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Abstract: Radially mesoporous silica nanoparticles (RMSNs) with protonated amine functionality are
proposed to be a dexamethasone (Dex) carrier that could achieve a sustained anti-inflammatory effect
in rheumatoid arthritis (RA). High-capacity loading and a sustained release of target drugs were
achieved by radially oriented mesopores and surface functionality. The maximum loading efficiency
was confirmed to be about 76 wt%, which is about two times greater than that of representative
mesopores silica, SBA-15. In addition, Dex-loaded RMSNs allow a sustained-release profile with about
92% of the loaded Dex for 100 h in vitro, resulting in 2.3-fold better delivery efficiency of Dex than
that of the SBA-15 over the same period. In vivo evaluation of the inhibitory effects on inflammation
in a RA disease rat model showed that, compared with the control groups, the group treated with
Dex-loaded RMSNs sustained significant anti-inflammatory effects and recovery of cartilage over a
period of 8 weeks. The in vivo effects were confirmed via micro-computed tomography, bone mineral
density measurements, and modified Mankin scoring. The proposed Dex-loaded RMSNs prolonged
the life of the in vivo concentrations of therapeutic agents and maximized their effect, which should
encourage its application.

Keywords: anti-inflammatory; drug delivery; loading efficiency; rheumatoid arthritis; silica nanopar-
ticles; sustained release

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that causes synovial inflamma-
tion and joint destruction accompanied by inflammation [1–6]. Conventional treatment
focuses on the inhibition of inflammation. Among available therapeutic agents, a corticos-
teroid is a type of strong anti-inflammatory drug that inhibits inflammation and modifies
the course of this disease [7–9]. Corticosteroid injections into joints stiffened by rheumatoid
arthritis reduce synovial inflammation and decrease pain [10–12]. However, to achieve
maximum anti-inflammatory treatment and prevent the systemic effect of the develop-
ment of septic arthritis [13–15], it is important to achieve a prolonged concentration of
corticosteroids in the synovial fluid and synovium [16].

Over the past few decades, a variety of approaches for efficient drug delivery systems
have revealed targeted delivery and increased bioavailability, as well as solubilizing and
improving the pharmacological profile of drugs [17–20]. In particular, the application of
mesoporous silica materials as drug carriers has resulted in significant advancements in
the field of drug delivery research [21]. These improvements include huge surface areas,
large pore volumes, the ability to tailor the morphology and pore structure, controllable
functionality of the surface, and good biocompatibility, which has made mesoporous silica
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materials prominent drug carriers [22–27]. Moreover, recent progress in synthetic methods
has enabled the advent of new types of mesoporous silica nanoparticles that now feature
distinctive pore structures and morphologies, which are expected to be highly useful as
drug delivery systems.

For example, radially mesoporous silica nanoparticles (RMSNs) have attracted sig-
nificant interest and have been explored in many applications [28–30]. The RMSNs have
a radially wrinkled structure, and mesopores of the RMSNs are radially oriented. Fur-
thermore, the mesopores of the RMSNs gradually widen from the center toward the outer
surface of the RMSNs. The unique pore structure and morphology of RMSNs are expected
to enable drug molecules to transfer readily into or out of the pores, which can be advanta-
geous to loading capacity and to the release profiles of drugs. In our previous study, the
RMSNs with protonated amine functionalities were able to load an anionic drug such as
ibuprofen with loading efficiency as high as about 270 wt%, which is much greater than the
reported data for conventional mesoporous silica materials, and the release profile of the
loaded ibuprofen remained for 50 h in the in vitro test [31].

