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Abstract: This study focused on the synthesis and characterization of pure curdlan–chitosan foams
(CUR/CS), as well as foams containing Ag nanoparticles (CUR/CS/Ag), and their effect on the
skin repair of diabetic mice (II type). The layer of antibacterial superabsorbent foam provides good
oxygenation, prevents bacterial infection, and absorbs exudate, forming a soft gel (moist environment).
These foams were prepared from a mixture of hydrolyzed curdlan and chitosan by lyophilization.
To enhance the antibacterial properties, an AgNO3 solution was added to the curdlan/chitosan
mixture during the polymerization and was then reduced by UV irradiation. The membranes were
further investigated for their structure and composition using optical microscopy, scanning electron
microscopy, energy-dispersive spectroscopy, FT-IR spectroscopy, and XPS analysis and modeling.
In vivo tests demonstrated that CUR/CS/Ag significantly boosted the regeneration process compared
with pure CUR/CS and the untreated control.

Keywords: superabsorbent dressings; diabetic wound regeneration; curdlan; chitosan; silver
nanoparticles; XPS modelling

1. Introduction

The healing of burns and wounds is one of the most common health problems.
Metabolic and physiological disorders (hypertension, malignancies, kidney disorders,
diabetes, obesity, etc.) affect the normal process of skin reparation, resulting in ulcers,
bedsores, and amputations, and causing death worldwide [1–7]. According to medical
reports, 1–2% of the world’s population suffers from chronic wounds [8,9].

The exudate formed during wound healing is the body’s natural response to skin
injury. To ensure successful healing, excessive exudate must be delayed, providing good
oxygenation, a moist environment, and sterility [10].

Polysaccharides are widely used to prepare superabsorbent materials that can absorb
and retain aqueous solutions hundreds of times their own dry weight [11,12]. Chitosan
is a well-known carbohydrate polymer that has many potential clinical applications due
to its antibacterial, anticoagulant, antitumor, and hemostatic properties [13]. β-glucans
usually show a positive effect on the human immune system, providing antitumoral and
antimicrobial effects [14]. Curdlan is a homopolysaccharide composed entirely of glucose
monomers linked by β-1,3 glycosidic bonds. By varying the temperature, heating time, and
curdan concentration, it is possible to obtain biomaterials of various strengths [15].
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Polysaccharides can be formed in various morphological types of materials, such
as film, hydrocolloid, hydrogel, fibers or foam, which significantly affects their proper-
ties [16]. Porosity has been reported to increase with increasing the absorption capacity
and absorption rate [17].

For example, the curdlan/chitosan biomaterials were obtained by Wang et al. [18]
and Przekora et al. [19] by mixing polysaccharides in a ratio of 2:1. However, the prepa-
ration methods and the structures of dressings were different: membrane (evaporation at
60 ◦C [18]) and highly porous (66–77%) foam (lyophilization process [19]). A comparison
of the absorbance capacities demonstrated that foam can absorb liquids >40 times more
efficiently than membranes. The swelling ability of curdlan/chitosan (1:2) electrospun
nanofibers (d = 216 ± 60 nm) was 350% [20].

Although chitosan and curdlan derivatives have antibacterial properties, this is not
enough to provide 100% antimicrobial protection. A promising and widely used approach
is the addition of Ag nanoparticles to enhance the antibacterial effect [21].

Yu et al. [22] produced a gelatin/chitosan composite containing Ag NPs (0, 1, 3, and 5%)
by lyophilization. They demonstrated the enhanced antibacterial activity of the obtained
Ag-loaded materials against E. coli and S. areus cells, and found a directly proportional
increase in the porosity and water absorbance capacity depending on the concentration
Ag NPs. This was due to an increase in the viscosity of the solution and an increase in the
formation of bubbles during stirring. Thus, more pores are formed during lyophilized.

