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Abstract: Atrial fibrillation (AF) is an arrhythmia associated with an increased stroke risk and
mortality rate. Current treatment options leave unmet needs in AF therapy. Recently, doxapram
has been introduced as a possible new option for AF treatment in a porcine animal model. To
better understand its pharmacokinetics, three German Landrace pigs were treated with intravenous
doxapram (1 mg/kg). Plasma and brain tissue samples were collected. For the analysis of these
samples, an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)
assay for the simultaneous measurement of doxapram and its active metabolite 2-ketodoxapram
was developed and validated. The assay had a lower limit of quantification (LLOQ) of 10 pg/mL
for plasma and 1 pg/sample for brain tissue. In pigs, doxapram pharmacokinetics were biphasic
with a terminal elimination half-life (t1/2) of 1.38 ± 0.22 h and a maximal plasma concentration (cmax)
of 1780 ± 275 ng/mL. Its active metabolite 2-ketodoxapram had a t1/2 of 2.42 ± 0.04 h and cmax

of 32.3 ± 5.5 h after administration of doxapram. Protein binding was 95.5 ± 0.9% for doxapram
and 98.4 ± 0.3% for 2-ketodoxapram with a brain-to-plasma ratio of 0.58 ± 0.24 for doxapram and
0.12 ± 0.02 for 2-ketodoxapram. In conclusion, the developed assay was successfully applied to the
creation of pharmacokinetic data for doxapram, possibly improving the safety of its usage.

Keywords: doxapram; 2-ketodoxapram; UPLC-MS/MS; atrial fibrillation; pharmacokinetics; central
nervous system; TASK-1; KCNK3; protein binding

1. Introduction

Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with
an increased rate of stroke and mortality [1]. However, while oral anticoagulants can
significantly lower the risk of ischemic strokes, AF patients still suffer from a higher
mortality rate compared to the sinus rhythm (SR) population [2]. Current treatment options
have an insufficient efficacy and/or are connected with cardiac and extracardiac side effects,
emphasizing an unmet need in AF therapy [3]. To fill this gap, it has long been speculated
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that atrial-specifically expressed ion channels would be ideal targets for the treatment of
AF [3].

In recent years, the two-pore domain potassium channel TASK-1 has been identified
as such a target structure that is atrial specific. Furthermore, its expression is upregulated
in AF patients, emphasizing its important role in shaping the atrial action potential in these
patients [4]. In addition, it was shown that pharmacological inhibition of TASK-1 facilitated
the cardioversion of AF to SR in a porcine AF model [5–7]. This model has proven to be
very relevant and reliable as the cardiovascular system in pigs is very similar to humans.
Especially important for our experiments, the expression of TASK-1 is regulated in a similar
way in both species [4,8] Therefore, data from this porcine AF model can be used as a basis
for first in human trails.

Doxapram, a well-established respiratory stimulant, has a strong inhibitory effect
on TASK-1, leading to cardioversion of AF in pigs [5]. Some known adverse events of
doxapram use are hypertension, dyspnoea, coughing, tachypnoea, headache, dizziness,
flushing, sweating, perineal warmth, tremor, nausea, vomiting, diarrhoea, urinary retention,
and muscle spasticity. Furthermore, there is conflicting information about the proconvul-
sant potential of doxapram [9,10]. More serious adverse events observed for doxapram are
based on its effect on the central nervous system. These have been primarily described in
case reports and include psychosis with hallucinations, severe and violent restlessness, and
confusion [10]. To establish a concentration–response relationship of doxapram in pigs, its
pharmacokinetics and pharmacodynamics need to be characterized. While much is known
about the pharmacodynamics in pigs, little information is available on its kinetics [5].

To establish doxapram pharmacokinetics in pigs, we developed an ultra performance
liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the simul-
taneous measurement of doxapram and its active metabolite 2-ketodoxapram in porcine
plasma. In a second step, and to assess the probability of adverse events within the central
nervous system, the assay was adapted to the quantification of both analytes in brain tissue.
Therefore, we describe in this manuscript the development, validation, and application
of these assays and present first pharmacokinetic data of doxapram and 2-ketodoxapram
in pigs. Furthermore, information on the protein binding and the permeability across the
blood–brain barrier is provided.

2. Materials and Methods
2.1. Animal Study and Sample Generation

The study protocol was authorized by the responsible local animal welfare committee
(Regierungspräsidium Karlsruhe, Germany, reference numbers G198-20), and the experi-
ments were performed according to EU Directive 2010/63/EU and the German Law on the
Protection of Animals.