Merits such as high levels of drug-loading and long-lasting drug release make the
RMSNs one of the most suitable candidates for a corticosteroid carrier with sustained
anti-inflammatory effects in the RA. In order to investigate the loading efficiency, in vitro
release profiles, and in vivo therapeutic effectiveness, careful experiments were designed
as shown in Figure 1. In this study, we selected dexamethasone as an anti-inflammatory
corticosteroid. Amine functionalities were introduced on the surface of the RMSNs by
using a post-grafting method, and then the protonation of the amine functionality was
induced under acidic conditions. Since a phosphate group in dexamethasone is negatively
charged, the introduction of a protonated amine functionality to the RMSN was expected
to further improve the loading efficiency by allowing charge–charge interactions between
the RMSN and dexamethasone.
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Figure 1. Schematic illustration of the steps involved in the preparation of Dex-loaded RMSNs (A);
and, an experiment for sustained anti-inflammatory effects in an animal model of RA using
Dex-loaded RMSNs (B).

In addition, to compare the performance of the RMSN as a dexamethasone carrier
with that of conventional mesoporous silica materials, loading capacities, and release
profiles of dexamethasone-loaded RMSN and SBA-15, (i.e., Dex-RMSN and Dex-SBA-15,
respectively), were examined under in vitro experimental conditions. Because SBA-15
is known to be a nontoxic material and a promising transporter for drugs, it has been
extensively studied for use in drug delivery systems [32–36], and we selected SBA-15 as
a representative of mesoporous silica materials for comparison. Moreover, to assess the
prolonged anti-inflammatory effects of Dex-RMSN under in vivo conditions, RA model rats
were prepared. The Dex-RMSNs were administrated into the knee joints of the RA model
rats. Control groups were also prepared by administrating dexamethasone injections and
saline injections into other RA model rats. The in vivo sustained effects were investigated
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via the time-resolved prognosis of cartilage destruction using micro-computed tomography
(CT), bone mineral density (BMD) measurements, and modified Mankin scoring.

2. Materials and Methods
2.1. Materials

Tetraethyl orthosilicate (TEOS, 99%), cetylpyridinium bromide hydrate (CPB, 98%),
cyclohexane (99%), urea, 3-aminopropyltriethoxysilane (3-APTES, 97%), anhydrous toluene
(99.8%), poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)
(P123, M = 5800), and hydrochloric acid (HCl, 37 wt%) were purchased from Sigma-Aldrich
Korea Ltd. The 1-Pentanol (99%) was received from Daejung Chemicals and Metals Co.,
Ltd. Monosodium iodoacetate (MIA, Bioworld, Cat No. 40950004, Dublin, OH, USA) was
used to induce rheumatoid arthritis. Isoflurane gas (Ifran, 2%) was purchased from Hana
Pharma Co., Seoul, Korea, and used for anesthetizing model rats. Clinical dexamethasone
(Dex) solution (5 mg/mL in sodium phosphate, Yuhan Co., Seoul, Korea) was utilized for
the loading experiments.

2.2. Preparation of Drug Carrier

The radially mesoporous silica nanoparticles (RMSNs) were synthesized using a
reported method with minor modifications [31]. A total of 1.2 g of urea and 2 g of CPB were
dissolved in 60 mL of distilled water. In addition, 5 g of TEOS and 3 mL of 1-pentanol were
dissolved in 60 mL of cyclohexane. Then, the two solutions were mixed and stirred at room
temperature for 30 min. The mixed solution was reacted at 120 ◦C for 4 h in an autoclave.
After the reaction, RMSNs were collected from the mixed solution by centrifugation and
washed with acetone, ethanol, and water. The washed RMSNs were sufficiently dried at
room temperature and then calcined at 550 ◦C for 9 h.

SBA-15 was synthesized according to a previously established method [37–39]. P123
was added to a mixed solution that included 75 g of distilled water and 250 mL of 2 M HCl
at 35 ◦C. The solution was stirred for 2 h after 21.5 g of TEOS was added. The solution
was reacted at room temperature for 20 h and then heated at 100 ◦C for 24 h under static
conditions. After the reaction, the resultant powder was collected by filtration, washed
with distilled water, and calcined at 550 ◦C for 5 h.

