaedic, and
neural tissues regeneration. Despite this, the assessment of nanotoxicological profile still
remains an open question. This is particularly challenging for non-degradable materials,
such as clays and carbon-based nanomaterials, which potentially could accumulate in the
tissues causing long term effects. These effects should be deeply studied in large animals to
better define the immune response. In fact, currently, especially for what concern carbon-
based nanomaterials, the majority of the investigations has been performed on mice models,
which are characterized by tremendous differences in the immunological system compared
to humans. Moreover, all the materials obtained by chemical synthesis (metal oxides,
metallic nanoparticles, carbon-based nanomaterials and synthetic clays) could suffer the
presence of impurities that significantly alter the reliability of the obtained results. As final
remark, clay-based and carbon-based nanomaterials are also used as drug delivery systems
due to their hollow structure. Moreover, for all the nanomaterials here described there is
also the possibility to be functionalized bearing active ingredients that act synergically to
potentiate reparative and antimicrobial effectiveness.

In conclusion, big steps have been made for employing different inorganics for the
production of scaffolds in the field of tissue engineering. Additionally, many studies
highlighted the potentiality of these systems in controlling the specific tissue functionality.
However, preclinical long-term studies focused on prolonged treatment with inorganics
combined with scaffolds are still required. Therefore, these factors need to be investigated
in the future, opening an opportunity for further clinical trials.

Author Contributions: Conceptualization, E.B. and G.S.; methodology, C.V., F.F., S.R. and B.V.;
writing—original draft preparation, E.B.; writing—review and editing, E.B. and G.S.; funding acquisi-
tion, G.S., F.F. and S.R. All authors have read and agreed to the published version of the manuscript.

Funding: Authors thank Horizon 2020 Research and Innovation Programme under Grant Agreement
No. 814607, for funding the research project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, S.-W.; Im, G.-B.; Kim, Y.-J.; Kim, Y.H.; Lee, T.-J.; Bhang, S.H. Bio-application of Inorganic Nanomaterials in Tissue Engineering.

In Bioinspired Biomaterials. Advances in Experimental Medicine and Biology; Chun, H.J., Reis, L.R., Motta, A., Khang, G., Eds.; Springer:
Singapore, 2020; Volume 1, pp. 115–130. [CrossRef]

2. Pina, S.; Ribeiro, V.P.; Marques, C.F.; Maia, F.R.; Silva, T.H.; Reis, R.L.; Oliveira, M. Scaffolding Strategies for tissue engineering
and regenerative medicine applications. Materials 2019, 12, 1824. [CrossRef]

3. SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) by European Commission. The Existing and
Proposed Definitions Relating to Products of Nanotechnologies; European Commission: Brussels, Belgium, 2008.
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