In this study, novel CUR/CS/Ag NPs foams were developed by polymerization at
90 ◦C with dropwise addition of an AgNO3 solution followed by UV irradiation. It was
demonstrated that the presence of Ag significantly affects the swelling rate. In vivo tests in
mice with genetically determined type 2 diabetes mellitus revealed an enhanced effect of
CUR/CS/Ag foams on skin repair compared to pure CUR/CS and the untreated control.
Thus, the proposed facile strategy for the production of biocompatible superabsorbent
foams opens up promising prospects for the creation of new functional platforms for
temporary skin substitutes for the healing and regeneration of chronic wounds.

2. Materials and Methods
2.1. Preparation of Foam-like Curdlan–Chitosan (CUR/CS) and Curdlan–Chitosan-Ag NPs
(CUR/CS/Ag) Biomaterials

Curdlan/chitosan foams were prepared as described elsewhere [19]. Briefly, aqueous
solutions containing 2 wt.% of curdlan (99%, Qingdao SIgma Chemical, Qingdao, China)
and 1 wt.% of chitosan (99%, Mw 100 kDa, Qingdao SIgma Chemical, Qingdao, China) in 1%
(v/v) acetic acid solution were mixed (1:1) and preheated to 55 ◦C with continuous stirring
with a magnetic stirrer. Then, the obtained mixture was transferred into a round-bottom
flask, which was placed in a glycerin bath at 90 ◦C for 20 min.

Curdlan/chitosan/Ag membranes were prepared by the reduction of AgNO3 (Alfa Ae-
sar, A Johnson Matthey Company, Tewksbury, MA, USA) under ultraviolet (UV) irradiation.
Then, 0.01 N AgNO3 (≈0.5 wt.% Ag in terms of the dry residue of the mixture) was added
dropwise to the curdlan/chitosan solution during the polymerization reaction (20 min;
90 ◦C; V = 60 mL/h), after which the solution was irradiated with a UV lamp (wavelength
λ = 185 nm). The same H2O volume was added to the pure curdlan/chitosan solution to
compensate for the volume difference. Finally, the resultant samples were cooled, frozen
at −196 ◦C, and subjected to a lyophilization process (Martin Christ Alpha 1-2 L.D. plus,
Osterode am Harz, Germany) for 24 h to obtain a foam-like structure. A schematic of the
curdlan/chitosan and curdlan/chitosan/Ag foam fabrications is shown in Figure 1.
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Figure 1. Schematic of curdlan/chitosan and curdlan/chitosan/Ag foam synthesis.

2.2. Characterization

The sample morphology was examined by optical and scanning electron microscopy.
Optical analysis was performed using a BX51 optical microscope (Olympus, Tokyo, Japan).
SEM analysis was carried out on a JSMF 7600 microscope (JEOL Ltd., Tokyo, Japan)
equipped with an energy-dispersive X-ray spectrometer. The samples were coated with a
~5 nm thick Pt layer to compensate for the surface charge and to prevent sample damaging.

The sample chemical characterization was performed by XPS, energy-dispersive X-ray
spectroscopy (EDXS), and FTIR spectroscopy. FTIR spectra (100 scans) were recorded with
a step of 4 cm−1 on a Vertex 80v FTIR spectrophotometer (Bruker, Billerica, MA, USA) with
a parallel beam transmittance accessory. The spectra were collected at room temperature.
The XPS method was used to determine the surface chemical composition using an Axis
Supra spectrometer (Kratos Analytical, Manchester, UK). The maximum lateral dimension
of the analyzed area was 0.7 mm. The spectra were fitted using the CasaXPS software after
Shirley-type background subtraction. The binding energies (BE) for all carbon and oxygen
environments were taken from the literature [23–25]. The BE scale was calibrated by setting
the CHx component at 285 eV.

2.3. Water Absorbance

Dry biomaterials weighing 10 mg ± 1 mg (8 mm × 8 mm, 2 mm in height) were im-
mersed in PBS at 37 ◦C. After sufficient swelling, the biomaterials were removed from PBS,
and excess water on their surfaces was removed with filter paper until a constant sample
weight was fixed. The water absorption (hereafter denoted as WA%) of curdlan/chitosan
foams was calculated as WA = (Ww − Wd)/Wd × 100%, where Ww and Wd are the weights
of the wet and dry foams, respectively.