The introduction of amine functionality on the RMSNs and SBA-15 was carried out
using the post-grafting method [40,41]. One gram of RMSNs or SBA-15 was mixed with a
solution involving 80 mL of anhydrous toluene and 4 mL of 3-APTES. The mixtures were
then refluxed for 24 h and filtered. The obtained amine-functionalized RMSNs or SBA-15,
(i.e., amine-RMSNs or amine-SBA-15, respectively), were washed with acetone and ethanol,
followed by drying for 24 h at room temperature.

2.3. Characterization of Silica Carriers

Scanning electron microscopy (SEM) images were obtained using a Carl Zeiss SUPRA
55 VP field-emission scanning electron microscope. Transmission electron microscopy
(TEM) observations were carried out using a JEOL JEM-3010 microscope operated at
300 kV. Fourier-transform infrared spectroscopy (FTIR) analysis was carried out using the
SHIMADZU IRspirit-T model. The hydrodynamic size of RMSNs was measured using an
ELSZ-2000ZS (Otsuka Electronics Co., Ltd., Osaka, Japan). The same instrument was also
used to measure the zeta potentials of the RMSNs and SBA-15.

2.4. Preparation of Dexamethasone-Loaded Silica Carriers

0.1 g of the amine-RMSNs was mixed with 20 mL of solution including 10 mL of
anhydrous ethyl alcohol and 10 mL of phosphate-buffered saline. In order to protonate
the surface functionality of the RMSNs under different acidic conditions, HCl was used to
adjust the pH values of the mixture to be 2, 2.5, 3, and 4. The mixture was then stirred at
500 rpm for 60 min, and the RMSNs with protonated amine functionality, (i.e., protonated
amine-RMSNs) were recovered by centrifuging the mixture. A total of 100 mg of the
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Dex solution was dissolved into 20 mL of solution consisting of 10 mL of anhydrous ethyl
alcohol and 10 mL of phosphate-buffered saline. The protonated amine-RMSNs were added
to a beaker with the alcoholic mixture of the Dex solution and stirred at a constant rate of
500 rpm. From the mixture beaker, 1 mL samples of the solution were taken at intervals of
1 h for 4 h. To calculate the amount of Dex loaded into the RMSNs, the absorbance at 242 nm
was measured using UV-visible spectroscopy. All loading experiments were conducted an
average of 3 times. The loading efficiency was calculated using the following equation.

Loading efficiency (%) =
weight o f dexamethasone in silica carrier

weight o f silica nanoparticles
× 100

After loading experiments, dexamethasone-loaded RMSNs, (i.e., Dex-RMSNs) were
retrieved via centrifugation at 12,000 rpm for 30 min, and then dried at room tempera-
ture. The fabrication of dexamethasone-loaded SBA-15, (i.e., Dex-SBA-15) and sample
measurements were also conducted under the same conditions and methods.

2.5. In Vitro Dexamethasone Release from the Silica Carrier

A total of 0.1 g of Dex-RMSNs was dispersed in 100 mL of PBS buffer, and the
concentration of released Dex from RMSNs into the release medium solution was monitored.
During the experiments, the release medium solution was maintained at 36.5 ◦C using a
water jacket, and the solution was stirred at a constant rate of 160 rpm. At specific time
points, 1 mL of a sample was taken from the release medium solution, and 1 mL of fresh
PBS buffer was added. The absorbance at 242 nm of the sample solution was measured
using UV-visible spectroscopy, as were the loading experiments. The concentration of
released Dex was calculated using the calibration curve, and the following equation was
used to correct the concentration of released Dex in the medium solution.

Ctcorr = Ct +
v
V

t−1

∑
0

Ct

In this equation, Ctcorr and Ct are the corrected and apparent concentrations of released
Dex at time t, respectively. ν is the volume of the sample taken from the release-medium
solution, and V is the total volume of the release medium. Releasing profile of Dex was
observed for 100 h. The releasing experiments of Dex from Dex-SBA-15 were also conducted
under the same conditions and methods.