For drug injection and blood sampling, three German Landrace pigs (bodyweight:
35–40 kg) were anaesthetised, and central vein catheters were implanted. The following
experiments were performed on awake animals unless stated otherwise. For 14 d, starting
on day 2 after the operation, daily intravenous (i.v.) fast bolus injections (within 1 min) of
1 mg/kg doxapram (Dopram®, Carinopharm, Elze, Germany) were administered to all
three animals. Before drug administration, blood samples were taken in Lithium-Heparin
tubes (Sarstedt, Nürmbrecht, Germany). At day 2, the first day of drug administration,
additional samples were collected at timepoints of 5 min, 10 min, 15 min, 20 min, 30 min,
45 min, 60 min, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, and 9 h after injection. The samples were
centrifuged at 2500× g for 10 min. The plasma was transferred to collection tubes and
stored at −20 ◦C until analysis.

At the end of the 14-day period, the three pigs were euthanised, under deep anaes-
thesia (2 mg/kg propofol i.v., Propofol 2% MCT Fresenius, Fresenius Kabi, Bad Homburg,
Germany) and strong pain medication (0.02 mg/kg buprenorphine i.v., Buprenovet®, Bayer
Vital, Leverkusen, Germany), by an administration of potassium chloride (40 mmol, Kali-
umchlorid 7,45% gefärbt, B Braun Melsungen, Melsungen, Germany) directly into the heart.
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Afterwards, a final blood sample was taken and prepared as described. At the same time,
brain tissue samples from both hemispheres were collected and immediately deep frozen
in liquid nitrogen and stored at −80 ◦C until analysis.

2.2. Reagents and Solvents

Doxapram (C24H30N2O2, 97.7%, 378.2 g/mol) for method validation was bought from
Biozol Diagnostika Vertrieb (Eching, Germany). 2-Ketodoxapram (C24H28N2O3, 98.8%;
392.2 g/mol); the stable isotopically labelled internal standards (IS) doxapram-d5 (99.6%,
383.2 g/mol) and 2-ketodoxapram-d5 (99.6%, 397.2 g/mol) were synthesised by TLC
Pharmaceutical Standards (Newmarket, ON, Canada).

Acetonitrile (ACN) and formic acid (FA) were purchased from Biosolve (ULC/MS
grade; Valkenswaard, The Netherlands), and tert-butyl methyl ether (TBME), boric acid,
sodium hydroxide, and hydrochloric acid were purchased from Merck (Darmstadt, Ger-
many). Ultrapure water was freshly prepared with an arium® mini system (Sartorius,
Göttingen, Germany). Analyte-free porcine plasma and brain tissue for assay validation
was available from untreated control animals from previously performed studies.

2.3. Preparation of Standard Solutions

For each analyte and IS, separate stock solutions were prepared by independently
weighing and dissolving them in ACN/water (1/1, v/v). These stocks were mixed and
diluted with ACN/water to produce eight calibrators, four quality controls (QC), one lower
limit of quantification (LLOQ), and one IS solution for the three different calibration ranges,
covering 10–10,000 pg/mL (low plasma concentrations; LLOQ: 10 pg/mL), 1–2500 ng/mL
(high plasma concentrations; LLOQ: 1 ng/mL), and 1–2500 pg/sample (brain tissue; LLOQ:
1 pg/sample). A fifth QC solution, with a concentration higher than the calibration range,
was prepared to monitor the integrity of sample dilution. The QC and LLOQ solutions
were produced from stock solutions separately weighted from the stock solution used for
the preparation of the calibrators. The stock solutions were stored at −20 ◦C; the calibrator,
QC, and IS working solutions were stored at 4 ◦C.

2.4. Sample Preparation

For QC and calibrator samples, the respective working solutions (25 µL) were mixed
with blank plasma (100 µL) or blank tissue matrix (100 µL; 40 mg/mL brain tissue in water),
whereas, for analytical samples 100 µL of plasma or 100 µL of brain solution (40 mg/mL
brain tissue in water) was used, and 25 µL of ACN/water (1/1, v/v) was added for volume
compensation. All samples except blanks were mixed with 25 µL of IS working solution.
For the purpose of liquid–liquid extraction, 100 µL of 0.2 M borate buffer (pH 9) and 2 mL
TBME were added to each sample. After 10 min of overhead shaking and subsequent
centrifugation (10 min, 3000× g, 15 ◦C), 25 µL (high concentration assay) or 1.5 mL (low
concentration assay, brain tissue assay) of the organic phase was transferred to a glass
tube and evaporated to dryness under a heated stream of nitrogen (10 min, 40 ◦C). The
residue was dissolved in 500 µL (high concentration assay, brain tissue assay) or 100 µL
(low concentration assay) eluent (water with 9.75% ACN and 0.1% FA) in an ultrasonic
device for 1 min and transferred to a 96-well collection plate (Waters Corporation, Milford,
MA, USA) for measurement.