2.4. In Vivo Assay

The Ethics Committee approved the procedures of the RICEL-branch of ICG SB RAS
(№ 170 dated 22 January 2022). All animal procedures were carried out in accordance
with the protocols approved by the Bio-ethics committee of the Siberian Branch of the
Russian Academy of Sciences, recommendations for the proper use and care of laboratory
animals (European Communities Council Directive 86/609/C.E.E.), and the principles of
the Declaration of Helsinki.
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B.K.S.Cg Dock7 <m>+/+Lepr <db>/J mice (were obtained from SPF vivarium of
the Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, further denoted as
db/db) (female, bodyweight: ≈30–40 g, 5 month old) were randomly divided into two
groups of curdlan/chitosan and curdlan/chitosan/Ag (n = 3). Mice were anesthetized with
35 mg/kg zoletil (Valdepharm, France) and 7 mg/kg ksilazin (Interchemie werken «De
Adelaar» BV, Holland). Then, the backs were shaved and two 1 cm × 1 cm full-thickness
cutaneous defects were made on each side of the spine (one is the control (untreated) and
the second is the treated material). The defects were covered with either curdlan/chitosan
or curdlan/chitosan/Ag for 10 days. After that, the wounds were photographed until one
of the wounds healed (24 days). The mice were then sacrificed and the wound tissues were
collected and immersed in 4% formaldehyde for hematoxylin and eosin (H&E) staining and
were photographed with a microscope (Zeiss Axio observer Z1, Oberkochen, Germany).
Defect areas were photographed with a Canon camera and measured with the Image J
program. To calibrate the magnification of photographs, a reference square of 1 cm × 1 cm
in size was placed in the wound area. Wound areas were determined by counting the
surface area.

3. Results
3.1. Fabrication of CUR/CS and CUR/CS/Ag Foams and Their Structural Analysis

It is known that a slightly acidic environment, which can be provided with appro-
priate dressings, promotes the regeneration of chronic wounds by stimulating fibroblast
proliferation, preventing bacterial contamination, and decreasing protease activity [26].
The use of acetic acid ensures the solubility of chitosan derivatives and makes it possible
to achieve a suitable pH (pH of the polymerizable mixture of 5.9) to stimulate the repair
process. Thus, using acetic acid provided the solubility of chitosan-derivatives and allowed
for achieving a suitable pH (the pH of polymerized mixture 5.9) to stimulate the reparation
process.

The structure of curdlan and chitosan and the possible chemical interactions between
their functional groups (hydroxyls, hydrogen, and amino-groups are involved in the
formation of hydrogen bonds) are presented in Figure 2.

The addition of AgNO3 to a polymer solution is a widely used method for preparing
composite materials containing Ag NPs. This approach provides a uniform distribution of
Ag NPs in the resulting material, and allows one to control the concentration of Ag NPs.

To obtain a foamy microstructure of both biomaterials (CUR/CS and CUR/CS/Ag)
with a superabsorbent capacity, a lyophilization method was used. Figure 3 shows images
of the fabricated biomaterials obtained using optical and scanning electron microscopy,
which clearly show the porous structure of both samples. Interestingly, CUR/CS/Ag has a
foamy structure with a higher microporositiy than CUR/CS, which can be explained by
the increased viscosity of the initial Ag-contained solution. The foamy structure should
provide a good absorption capacity and appropriate oxygenation for wound regeneration.
The chemical composition of the obtained materials, determined by the EDXS method,
is given in Table 1.
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Figure 2. Schematics of the possible chemical interactions between curdlan and chitosan.

Table 1. Atomic percentage (%) from energy dispersive X-ray (E.D.X.) element mapping.