2.6. Preparation of Animal Models for Rheumatoid Arthritis

A total of 96 male Sprague-Dawley rats, 5 weeks of age, were used for this study.
Following a 1-week acclimation period under a 12 h light/dark cycle with food and water
ad libitum, the rats were anesthetized using 2% isoflurane gas. After removing the hair
around both knee joints by clipper and disinfecting the knee joints with 70% ethanol,
MIA solution was injected at both knee joints to establish a RA model according to a
previously established method [42]. The MIA solution was prepared by dissolving 100 mg
of MIA in 1 mL of sterile normal saline that was then filtered using 0.22 µm syringe
filters. Animal experiments were reviewed and approved by the Institutional Animal
Care and Use Committee (IACUC) of Samsung Biomedical Institute (SBRI) (Approval
number 20150210002). SBRI is an Association for the Assessment and Accreditation of
Laboratory Animal Care International (AAALAC International) accredited facility and
abides by the guidelines set forth by the Institute of Laboratory Animal Resources (ILAR).

2.7. Evaluation of Anti-Inflammatory Effects In Vivo

Ten days after the MIA solution injection, the rats were divided into 3 groups: a
Dex-injected group (n = 24), a Dex-loaded RMSNs (Dex-RMSNs)-injected group (n = 24),
and a saline-injected group (n = 24). Dex (100 µL), Dex-RMSNs (100 µL), and 0.9% normal
saline (100 µL) were administered to the left side of the knee joints in each group. After
injections to each group, the rats in each group were euthanized for the evaluation of
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histology and micro-computed tomography (CT) at 1 week (n = 6), 2 weeks (n = 6), 4 weeks
(n = 6), and 8 weeks (n = 6). To analyze the modified Mankin scores, an analysis variance
(ANOVA) test was performed, and a Tukey test was used for post hoc analysis. A semi-
quantitative method was introduced to grade the degree of arthritic changes used in a
previous article [43]. Bone mineral density (BMD) was also measured at the femoral medial
condyle area via repeated ANOVA testing. For the CT images, a scanning time of 0.21 s
with settings of 80 kVp, 500 µA, and 30 calibrations was applied. Axial and transaxial fields
of view of 30.74 mm were acquired.

For the histologic analysis, the knee joints of the rats were dissected and fixed in
10% neutral buffered formalin for 3 days. The fixed tissue was decalcified, embedded in
paraffin, and cut to prepare sagittal sections. These sections were stained in hematoxylin
and eosin (H & E) and Alcian blue method to evaluate the arthritic changes. The degree of
degeneration was evaluated using a modified Mankin scoring system. Cartilage structure
(0–6), chondrocytes (0–3), Alcian blue staining (0–4), and tidemark integrity (0–1) were
evaluated as components [43].

2.8. Data Management and Statistical Analyses

Data were analyzed using descriptive statistical methods such as the mean ± standard
deviation (SD) and multi-factor analysis of variance (ANOVA). A chi-square test was used
to determine the change in medication between groups. SPPSS 20.0 software (IBM Corp.,
Chicago, IL, USA) was used for the analysis, and p values less than 0.01 (p < 0.001) were
considered statistically significant.