2.5. Instrumental Analysis

An Acquity UPLC® I-class system connected to a Xevo TQ-S tandem mass spectrome-
ter (Waters) was used for analysis. The samples were kept at 15 ◦C in the autosampler.

Chromatic separation was achieved on an Acquity UPLC® BEH C18 column (1.7 µm,
2.1 × 50 mm; Waters) heated to 40 ◦C in gradient mode with a flow rate of 0.5 mL/min
and an injection volume of 10 µL. As eluents, a mixture of water, 5% ACN and 0.1% FA
(A), and of ACN with 0.1% FA (B) was used. The gradient started with 95% A/5% B for
0.5 min, changed to 5% A/95% B until 3.5 min, and reversed back to 95% A/5% B until
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4.0 min. Subsequently, a second change to 5% A/95% B was implemented until 5.0 min to
clean the column of any residues, ending with a change back to 95% A/5% B until 5.5 min
and holding this until the end of the 6-min run.

After positive ionization with heated electrospray ionization (ESI, Z-spray), mass-to-
charge transitions of m/z 379.5 > 292.3 (doxapram) and m/z 384.5 > 297.3 (doxapram-d5)
were monitored for quantification of doxapram using the multiple reaction monitoring
(MRM) mode. For the metabolite, transitions of m/z 393.4 > 214.3 (2-ketodoxapram) and m/z
398.4 > 219.3 (2-ketodoxapram-d5) were monitored. The following instrumental parameters
were used: capillary voltage 2 kV, cone voltage 44 V, source temperature 150 ◦C, cone gas
flow (N2) 150 L/h, desolvation gas flow (N2) 1000 L/h, desolvation temperature 600 ◦C,
collision gas flow (Ar) 0.15 mL/min, and collision energy of 18 V for doxapram/doxapram-
d5 and of 23 V for 2-ketodoxapram/2-ketodoxapram-d5.

2.6. Method Validation

The assays used for the quantification of doxapram and its metabolite 2-ketodoxapram
in brain tissue and plasma were validated according to the pertinent FDA [11] and EMA [12]
guidelines on bioanalytical method validation. To determine accuracy and precision for
every assay, the four QC working solutions and the LLOQ were measured six-fold within
three analytical runs. The parameters were evaluated within (intra) and between (inter)
runs respectively days. The dilution QC samples were diluted 10-fold (plasma) or 100-fold
(brain tissue) with blank matrix before addition of IS and measured six-fold to assess
dilution integrity. For selectivity determination, six different blank matrix samples were
measured. Blank eluent samples were injected directly after the analysis of the highest
calibrator of each assay to quantify a possible carry-over effect. Recovery and matrix effect
were measured at every QC concentration in triplicates using six different lots of blank
matrices. For quantification of recovery, the ratios between drug and respective IS peak
areas in samples spiked with QC and IS solutions before sample preparation and afterwards
were compared. To assess matrix effects, ratios of peak areas in blank samples spiked with
QC and IS solutions after sample preparation were compared to peak area ratios of pure
spiking solutions mixed with eluent [13].

Autosampler stability was assessed by repeatedly measuring the same QC samples,
stored in the autosampler at 15 ◦C, on two consecutive days. For long-term stability, QC
solutions without IS were transferred into blank matrix and stored at −20 ◦C for at least 14 d
before analysis. These samples were compared with QCs produced from freshly prepared
stock solutions. The same procedure was used to assess bench-top stability with samples
stored at room temperature for 24 h. To quantify the effect of repeated freeze-and-thaw
cycles on the analytes, QC samples without IS were frozen for 12 h and subsequently
thawed. This was repeated three times before measuring the samples.

After initial measurement of the study samples, an incurred sample reanalysis of 10%
of all samples was performed to verify the reliability of the results. These samples were
processed separately from the original measurement run.

2.7. Protein Binding

To quantify the protein binding of doxapram and 2-ketodoxapram, the Rapid Equi-
librium Dialysis (RED) device (Thermo Fisher Scientific, Waltham, MA, USA) was used
according to the manufacturer’s instructions. Briefly, 300 µL of plasma and 550 µL Dul-
becco’s Phosphate Buffered Saline (DPBS; Sigma-Aldrich, St. Louis, MO, USA) were filled in
their respective chambers and incubated for 4 h at 37 ◦C under slow shaking. Subsequently,
100 µL of plasma or DPBS were used for sample preparation and quantification.