Samples
Atomic Percentage (%)

C O N Ag Pt

CUR/CS 53.0 41.0 5.8 - 0.2

CUR/CS-Ag 52.6 40.2 6.6 0.4 0.2
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Figure 3. Optical and SEM images of CUR/CS and CUR/CS/Ag samples.

3.2. XPS Analysis and Modelling of CUR/CS and CUR/CS/Ag Biomaterials

The sample surfaces were analyzed by XPS and the atomic compositions are reported
in Table 2. It can be seen that the surface compositions have some differences from the EDXS
results (Table 1), which is most likely due to differences in the depth of analysis: ~10 nm
(XPS) and ~1000 nm (EDXS). A significant difference in atomic compositions can also be
seen when comparing CS, CUR, and CUR/CS/Ag samples. CS shows 8.8 at.% nitrogen,
while CUR reveals no nitrogen and a higher oxygen content. CUR/CS/Ag exhibits a lower
nitrogen content than pure CS (due to mixing with CUR) and 0.4 at.% Ag.

Table 2. Atomic percentages (%) obtained from the XPS surface analyses.

Atomic Percentage (%)
Samples

CS CUR CUR/CS CUR/CS/Ag

C 68.6 62.8 60.6 63.7

O 22.6 37.2 31.2 32.1

N 8.8 0.0 8.2 3.8

Ag 0.0 0.0 0.0 0.4
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In order to analyze the material structure in more detail, the high resolution XPS
spectra of C1s, N1s, and Ag3d were analyzed.

The XPS C1s signal of the pristine chitosan powder (CS) was fitted with a sum of four
components: CHx (BE = 285.0 eV), C–N (285.8 eV), C–O (286.9 eV), and N–C=O (288.4 eV)
(Figure 4). The full width at half-maximum was set to 1.2 eV for all components, and
the line shape was a mixture of 30% of Lorentzian and 70% Gaussian. This line shape
is the same for all components, except the signal fitting of the CS/CUR/Ag C1s signal.
The functional composition of the CS surface is in good agreement with the structural
scheme of chitosan, which consists of N-acetyl glucosamine and glucosamine. The N–C=O
and CHx components are attributed solely to N-acetyl glucosamine units, while the C–N
component (amine groups) are ascribed to glucosamine. The O1s signal fitting of CS was
performed with a single C–O component centered at 533.3 eV with a FWHM of 1.5 eV
(Figure 5a). The N1s signal of CS was very informative, as two distinct nitrogen peaks
were observed: protonated amines NH3

+ (BE = 403.2, FWHM = 1.2 eV) and amides N–C=O
(BE = 399.9 eV, FWHM = 1.2 eV). Using the NH3

+/N–C=O concentration ratio (Figure 6),
the ratio of N-acetyl glucosamine to glucosamine units was determined to be 1:1.2, i.e.,
glucosamine units were dominating.
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The pristine curdlan (CUR) sample only had oxygen and carbon on its surface. The
fitting of the C1s signal (Figure 4b) was performed with the sum of three components:
CHx (BE = 285 eV, FWHM = 1.3 eV), C–O (BE = 286.5 eV, FWHM = 1.1 eV), and C=O
(BE = 287.9 eV, FWHM = 1.8 eV). The CHx and C=O contributions were not expected to be
found on the curdlan surface, as they were absent in the curdlan structure. The presence
of these components may be associated with surface contaminations. The O1s signal of
CUR also revealed the C–O (BE = 533.0 eV, FWHM = 1.5 eV) and C=O (BE = 531.1 eV,
FWHM = 1.5 eV) components (Figure 5b). However, the concentration of C=O was very low.