3. Results and Discussion
3.1. Characterization of Silica Carriers

The representative SEM and TEM images featured in Figure 2 reveal the morphology
and pore structures of the RMSNs, which agree well with the results of our previous
work [31]. It is clear that the RMSNs have a radially wrinkled structure with a spherical
shape. In detail, the RMSNs consist of wrinkled sheets that develop radially to a spherical
form. Vacant spaces between the wrinkled sheets create pores, and thus the pores of the
RMSNs are radially aligned. The TEM image in Figure 2B reveals that the size of the
radially arranged pores widens gradually from the center toward the outer surface of the
RMSNs. Due to these morphological features, the pores of the RMSNs have significantly
wide entrances, as shown in the SEM image in Figure 2A. In addition, the size-distribution
histogram in Figure 2C shows that RMSNs have uniform particle sizes with an average
diameter of 513.6 ± 63.1 nm.
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On the other hand, the TEM images in Figure 2D show the structural and morphologi-
cal differences between the RMSNs and the most representative mesoporous silica, SBA-15.
Highly ordered hexagonal pores appear in the TEM image of SBA-15, and the pores of
SBA-15 have a relatively long length with a micrometer scale. Therefore, drug molecules
must travel a relatively long distance in order to transfer into or out of the innermost
parts of the pores of SBA-15, and this could easily be hindered by either the shrinkage or
blockage of the hexagonal pores of SBA-15. However, the conical pore structures with a
wide entrance in the RMSNs could enable the drug molecules to move readily into or out
of the pores.

FTIR analysis of Figure 3 confirmed that the amine functionalization on the sur-
face of the RMSNs and SBA-15 was successful. Compared with pristine RMSNs and
SBA-15, the FTIR spectra for amine-RMSNs and SBA-15 clearly revealed peaks at around
2900 and 1550 cm−1, which correspond to the –CH2 and -NH bending groups in 3-APTES,
respectively. All RMSNs and SBA-15 showed distinctive peaks at around 1050 and 810 cm−1,
which correspond to the stretching and bending vibrations of Si–O–Si, respectively.
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3.2. Dex Loading Efficiency of Silica Carriers

In order to achieve high loading efficiency for Dex drugs, it is necessary to induce
specific and strong interactions between the surface of the silica carrier and Dex molecules.
Functionalizing the surface of the silica carriers with an amine moiety could enhance the
interaction with Dex molecules. Since the amine groups on the silica carriers have a pKa
value of about 9.26, they could have a positive charge even under neutral pH conditions
and could interact electrostatically with a negatively charged phosphate moiety in Dex
molecules. Zeta potential analysis supports these assumptions. Referring to Table 1,
RMSNs and SBA-15 showed zeta potentials of −24.3 and −12.0 mV, respectively. After the
amine-functionalization, the zeta potentials of the RMSNs and SBA-15 were increased to
12.6 and 3.2 mV, respectively. This indicates that the amine-functionalized surfaces of the
amine–RMSNs and SBA-15 are positively charged.

Table 1. Zeta-potential of different RMSNs and SBA-15 samples.

Sample Zeta-Potential (mV)

RMSNs −24.3 ± 1.0
Amine–RMSNs 12.6 ± 1.8

Protonated amine-RMSNs 56.0 ± 2.5
SBA-15 −12.0 ± 1.4

Amine-SBA-15 3.2 ± 3.2
Protonated amine-SBA-15 35.6 ± 2.6
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We also performed protonation treatments on the amine-functionalized silica carriers
under acidic conditions ranging between pH 2~4 to further enhance the interaction between
the silica carriers and Dex molecules and promote a higher level of Dex loading capacity.
Considering the equilibrium in the acid dissociation reaction between -NH2 and -NH3

+

groups, pKa is equal to the sum of the pH and log([-NH3
+]/[-NH2]). Therefore, the ratio of

-NH3
+ to -NH2 groups could be increased at pH conditions lower than pKa [44]. Moreover,

silanol groups on the silica carrier could also be protonated under low pH conditions,
which would increase the interaction with Dex molecules [45].

This speculation was in accordance with experimental results for the Dex loading
efficiency. Figure 4 shows the UV-visible spectra of loading efficiency according to the pH
treatment conditions of the protonated amine-RMSNs and SBA-15. As the protonation
was carried out under conditions of lower pH, the protonated amine-RMSNs showed
higher Dex-loading efficiency, and the highest Dex-loading efficiency of the protonated
amine-RMSNs was achieved at pH 2. The Dex-loading efficiency of the protonated amine-
SBA-15 was also varied with the pH conditions of the protonation in a way similar to the
RMSNs. The protonated amine-RMSNs were more efficient at drug loading compared with
the protonated amine-SBA-15. For the protonated amine-RMSNs, a maximum loading
efficiency of about 76 wt% (≈0.076 g of Dex per 0.1 g of RMSNs) was established, which is
twice that of the protonated amine- SBA-15 (about 38%).
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Figure 4. UV-Vis spectra for differences in the Dex loading efficiency according to pH treatment
conditions on the surfaces of amine-RMSNs (A) and on amine-SBA-15 (B). Comparison of the Dex
loading efficiency of amine-RMSNs with that of amine-SBA-15 (C) (n = 3, mean ± standard deviation).