2.8. Calculations

Standard calculations were performed with Microsoft Office Excel 2019 (Microsoft
Corporation, Redmond, WA, USA) and GraphPad Prism (V9.3.1; GraphPad Software,
San Diego, CA, USA). Linear calibration curves with a weighted fitting (1/x2) were calcu-
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lated from the ratio of the peak area of the analyte to the IS separately for both substances,
using the Software TargetLynx (V4.1; Waters). The calculation of pharmacokinetic parame-
ters was done using Kinetica (V5.0; Thermo Fisher Scientific).

3. Results and Discussion
3.1. Mass Spectrometry and Chromatography

Under the slightly acidic conditions utilized in the assay, the amine function in the
morpholine heterocycle of doxapram was protonated, generating an abundant [M + H]+

signal at m/z 379.5 (m/z 384.5 for doxapram-d5) with heated ESI in positive ion mode
(Figure S1a). The chosen collision conditions yielded a base peak at m/z 97.3; however, the
signal at m/z 292.3 (m/z 297.3 for doxapram-d5) showed a better performance during the
method validation. Therefore, the corresponding mass transition of m/z 379.5 to 292.3 was
used for the quantification of doxapram (m/z 384.5 > 297.3 for doxapram-d5) (Figure 1a).
For 2-ketodoxapram, a [M + H]+ signal at m/z 393.4 (m/z 398.4 for 2-ketodoxapram-d5)
and base peak at m/z 214.3 (m/z 219.3 for 2-ketodoxapram-d5) were detected (Figure S1b).
During method validation, the mass transition of m/z 393.4 to 214.4 (m/z 398.4 > 219.3
for 2-ketodoxapram-d5) showed the best performance and was used for quantification
(Figure 1b).

Doxapram and 2-ketodoxapram were well separated on a C18 column (Waters BEH
C18 UPLC) and kept at 40 ◦C (Figures S2–S4). A gradient mode with an initial low ACN
fraction of 5%, which increased to 95%, clearly separated both analytes, and sharp peaks
of 6 s width at baseline were achieved. The retention time of doxapram was 1.61 min
and 2.18 min for 2-ketodoxapram, indicating the increase of the lipophilic character of
2-ketodoxapram.
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belled internal standards (IS). 

  

Figure 1. Structures of the analytes doxapram (a) and 2-ketodoxapram (b). [M + H]+ precursor
molecules and their fragmentation sites (dashed lines) after electrospray ionization (ESI) in positive
ion mode followed by collision-induced decomposition are shown. For doxapram, a collision
energy of 18 V was utilized, and for 2-ketodoxapram a collision energy of 23 V was utilized. The
five hydrogen atoms marked with an asterisk were exchanged for deuterium atoms in the stable
isotopically labelled internal standards (IS).

3.2. Sample Preparation

The isolation of doxapram and 2-ketodoxapram from plasma and brain tissue was
achieved using liquid–liquid extraction with TBME in slightly alkaline conditions (pH 9.0).
After measuring the first samples, it became apparent that the concentrations of doxapram
and 2-ketodoxaparam in the porcine samples covered a wide range of concentrations,
exceeding the detector’s linear range. To ensure reliable quantification of all samples,
two calibration ranges with one for low plasma levels (10 pg/mL–10000 pg/mL) and one for
high plasma levels (1 ng/mL–2500 ng/mL) were established and validated. The two assays
only differed in the volume taken for analysis. For samples with high concentrations,
25 µL of the TBME phase was transferred for evaporation and afterwards dissolved in
500 µL of eluent. For samples with low concentrations, 1.5 mL of the TBME phase was
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used and reconstitution was done in only 100 µL of eluent. The brain samples covered a
much narrower range. Therefore, a single calibration curve (1 pg/sample–2500 pg/sample)
consisting of the transfer of 1.5 mL TBME and dissolving in 500 µL of eluent was sufficient.

The recovery rate for all assays was satisfactory (Tables S1–S3). The results show a
good consistency and reproducibility across all tested QC solutions and assays, passing
the requirements set by the EMA and FDA guidance [11,12]. The same applies for possible
matrix effects. Neither ion depression nor enhancement was observed for the IS-normalized
matrix effects (Tables S1–S3).