The carbon, oxygen, and nitrogen environments were also highly interesting in the
detailed analysis. The CUR/CS/Ag samples impregnated with Ag nanoparticles showed
an Ag signal in both the EDXS and XPS spectra. The Ag content was estimated to be
~0.4 at %. The presence of silver in the CUR/CS/Ag sample was evidenced by the presence
of the Ag3d XPS peak (Figure 6c) at position 367.8 eV, corresponding to the Ag2O phase.
The XPS C1s signal of CUR/CS/Ag was approximated using the CASA XPS software by
introducing a new line that replicated the form of the signal from the CS and CUR samples.
Finally, the C1s signal was fitted with a sum of three components: CS, CUR, and CHx
(BE = 284.9 eV, FWHM = 0.8 eV). The intensity of the CHx component was only 6% and
was probably associated with the surface contamination. The CS/CUR ratio, estimated by
the curve fitting, was 1:1.14, with a slight predominance of curdlan. A similar ratio was
estimated from the elemental composition of the CS/CUR-Ag sample. Indeed, as nitrogen
is present only in chitosan, and we know the atomic composition of CS, the CS/CUR ratio
can be estimated using Equation (1), where [C]CS, [N]CS, [C]CUR/CS/Ag, and [N]CUR/CS/Ag
are carbon and nitrogen concentrations in the CS and CUR/CS/Ag samples, respectively.

CS/CUR =

[
1 −

[C]CS × [N]CUR/CS/Ag

[C]CUR/CS/Ag × [N]CS

]
:

[
[C]CS × [N]CUR/CS/Ag

[C]CUR/CS/Ag × [N]CS

]
(1)

According to this equation, the CS/CUR ratio is 1:1.15. The XPS N1s spectrum of the
CUR/CS/Ag sample shows that the percentage of glucosamine and N-acetyl glucosamine
is the same.

3.3. FT-IR Analysis of CUR/CS and CUR/CS/Ag Biomaterials

The FT-IR spectra of the pure components (chitosan and curdlan) and the spectra of
hybrid chitosan/curdlan foams and Ag-loaded foams (cross-linked at 90 ◦C) are presented
in Figure 7. To interpret the obtained peaks, it is necessary to analyze the structure of the
polysaccharides and the possible interactions between them (hydroxyls, hydrogen, and
amino-groups are involved in the formation of hydrogen bonds (Figure 2).

The as-prepared biomaterials contain two types of polysaccharides: chitosan (CS)
with N-acetyl glucosamine and glucosamine units and curdlan (CUR) built from glucose
units using β-(1,3)-glucan linkages. All samples contain glycosidic C–O bonds (1027 cm−1),
C–O–C bonds in the ring (1065 cm−1), C–C and C–O bonds (992 cm−1), and aliphatic
groups (region 3000–2800 cm−1). The broad complex band at 3700–3000 cm−1 can be
associated with the OH– (≈3300) and CONH–groups (maxima at 3364 and 3290 cm−1) [26].
Indeed, the intensity of the spectrum of the CS and CUR/CS samples containing N-acetyl-
glucosamine units in this region is higher than that of the CUR counterpart. The specific
absorption bands at 890, 1080, and 1160 cm−1 indicate the presence of β-(1,3)-glucan
linkages in curdlan.

The CS spectrum has specific nitrogen-associated bands at 1214 cm−1 (C-N stretch) and
1633 cm−1 (amide I of β-pleated sheet structures) [27]. Peaks in the region of 1480–1444 cm−1

can be associated with CH and NH of amide II and aliphatic CH deformation [28]. A maxi-
mum at 915 cm−1 was assigned to the C–C, O–C, C–O, and C–CH3 deformations [29].