The differences in zeta potential between the protonated amine-RMSNs and SBA-15
may contribute to a gap in the Dex loading efficiency. The protonated amine-RMSNs
revealed zeta potential that was higher than protonated amine-SBA-15. This indicates
that the density of positive charges with good accessibility is higher on the surface of
the protonated amine-RMSNs than that of the protonated amine-SBA-15, and thus a
greater amount of Dex molecules could interact with and be loaded onto the surface
of the protonated amine-RMSNs. Considering that the protonated amine-RMSNs and
SBA-15 consist of the same silica materials, and are treated by the same functionalizing
and protonating process, their difference in zeta potential may be strongly affected by their
pore structures. The radially originated mesopores with wide entrances may make the
positively charged moieties in the pores of the protonated amine-RMSNs more accessible
to Dex molecules, leading to higher zeta potential and higher loading efficiency.

3.3. In Vitro Investigation of the Release Profiles of Dex from Silica Carriers

In order to investigate the release profiles of Dex drugs under in vitro conditions, Dex
release experiments were conducted in a release medium solution with a pH of 7.4. As
shown in Figure 5, the Dex-RMSNs revealed a quite different release than Dex-SBA-15. In
the early stage of the experiment, the RMSNs showed a rapid release profile, and about 80%
of the loaded Dex was released from the RMSNs within 20 h. On the other hand, SBA-15
showed a relatively sustained release profile for about 40 h. These results for the initial
release profiles may suggest that the SBA-15 could be a suitable Dex carrier for sustained
therapeutic effects by comparison with the RMSNs.
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However, if the release patterns at later stages of experiments are closely observed,
it is clear that the RMSNs show promising positive results but the SBA-15 has significant
limitations from the view of the substantially prolonged release of Dex. In the profile for
Dex-RMSNs, the release of Dex did not stop even after the initial bursting release at about
20 h, and Dex was released continuously and steadily over a period of 80 h. Consequently,
about 92% of the loaded Dex in the RMSNs was successfully released for 100 h. On the
contrary, the release of Dex from SBA-15 was substantially ended after 40 h, and the release
profile was not changed but reached a plateau for later 60 h. Therefore, the released amount
of Dex from SBA-15 for 100 h was almost the same as that for the initial 40 h. In particular,
only about 81% of the loaded Dex was released from SBA-15 for 100 h. Compared with the
radially arranged conical mesopores of the RMSNs, the hexagonal and long mesopores of
SBA-15 seemed to reduce the Dex releasing efficiency due to the relative difficulty in Dex
releasing from deep inside of the pores. It should be noted that when the total Dex delivery
amount was calculated quantitatively based on the loading efficiency per the same weight
of silica carriers, the Dex delivery efficiency of the RMSNs over the long period of 100 h
was about 2.3-fold better than that of the SBA-15. Therefore, the RMSNs demonstrated
greater potential as drug carriers.