3.3. Method Validation

The herein described method fulfils the requirements of the FDA and EMA for bioan-
alytical methods [11,12]. For all calibration ranges, sample matrices, and analytes linear
regression curves with good correlation coefficients (r2) ≥ 0.998 were present. The ac-
curacy and precision values were within the limits set by the guidelines (Tables S4–S6).
The dilution integrity was verified through a 10-fold (plasma) or 100-fold (brain tissue)
dilution with blank matrix and showed accuracies and precision values within the limits
(accuracy: 93.4–107.1%; maximal deviation of precision: 2.4%). For testing of selectivity,
six different blank brain tissue and plasma matrix samples from control pigs without treat-
ment were used, and no interfering peaks were detected. Blank eluent samples injected
directly after the highest calibrators showed no interfering carry-over effect in any of the
calibration ranges.

After repeated measurements of samples stored overnight in the autosampler, the ac-
curacies for all concentrations, matrices, and analytes were within the limits (Tables S7–S9),
which is in agreement with findings of Suzuki et al. [14] who showed autosampler stability
for 2-ketodoxapram and doxapram over a period of at least 48 h at 10 ◦C and Flint et al. [15]
over a period of 48 h at 15 ◦C for 2-ketodoxapram and up to 120 h for doxapram. Further-
more, after three freeze-and-thaw cycles, the analytes were stable (Tables S7–S9). The same
has been observed for human serum [14].

After storage at −20 ◦C for 16 d, plasma samples were stable (Tables S7 and S8). For
longer storage periods at the condition of −20 ◦C, Suzuki et al. [14] found no significant
degradation in human serum after 4 weeks, and Komatsu et al. [16] detected no stability
problems in human plasma after 2 months. Furthermore, testing of bench-top stability of
plasma samples showed the stability of doxapram and 2-ketodoxapram over this period
(Tables S7 and S8). While there are no long-term data available on the stability at room
temperature, Suzuki et al. [14] confirmed stability at room temperature for 4 h and at 4 ◦C
for 4 weeks in human serum. Long-term and bench-top stability testing of brain tissue
samples was not performed but can be assumed to match stability data in plasma. In
summary, the stability data show that long-term storage of samples is possible for at least
2 months and that the sample processing at room temperature followed by storage in the
autosampler during the quantification procedure does not cause sample degradation.

The incurred sample reanalysis for both plasma concentration ranges as well as brain
tissue were well within the required limit (Tables S10–S12). In the high concentration
range, it was 96.4% (27 of 28 samples); in the low concentration range it was 100% for
2-ketodoxapram (14 of 14 samples), and 92.3% for doxapram (12 of 13 samples), and both
tested brain tissue samples were inside the limit.

In the past 40 years, various methods have been published for the quantification of
doxapram and 2-ketodoxapram in plasma and serum, using a wide range of techniques and
equipment (for an overview see Table 1). To the best of our knowledge, the herein described
method is the first fully validated method for the quantification of these analytes in tissue of
any kind. Furthermore, even for the quantification of plasma and serum samples, the herein
developed method is the only one fully validated by the current FDA and EMA guidelines.
While validation data are not available for most methods, Flint et al. [15] performed a
validation according to an old FDA guideline from 2003, and Suzuki et al. [14] did not
provide any information on the guidelines used.
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Furthermore, our described method has by far the lowest LLOQ with 10 pg/mL,
which allows the observation of plasma concentrations over a longer follow-up period and
after the administration of smaller drug doses and the quantification of the protein binding.
Because doxapram and 2-ketodoxapram are highly bound to proteins (see Section 3.5 for
detailed results), the free fraction is very small and requires either a big sample volume or
a low LLOQ for exact quantification. In addition, the developed method is the only one
using stable isotopically labelled analytes as IS.

Table 1. Overview of published quantification methods for doxapram and 2-ketodoxapram.

Study Instruments Range
[ng/mL] Analytes Sample

Matrix
Sample
Volume

Run
Time Internal Standard Sample

Preparation

Aranda et al.
(1988) [17] HPLC-UV 1000–15,000

Doxapram,
ketodoxapram,

AHR 5904,
AHR 0914

Human
serum 50 µL 15 min

Beta-hydroxy-
phenyl-

theophylline
LLE

Barbé et al.
(1999) [18]

HPLC-
UV/VIS 100–20,000

Doxapram,
ketodoxapram,

AHR 5904,
AHR 0914

Human
plasma 60 µL 10 min Butobarbital LLE

Coutts et al.
(1991) [19] GC-N/P-D - 1

Doxapram and
many

metabolites

Human
urine 0.5–1 mL - 2 - LLE

Flint et al.
(2018) [15]