In the CUR/CS sample, the band at 3085 cm−1, associated with -NH groups in chitosan,
is not observed. This could be caused by hydrogen bonds between C=O· · ·HN species in
the N-acetyl-glucosamine units of chitosan and 1,3-β-D-glucan units [30].
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3.4. PBS Absorbance Ability of CUR/CS and CUR/CS/Ag Biomaterials

The wetting time of the superabsorbent foam dressings was measured, and the ob-
tained results are shown in Figure 8. Shorter wetting times indicate better wetting. As can
be seen, the addition of Ag NPs significantly affects the absorption rate. CUR/CS/Ag
foams had a much faster wetting rate than the foam dressings without Ag NPs (6 s for
CUR/CS/Ag versus 60 s for CUR/CS). However, the amount of absorbed liquid was
almost the same.
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3.5. In Vivo Assay

The regenerative potential of the developed materials was evaluated using the model
of a full-thickness skin wound. Mice with genetically determined type 2 diabetes mellitus
were used. This disease is characterized by a frequent complication of chronic long-term
non-healing wounds, the therapy for which is difficult due to impaired perfusion and
innervation in such patients. Therefore, the search and development of new effective
materials is an urgent task. As shown in Figures 9 and 10 untreated wounds in db/db
mice heal very slowly, so no healing was achieved during the 30-day observation. The use
of CUR/CS led to a decrease in the size of wounds; however, complete healing was not
observed. At the same time, it was found that the use of CUR/CS/Ag foam significantly
accelerated healing already in the first 10 days after wounding (Figure 9).

Pharmaceutics 2022, 14, x FOR PEER REVIEW 13 of 20 
 

 

 

 

Figure 9. The representative photographs showing the healing dynamic of full-thickness skin with 

(right wound) or without (left wound) treatment with curdlan/chitosan and curdlan/chitosan/Ag 

foams, for each of the groups of animals, n = 3. The ovals show the foams of the treated wounds. 

Wounds were covered with biomaterials for 10 days, after which healing occurred without the in-

fluence of biomaterials. 

  

Figure 9. The representative photographs showing the healing dynamic of full-thickness skin with
(right wound) or without (left wound) treatment with curdlan/chitosan and curdlan/chitosan/Ag
foams, for each of the groups of animals, n = 3. The ovals show the foams of the treated wounds.
Wounds were covered with biomaterials for 10 days, after which healing occurred without the
influence of biomaterials.
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Figure 10. The influence of membranes (red—CUR/CS; black—CUR/CS/Ag; blue—untreated
control) on the dynamics of the wound defect closure. The graph shows the dynamics of the closure
of a full-thickness skin defect in mice with genetically determined type 2 diabetes mellitus. Each
animal (n = 3 in each group in total) received a control wound (without therapy) and an experimental
wound (treatment with test materials). The percentage of closure was calculated based on the initial
size of the wounds in order to assess the actual dynamics of healing. The graph shows the increase in
the sparing of the control wounds for all observation times, as well as wounds with CUR/CS therapy
on day 10 (removal of the dressing).
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The histology analysis (Figure 11) of the wound after 24 days revealed an accumulation
of inflammatory cells (polymorphonuclear and mononuclear) in the untreated controls
(Figure 11). The wounds are covered with scabs, filled with a mixture of non-cellular
debris and dead leukocytes, and re-epithelialization is low. Along the edges of the wound,
neuroepithelial growths are clearly visible, the border between the wound and areas
of healthy skin are noticeable. Moderate re-epithelialization is observed in the wound
treated with CUR/CS, covering a partially organized layer of medium-thick granulation
tissue with signs of pericellular edema and, accordingly, sparse cell density. Capillary
neovascularization is noted. There are remnants of a scab of non-cellular remnants of
red blood cells and exudate. In the CUR/CS/Ag treated specimen, the wound defect is
no longer present. There is a layer of granulation tissue formed during the remodeling
process. Vessels that are newly formed capillaries, as well as vessels of larger diameter,
are also observed. There are no signs of edema and active inflammatory reaction. Re-
epithelialization is almost complete, but in places, detachment of the epithelium is noted.
The remains of a scab and crusts were not found. Thus, the observed histological picture
confirms the almost complete healing of the wound during CUR/CS/Ag therapy.
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Figure 11. Histology analysis of a full-thickness cutaneous defect after treatment with membranes.
Yellow squares enclose the edge of the wound. Red arrows indicate infiltrating inflammatory cells
(polymorphonuclear lymphocytes; number of animals in each group of dressings, n = 3).