3.4. In Vivo Evaluation of Inhibition Effects of Inflammation in RA

Next, we moved to the in vivo evaluation for inhibition effects on inflammation in a
RA disease rat model. RA-induced rats were treated with three different forms of drugs
over several weeks, including clinical Dex formulation, Dex-RMSNs, and saline. The
treatments were done by one-time injection of saline, Dex, and Dex-RMSNs at the same Dex
dose of 0.1 mg/kg for all formulations in the three RA rat groups. The rats were observed
daily for clinical symptoms, and femoral medial condyle areas were measured by micro
CT every week. The 3D reconstructed images obtained after micro CT scanning of the
patella of the femoral medial condyle area are represented in Figure 6. After rheumatoid
arthritis induction, severe cartilage erosion was directly confirmed from the reconstructed
image. The saline-injected group (Figure 6A(a),B(a)) demonstrated progressive cartilage
erosion over 2 weeks. On the other hand, only one week after injection, we confirmed
that cartilage erosion was significantly improved with Dex treatment (Figure 6A(b)) in the
Dex-RMSNs-treated (Figure 6A(c)) group. Two weeks after injection, erosion of cartilage
was observed in the Dex-only treated group (Figure 6B(b)), but the erosion of the cartilage
had improved in the Dex-RMSNs-treated group (Figure 6B(c)). We inferred that the results
were caused by the differences in the in vivo distribution of Dex concentrations according
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to the sustained release of Dex in the Dex-RMSNs-treated group, which reached a mineral-
effective dose of the drug concentration and prolonged the inhibition of inflammation.
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Figure 6. Micro-CT images of a rheumatoid arthritis model rat at 1 week (A) and at 2 weeks (B) after
injection of saline (a), Dex (b), and Dex-RMSNs (c). Yellow arrow shows the place of erosion.

The histology images of knee joint samples shown in Figure 7 are consistent with the
CT scanning data. In the saline-injected group, typical RA symptoms of the joint cavity gap,
synovial hyperplasia, and fibrosis were observed, as shown in Figure 7A. The Dex-only
and Dex-RMSNs-treated groups showed that the symptoms of joint cavity gap and fibrosis
had been significantly improved in the Dex-RMSNs-treated group except for synovial
hyperplasia symptoms (Figure 7B,C). Importantly, there were significant differences in
improvement of the symptoms between the Dex-only and the Dex-RMSNs-treated groups,
indicating that the Dex-RMSNs nanomedicine persistently inhibited and alleviated the
effect of inflammatory infiltration in RA.
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Figure 7. Histological images of knee joints treated with saline (A), Dex (B), and Dex-RMSNs (C).
Tissues were stained with H & E and Alcian blue solution.

To investigate the alleviating effects, BMD was quantitated in the femur and tibia
areas of each treated rat group. Figure 8A shows the BMD measurements of the femur and
tibia for a total of 2 weeks in the saline, Dex-only, and Dex-RMSNs-treated groups. Total
BMD was reported as an average value of measurements in these two areas. In the femur,
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the saline and Dex-only treated groups showed no significant differences in their BMD
profiles between 1 and 2 weeks. However, we confirmed that the BMD scores increased
in the Dex-RMSNs-treated group during the same period. In the tibia, the BMD scores
had fallen in the saline and Dex-only treated groups over 2 weeks. On the other hand, the
Dex-RMSNs-treated group maintained a similar level of BMD for 2 weeks. These results
indicated that the Dex-RMSNs treatment was more helpful in maintaining bone mineral
density, compared with the control group. The effects of the Dex-RMSNs treatment are
more clearly shown in Figure 8B. In the saline and Dex-only treated groups, the BMD of
the patella declined from the initial scores at 1 week over 8 weeks. However, the BMD of
the patella was maintained through 8 weeks in the Dex-RMSNs-treated group, which was
the result of the sustained release and longer-lasting effects of Dex in the body than that of
the Dex-only treatment. Repeated measures of ANOVA testing supported the reliability
of the data, and resulted in significant differences between the groups (F = 137.5, df = 3,
p < 0.001) over time (F = 9.765, df = 7, p < 0.001).
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Figure 8. BMD of a femur and tibia after 1 week and 2 weeks in rheumatoid arthritis rats injected
with saline, Dex, and Dex-RMSNs (A). BMD of the patella after 1 to 8 weeks in rheumatoid arthritis
rats injected with saline, Dex, and Dex-RMSNs (B) (n = 6, mean ± standard deviation).