UPLC-
MS/MS

50–4500 Doxapram Human
plasma 50 µL 5 min Fentanyl-d5 PP50–5000 Ketodoxapram

Komatsu et al.
(2005) [16] GC-MS 250–5000 Doxapram Human

plasma - 2 - 2 Diazepam SPE

LeGatt et al.
(1986) [20] GC-N/P-D 100–10,000 Doxapram and

ketodoxapram
Human
plasma 200 µL 6 min

3
AHR-755

(doxapram analog) LLE

Lin et al.
(2011) [21] LC-MS/MS 2–1000 Doxapram Rabbit

plasma 100 µL 10 min Urapidil PP

Nichol et al.
(1980) [22]

GC-MS
-2 Doxapram

Human
blood,
plasma

50–100 µL
- 2 Dextromoramide LLE

GC-FID Human
urine 0.5–2 mL

Ogawa et al.
(2015) [23]

HPLC-
UV/VIS

30–? 4 Doxapram Human
serum

50 µL 25 min
3 Butobarbital LLE

10–? 4 Ketodoxapram
Robson and

Prescott (1977) [24] GC-N-D 10–5000 Doxapram Human
plasma 2 mL - 2 Naftidrofuryl

oxalte
LLE250–5000 Ketodoxapram

Roozekrans et al.
(2017) [25] LC-MS/MS 2–5000 Doxapram Human

plasma - 2 - 2 - 2 PP

Sams et al.
(1992) [26] GC-N/P-D 25–5000 Doxapram Horse

plasma 1 mL - 2 Diazepam LLE

Suzuki et al.
(2017) [14] LC-MS/MS 20–5000 Doxapram and

ketodoxapram
Human
serum 25 µL 17 min Propranolol PP

Torok-Both et al.
(1985) [27] GC-N/P-D - 2 Doxapram

Human
plasma 20–100 µL 8 min

3 Diazepam PP and LLE
Human
urine 2–5 µL

1 no quantification; 2 no information available; 3 run time approximated from description in manuscript; 4 un-
known upper limit; FID: flame ionization detector; GC: gas chromatography; HPLC: high performance liquid
chromatography; LC: liquid chromatography; LLE: liquid–liquid extraction; MS: mass spectrometer; MS/MS:
tandem mass spectrometer; N-D: nitrogen detector; N/P-D: nitrogen–phosphorus detector; PP: protein precipi-
tation; UPLC: ultra performance liquid chromatography; UV: ultraviolet detector; UV/VIS: ultraviolet/visible
spectrum detector.

3.4. Pharmacokinetics

After intravenous administration of 1 mg/kg doxapram, the three German landrace
pigs showed biphasic pharmacokinetics (Figure 2). Very similar profiles have already been
described in healthy humans [28,29], lambs [30], rabbits [21], and horses [26]. Furthermore,
Robson and Prescott [28], and Clements et al. [29] were able to observe a third phase
with an even lower rate of elimination, starting approximately 12 h after injection and,
therefore, outside the observation window of this experiment. With an extension of the
observation period, it would be possible to assess whether porcine pharmacokinetics have
a third compartment. However, the contribution of a third compartment is considered
negligible for doxapram exposure because the extrapolated fraction of the AUC∞ is only
0.66 ± 0.42% for doxapram and 8.60 ± 0.26% for 2-ketodoxapram. In the rabbit study,
the sampling period was 24 h, but no details are given on the usage of all samples for
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pharmacokinetics [21]; in the lamb study, the sample period was 24 h, but only the first 6 h
were used for the pharmacokinetic profile [30], and in the horse study, the sampling period
was only 8 h [26]. Therefore, in all these animal studies, the sampling period was probably
too short to assess the existence of a third phase in the pharmacokinetics of doxapram in
these species.
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Table 2 summarizes the pharmacokinetic parameters after intravenous doxapram
bolus injection; however, because the number of treated pigs is low (n = 3), the data should
only be seen as preliminary. The elimination half-life (t1/2) of doxapram in pigs was
1.38 ± 0.22 h. Compared to other species, this value is between rabbits (0.47 ± 0.17 h) [21],
lambs (5.2 h, range 1.2–11.6 h) [30], horses (2.62–3.29 h) [26], and humans (3.4 ± 0.7 h) [28].
Clements et al. [29] fitted the data from six healthy human volunteers to a three-compartmental
model and observed an intermediate t1/2 of 1.03 ± 0.16 h and a terminal t1/2 of 5.92 ± 1.37 h.

Table 2. Calculated pharmacokinetic parameters after a single intravenous bolus injection of 1 mg/kg
doxapram in German Landrace Pigs (n = 3). Mean data are shown ± SD.