4. Discussion and Final Remarks

Although silver-containing wound products like 1% cream silver sulfadiazine or Ag-
contained dressings (AQUACEL® Ag Extra™ dressings, ConvaTec; Silver Alginate, Areza
Medical;and ATRAUMAN AG, Hartmann, etc.) are widely used in diabetic wound healing
applications and demonstrate good results, the toxicity of Ag ions and Ag NPs is still a
hot topic in the scientific field. Some articles [31–33] have reported that the mechanisms
of toxicity with Ag NPs included involve oxidative stress, genotoxicity, activation of lyso-
somal activity, disruption of the actin cytoskeleton and stimulation of phagocytosis, an
increase of MXR transport activity, and an inhibition of Na-K-ATPase. However, the main
contribution in the toxicity of Ag NPs was determined as takeover Ag NPs by endothe-
lial cells, and induced concentration-dependent intracellular ROS elevation [34]. It was
shown that covering Ag NPs with polymer or biomolecules (polyvinylpyrrolidone [35,36],
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citrate [35,37], tyrosine [33], PEG [36], etc.) decreased the cytotoxicity. In this research,
Ag NPs incorporated into the structure of the CUR/CS/Ag material, where antibacterial
polymers (curdlan and chitosan) decreased the required concentration of Ag NPs and most
probably decreased the cytotoxicity of Ag NPs due to binding the organic molecules to
the metal surface through nucleophilic functional groups. On the other hand, the rapid
release of Ag ions can promote the activation of specific immunocytes. In particular, several
studies have demonstrated that AgNPs can directly activate the innate immune response,
especially macrophages [38,39].

Table 3 summarizes some recent results aimed at the development of new dressings
for wound healing. It should be noted that the regeneration rate depends on the type
(burn or wound) and size of the skin disruption, and also on the inflammation processes
or diabetic type of wound. In addition to silver nanoparticles, dressings can also include
nanoparticles of ZnO [40,41], Cu [12,20], Fe3O4 [42,43], and Ca [44].

Clinic research [45] has reported about the influence of copper oxide microparticles
(CuO MPs) on the healing of diabetic foot ulcers (13 patients). The researchers soaked
standard of care dressings in CuO MPs solutions and then evaluated the differences in the
closure rates. It was shown that CuO MPs stimulate the healing of non-infected stagnated
wounds in diabetic patients.

In another clinical article, dressings based on chitosan hydrogel loaded with Ag
NPs and calendula extract were tested to heal chronic wounds (two patients) [46]. Using
these dressings (changed every 7 days, over 2 weeks) considerably decreased pain and
inflammation, until the symptoms were eliminated. At the end of the 15 days of treatment,
it was observed that they had adapted to the size of the wound and remained completely
adhered, so it was decided to leave them for another period of 15 days. After this period,
it was observed that the wounds had healed.

More recent research has also demonstrated the efficiency of using bioactive molecules
such as growth factors [47,48], enzyme [49], or receptors [50] in the composition of dressings
to enhance the therapy of chronic wounds.

The present study examined the ability of Ag-contained CUR/CS foams to accelerate
the wound healing in diabetic mice. It has been shown that Ag NPs in CUR/CS foams
significantly affect the PBS absorbance capacity (the swelling rate increases by ~ten times)
and accelerate the healing process of the diabetic wound.

The wounds treated with CUR/CS/Ag showed complete healing after 24 days, which
was accompanied by the formation of new vessels of different diameters and significant
re-epithelialization. At the same time, CUR/CS-induced healing was only 20%, and the
control showed an increase in the area of the wound by 20+%, which is associated with
inflammatory processes. It is possible that such a difference in effect is associated with
different material dissolution rates. The developed CUR/CS/Ag foams could meet the
needs for clinical practice, and may have future medical applications for wound care
especially in diabetic patients.
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Table 3. Recent studies of the developed dressings for wound healing.