Finally, the inhibitory effects on inflammation induced by drugs were evaluated using
modified Mankin scoring. Figure 9 shows the mean values of histological grading from
Mankin scores for the three different groups at different parts of the knee joint over time. In
the saline-treated group, the Mankin scores gradually increased after 1 to 8 weeks, which
was the result of the inflammatory effect. After only Dex treatment, the scores after 1 week
were not significantly different from those of the saline-treated group (p = 0.079), and the
scores decreased over 4 weeks, which was significantly different from the control group.
Then, the scores greatly increased between 4 and 8 weeks at a similar level to the saline-
treated group. The results showed that Dex delivered without carrier particle was not an
efficient treatment for RA, which led to recurrent cartilage destruction and inflammation
over time after treatment. On the other hand, in the Dex-RMSNs-treated group, the Mankin
scores increased between 1 and 4 weeks, but the scores had significantly decreased from
4 to 8 weeks. At 8 weeks after treatment, the scores of the Dex-RMSNs-treated group,
however, were significantly different from the control group (p < 0.001). The results showed
that the Dex-RMSNs group retained the in vivo function of the therapeutic agents over
time, and showed the best therapeutic status and prognosis of epiphysis destruction after
8 weeks, compared with the group treated only with Dex.
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4. Conclusions

In conclusion, Dex-loaded RMSNs that feature high drug-loading efficiency and
sustained release of drugs were proposed as a drug carrier for sustained anti-inflammatory
effects in RA. The amine-functionalized RMSNs have radially wrinkled mesopores that
induce charge–charge interactions with anionic drugs, which leads to high-capacity drug
loading with a sustained release. The maximum loading efficiency into the RMSNs was
attained at about 76 wt%, which is about twice that of SBA-15 under the same conditions.
When the Dex-loaded RMSNs were applied to RA in a rat knee model, significantly
better alleviative effects of inflammation were achieved compared with treatments for
the control group. The effects were also confirmed through BMD measurement, and the
recovery of cartilage destroyed at 8 weeks was confirmed through a modified Mankin score
measurement. These findings suggest the potential for a nanomedicine that demonstrates
biocompatible and controllable therapeutics in vivo.
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33. Halamová, D.; Badaničová, M.; Zeleňák, V.; Gondová, T.; Vainio, U. Naproxen drug delivery using periodic mesoporous silica
SBA-15. Appl. Surf. Sci. 2010, 256, 6489–6494. [CrossRef]

34. Sevimli, F.; Yılmaz, A. Surface functionalization of SBA-15 particles for amoxicillin delivery. Microporous Mesoporous Mater. 2012,
158, 281–291. [CrossRef]

35. Xu, Z.; Cai, L.; Jiang, H.; Wen, Y.; Peng, L.; Wu, Y.; Chen, J. Real-time cell analysis of the cytotoxicity of a pH-responsive
drug-delivery matrix based on mesoporous silica materials functionalized with ferrocenecarboxylic acid. Anal. Chim. Acta 2019,
1051, 138–146. [CrossRef]

36. Su, H.-L.; Xu, L.; Hu, X.-J.; Chen, F.-F.; Li, G.; Yang, Z.-K.; Wang, L.-P.; Li, H.-L. Polymer grafted mesoporous SBA-15 material
synthesized via metal-free ATRP as pH-sensitive drug carrier for quercetin. Eur. Polym. J. 2021, 148, 110354. [CrossRef]

37. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of
mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [CrossRef]

38. Zakharova, M.V.; Masoumifard, N.; Hu, Y.; Han, J.; Kleitz, F.; Fontaine, F.-G. Designed Synthesis of Mesoporous Solid-Supported
Lewis Acid–Base Pairs and Their CO2 Adsorption Behaviors. ACS Appl. Mater. Interfaces 2018, 10, 13199–13210. [CrossRef]
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