Animal Cmax
[ng/mL]

AUC
[ng/mL*h]

VSS
[L]

Cl
[mL/min/kg]

t1/2
[h]

tmax
[h]

Doxapram
Pig 154 2149 1169 34.4 14.2 1.18 -
Pig 155 1490 986 51.5 16.9 1.26 -
Pig 156 1701 1403 37.1 11.9 1.69 -
Mean 1780 ± 275 1186 ± 170 41.0 ± 7.5 14.3 ± 2.0 1.38 ± 0.22 -

2-Ketodoxapram
Pig 154 31.2 157 - - 2.47 0.33
Pig 155 26.2 139 - - 2.36 1.00
Pig 156 39.5 185 - - 2.42 0.75
Mean 32.3 ± 5.5 160 ± 19 - - 2.42 ± 0.04 0.69 ± 0.28

AUC: area under the concentration-time curve extrapolated to infinity; Cl: clearance; cmax: maximal plasma concen-
tration; t1/2: elimination half-life; tmax: time to reach maximal plasma concentration; Vss: volume of distribution.

The maximal plasma concentrations (cmax) of 1 mg/kg doxapram in pigs after intra-
venous bolus injection (within 1 min) was 1780 ± 275 ng/mL and was consistent with
data from different species. After injection of 1.5 mg/kg doxapram (within 2–3 min)
in healthy humans, a cmax of 2.6 µg/mL [29] and approximately 3 µg/mL [28] were
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measured. In lambs, after injection of 2.5 mg/kg doxapram (within 1 min), a cmax of
3.1 µg/mL (range: 2.7–3.6 µg/mL) was observed [30]. Similar values were observed in
horses (1341 ± 256 ng/mL; 1.1 mg/kg doxapram; no injection time given) [26] and rabbits
(1515 ± 130 ng/mL; 5 mg/kg doxapram; injection within 1 min) [21].

Furthermore, the clearance in pigs was 14.3 ± 2.0 mL/min/kg. In humans, clear-
ances of 5.2 ± 1.7 mL/min/kg and 5.9 ± 1.0 mL/min/kg were observed [28,29]. In other
species, a clearance of 11.1 ± 2.4 mL/min/kg (1.1 mg/kg doxapram) was reported for
horses [26] and of 9.0 mL/min/kg (range: 5.7–13.3 mL/min/kg) for lambs [30]. The AUC
in pigs (1186 ± 170 ng/mL*h) is similar to the AUC in horses after intravenous administra-
tion of 1.1 mg/kg doxapram (1728 ± 400 ng/mL*h) [26]. The AUC is higher in humans
(4533 ± 1683 ng/mL*h; 1.5 mg/kg doxapram) [28] and lower in rabbits (2094 ± 100 ng/mL*h;
5 mg/kg doxapram) [21], considering the differences in administered dose.

To our knowledge, there are no data available on the pharmacokinetics of 2-ketodoxapram
after intravenous administration of doxapram in any species. However, Bairam et al. [30]
administered 2.5 mg/kg 2-ketodoxapram in new-born lambs and observed a t1/2 of 2.26 h
(0.7–3.4 h), which is very similar to the value determined in pigs after administration of
1 mg/kg doxapram (2.42 ± 0.04 h). These data need to be interpreted carefully as they are
based on only three pigs and after administration of doxapram and not 2-ketodoxapram;
therefore, the pharmacokinetics of 2-ketodoxapram after its administration are expected to
be different.

3.5. Protein Binding

Both doxapram (95.5 ± 0.9%) and 2-ketodoxapram (98.4 ± 0.3%) are predominantly
bound to proteins in porcine blood with a very small free fraction. The measurement
was performed in samples taken 60 min after administration of 1 mg/kg doxapram, and
the total concentration of doxapram was 332 ± 53.6 ng/mL and 31.7 ± 5.1 ng/mL of
2-ketodoxapram. In the literature, there are no data available on the protein binding of
doxapram or 2-ketodoxapram in pigs. However, Sam et al. [26] measured the bound
fraction of doxapram in horses with values between 76.0–85.4%, but they did not assess
2-ketodoxapram. Furthermore, they found that the protein binding is concentration de-
pendent with an increase in free fraction with higher doxapram concentrations [26]. The
considerably higher free fractions in horses could be caused by species-specific differences
in protein binding as was already shown for other drugs [31]. The binding sites of plasma
proteins vary between species, leading to different binding affinities [32]. For the porcine
samples, no concentration dependence of the protein binding could be observed during
the measurement of samples with different concentrations (data not shown). This could
be connected to the before-mentioned species-specific differences in plasma protein con-
figuration. The available protein binding sites in horses could be saturated at a lower
doxapram concentration, leading to the observed non-linear characteristic, which seems to
be absent in pigs in the same concentration range. Lastly, the use of different techniques in
the determination of the free fraction could lead to the observed discrepancy.