№ Dressings Size of Wound Observations In Vivo Animal Reference

1
Structure: nanofibers had a diameter between 200 to

300 nm, size of NPs 50–100 nm
Composition: chitosan/polyvinyl alcohol/copper NPs

Wound: 1.5 cm × 1.5 cm
Area: 225 mm2

The wound closure rate of the negative control group was
18.46%, 59.89%, 62.42%, and 88.07%, and the wound
closure rate of the positive control group was 25.33%,
72.85%, 95.32%, and 97.90% for 3, 7, 11, and 15 days,

respectively

Rat [42]

2

Structure: film and gel functionalized by NPs
(11.5–18.71 nm)

Composition: bacterial cellulose/ betulin diphosphate/
ZnO NPs

Burn rea: 1400 ± 50 mm2

Depth: 3–5 mm

On day 21, the wound area treated with BC-ZnO NPs-BDP
films was reduced by 34.3%, while when treated with ZnO

NPs-BDP oleogel, a large decrease of up to 40.6% was
observed. In the untreated control, the closure rate was

just 19.2%

Rat [40]

3 Structure: electrospun fibers (648.1 ± 72.2 nm) with NPs
Composition: PLA + Ca NPs

12 mm square skin wounds
Area: 452 mm2

80% contraction in wound area vs. 62% in the untreated
control on 8 days Diabetic mice [44]

4 Structure: hydrogel with NPs (size 99.1 ± 2.3 nm)
Composition: chitosan/PEG/Ag NPs

20 mm square skin wounds
Area: 1256 mm2

A 47.7 ± 1.8% contraction in the wound area was recorded
with the AgNPs impregnated chitosan-PEG hydrogel

group, compared to 12.6 ± 1.3% in the negative control

Diabetic
rabbit [51]

5 Standard of care dressings impregnated with copper
oxide microparticles (COD)

9.26 ± 6.9 cm2 (range of
1.35–23.6 cm2)

Following 1 month of copper improved treatment, there
was a clear reduction in the mean wound area (53.2%;

p = 0.003), an increase in granulation tissue (43.37;
p < 0.001), and a reduction in fibrins (47.8%; p = 0.002).
In the control group, wound closure was less than 20%

Clinic diabetic foot ucler [45]

6 Structure: hydrogel
Composition: gelatin/hyaluronic acid/thrombomodulin

8-mm diameter round-shaped
wound

Area: 201 mm2

On day 10, wound closure was 80% for hydrogel with
thrombomodulin vs. the 40% untreated control Mice [50]

7
Structure: electrospun fibers (90–120 nm)

Composition:Enteromorpha polysaccharide and
polyvinyl alcohol (PVA)

10-mm diameter round-shaped
wound

Area: 314 mm2

On day 9, the wound contraction rate for the PVA/EPP1
group reached nearly 72% vs. 54% for the control group

Diabetic
mice [52]

8
Structure: electrospun fibers (110 ± 74 nm)

Composition: hydroxypropyl methylcellulose
(HPMC)/polyethylene oxide (PEO)/ Beta-glucan

1 cm × 1 cm
Area: 100 mm2

βG-nanofibers 95% healing vs. 40% healing of control in
24 days Diabetic mice [53]

9
Structure: hydrogel Composition: chitosan, heparin and

poly (γ-glutamic acid) and loaded with superoxide
dismutase

10-mm diameter round-shaped
wound

Area: 314 mm2

After 21 days, closure rate is 92.0% ± 3.7% compared with
the control group (85.4% ± 2.4%) Diabetic mice [49]

10 Structure: hydrogel Composition: glycol chitosan,
loaded by growth factors (VEGF and PDGF-BB)

5-mm diameter round-shaped
wound

Area: 157 mm2

On day 3, hydrogel dressing demonstrated 60% closure
rate vs. less than 5% for the Duoderm dressing Diabetic mice [48]
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The combination of these materials with modified PCL nanofibers [54–56] can further
improve the healing process, going beyond the state-of-the-art.
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