3.6. Brain-to-Plasma Ratio

For comparison of the brain tissue samples, the measurement result of each sample was
divided by its individual weight, revealing much lower concentrations of doxapram and 2-
ketdoxapram in the brain tissue compared to plasma samples taken at the time of the brain
sampling (Figure 3). This observation is supported by data from Kumita et al. [33], who
compared doxapram serum to cerebrospinal fluid (CSF) concentrations in premature infants
and found higher concentrations in the serum than the CSF (CSF–serum ratio: 0.48 ± 0.13),
and by data from Bruce et al. [34] who reported very low doxapram concentrations in the
CSF of dogs. Furthermore, in pigs, the brain-to-plasma ratio observed for 2-ketodoxapram
(0.12 ± 0.07) is 5.0-fold lower than the one for doxapram (0.58 ± 0.24). This result is
unexpected because the lipophilic metabolite 2-ketodoxapram should be able to cross the
blood–brain barrier more easily via passive diffusion than the more hydrophilic doxapram.
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Possible explanations are that 2-ketodoxapram is a substrate for efflux transporters, as
are many small lipophilic compounds [35], or the almost three times higher free fraction
of doxapram compared to 2-ketodoxapram, leading to a higher availability of unbound
doxapram in the blood and, therefore, at the blood–brain barrier and possibly in the brain.
However, due to the limited number of animals (n = 3) and the fact that pigs did not receive
2-keodoxapram directly, the results have to be interpreted carefully and should only be
considered preliminary.
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Figure 3. Comparison of plasma and brain tissue concentrations in German Landrace pigs (n = 3)
after daily intravenous administration of 1 mg/kg doxapram at the end of a 14-day period. Brain-
to-plasma ratio is given in parentheses. The values were fitted with a linear regression model with
a slope of 0.98 ± 0.20 for doxapram and 0.75 ± 0.04 for 2-ketodoxapram. In this plot, higher brain-
to-plasma ratios correlate with steeper slopes. Therefore, the steeper slope of doxapram indicates
a higher brain-to-plasma ratio compared to 2-ketodoxapram. Doxapram values are depicted with
white circles and 2-ketodoxapram with black circles.

4. Conclusions

We developed and validated a highly sensitive UPLC-MS/MS assay for the simul-
taneous quantification of doxapram and its active metabolite 2-ketodoxapram in porcine
plasma, spanning at least six orders of magnitude (10 pg/mL–2500 ng/mL) with a LLOQ
of 10 pg/mL. With this assay, it was also possible to accurately and precisely quantify
doxapram and 2-ketodoxapram in brain tissue and to assess its free fraction in plasma. The
assay was successfully applied to an animal pharmacokinetic study, which provided pre-
liminary pharmacokinetic data in pigs. This first step is the basis for studies that evaluate
the pharmacokinetic and pharmacodynamic relationship of doxapram and its metabolite
in pigs and, after a transfer of the assay, in humans or other species.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14040762/s1, Figure S1: Tandem mass spectrum
(MS/MS) of doxapram and 2-ketodoxapram; Figure S2: Selected chromatograms of the assay val-
idated for quantification of the high plasma concentrations; Figure S3: Selected chromatograms
of the assay validated for the quantification of the low plasma concentrations; Figure S4: Selected
chromatograms of the assay validated for the quantification of brain tissue concentrations; Table S1:
Matrix effect and recovery data of the assay validated for quantification of high plasma concentrations;
Table S2: Matrix effect and recovery data of the assay validated for the quantification of low plasma
concentrations; Table S3: Matrix effect and recovery data of the assay validated for the quantification
of brain tissue; Table S4: Accuracy and precision data of the assay validated for the quantification
of high plasma concentrations; Table S5: Accuracy and precision data of the assay validated for the
quantification of low plasma concentrations; Table S6: Accuracy and precision data of the assay
validated for the quantification of brain tissue; Table S7: Stability data for the assay validated for

https://www.mdpi.com/article/10.3390/pharmaceutics14040762/s1
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the quantification of high plasma concentrations; Table S8: Stability data for the assay validated for
the quantification of low plasma concentrations; Table S9: Stability data for the assay validated for
the quantification of brain tissue; Table S10: Incurred sample reanalysis data for the assay validated
for the quantification of high plasma concentrations; Table S11: Incurred sample reanalysis data for
the assay validated for the quantification of low plasma concentrations; Table S12: Incurred sample
reanalysis data for the assay validated for the quantification of brain tissue.
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