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Abstract: Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns
on their possible adverse effects on human health. However, a comprehensive understanding of their
effects on biological systems, especially immunomodulatory responses involving various immune
cell types and biomolecules (e.g., cytokines and chemokines), is still incomplete. In this study, a single-
cell-based, high-dimensional mass cytometry approach is used to investigate the immunomodulatory
responses of Ag NPs using human peripheral blood mononuclear cells (hPBMCs) exposed to poly-
vinyl-pyrrolidone (PVP)-coated Ag NPs of different core sizes (i.e., 10-, 20-, and 40-nm). Although
there were no severe cytotoxic effects observed, PVPAg10 and PVPAg20 were excessively found in
monocytes and dendritic cells, while PVPAg40 displayed more affinity with B cells and natural killer
cells, thereby triggering the release of proinflammatory cytokines such as IL-2, IL-17A, IL-17F, MIP1β,
TNFα, and IFNγ. Our findings indicate that under the exposure conditions tested in this study,
Ag NPs only triggered the inflammatory responses in a size-dependent manner rather than induce
cytotoxicity in hPBMCs. Our study provides an appropriate ex vivo model to better understand
the human immune responses against Ag NP at a single-cell level, which can contribute to the
development of targeted drug delivery, vaccine developments, and cancer radiotherapy treatments.

Keywords: single-cell analysis; mass cytometry; silver nanoparticles; immune systems; immunomod-
ulatory responses

1. Introduction

Nanomaterials have been used widely in various industrial applications and consumer
products, such as food additives, textiles, cosmetics, biosensors, and drug delivery carri-
ers [1–3], which has raised concerns about the potential risks of nanoparticles to human
health and the environment. Particularly, silver nanoparticles (Ag NPs) have been used
widely in biomedical applications, such as drug carriers for target delivery, nanoprobes for
disease diagnosis, bioimaging, and labeling agents for cell labeling and gene delivery [3]; or
in consumer products, such as laundry additives, paints, and textiles due to their antiseptic
properties [4]. However, extensive use of Ag NPs might pose a threat to human health and
the environment [3,5,6]. For instance, Ag NPs can reach systemic circulation in the human
body via different routes of administration, such as intravenous, nasal, oral, and cutaneous
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routes [7], and can induce aggregation of platelets and promote procoagulant activity in
red blood cells [8–10]. They have also been reported to cause adverse biological effects such
as oxidative stress, mitochondrial injury, DNA damage, cell-cycle arrest, and apoptosis
induction [11–14]. Moreover, these NPs can be recognized by the human immune system
as foreign pathogens and cause initiation of immune responses.

Among the various biomarkers of immunotoxicity, cytokine release is commonly
used to study and predict immune responses. Cytokine release in the human body often
causes mild symptoms such as fever, hypotension, nausea, headache, chills, vomiting,
and muscle pain, but it can be life-threatening [15]. Hence, it is important to monitor
NP-induced cytokine release in preclinical studies to understand, prevent, and control
the immune responses to nanotherapeutics. Understanding the immune responses to
metallic nanoparticle exposure is essential for understanding NP cytotoxicity and cell–NP
interaction, and will help in the development of nanomaterials engineered for various
biomedical purposes. Innate immunity is a primary concern due to its crucial role in
upholding tissue and cellular homeostasis [16]. However, the interaction of NP with cells
might alter or affect homeostasis of the immune system through recognition of foreign
particles entering the body and stimulating immunological responses [17,18].

Under normal physiological conditions, the uptake of NPs by immune cells results
in prolonged hyper- or hypoinflammatory immunological responses, which are recog-
nized as a feature of nanomaterials used in biomedical applications [17–19]. A variety of
quantitative and qualitative approaches have been employed to interrogate the various
immunological expressions induced by exposure to NPs, such as inductively coupled
plasma mass spectrometry (ICP-MS), flow cytometry, enzyme-linked immunosorbent assay
(ELISA), and biological assays [20–24]. While numerous studies have been conducted on
the interactions of immune systems with various NPs, very few studies have revealed the
immunomodulatory responses of NPs in a holistic manner. This is primarily due to the
highly heterogeneous nature of human immune systems interacting with the NPs, as well
as the limited capability of the analytical tools to study these complex systems. To perform
an in-depth study on these heterogeneous immune systems interacting with NPs, it is nec-
essary to adopt a single-cell-based, high-dimensional approach, such as single-cell-based
mass cytometry and RNA sequencing techniques [25–27]. Mass cytometry, or cytometry by
time-of-flight (CyTOF), is a recently established technique that analyzes each single cell
multiparametrically through multiple metal-tagged cellular markers with minimal overlap
of signals [28]. Mass cytometry allows up to 50 lanthanide metal isotope labels, which
overcomes the dimensional limitation of flow cytometry-based research about phenotyping
and immune profiling of human peripheral blood mononuclear cells (hPBMCs).

In this study, we conducted mass cytometry experiments with hPBMCs exposed to
PVP-coated silver nanoparticles (Ag NPs) of various sizes (10, 20, and 40 nm) to understand
the immune responses of hPBMCs. For clearer and unbiased interpretations of high-
dimensional mass cytometry data, we also adapted advanced visualization and clustering
tools, such as Uniform Manifold Approximation and Projection (UMAP) and PhenoGraph
clustering analysis. UMAP is a manifold learning technique for dimension reduction,
while PhenoGraph is a robust computational method that can define phenotypes in high-
dimensional single-cell data [29,30]. The cytokine-mediated intracellular immunological
responses (either innate or adaptive) emphasized in a heterogeneous immune population
were characterized by intracellular protein markers through mass cytometry analysis.
Throughout this study, we have demonstrated that high-content data from mass cytometry
can be used to improve our knowledge of how NPs interfere with the immune system. This
information will provide useful guidance for the appropriate utilization of nanomaterials,
especially Ag NPs, in commercial and biomedical applications.



Pharmaceutics 2022, 14, 630 3 of 18

2. Materials and Methods
2.1. Silver Nanoparticles

Polyvinylpyrrolidone (PVP)-coated Ag NPs with nominal diameters of 10, 20, and
40 nm (denoted as PVPAg10, PVPAg20, and PVPAg40, respectively) were purchased from
NanoComposix (San Diego, CA, USA). The physicochemical characterizations (core size,
hydrodynamic size, zeta potential, Ag dissolution ratio) of these Ag NPs were performed
using TEM, DLS, and ICP-MS, and the results are detailed in Table S1 and Figure S1.

2.2. Isolation of PBMCs from Whole Blood

The human blood used in this study was obtained from Yonsei University Hospital
(Seoul, Korea) with informed consent from the donors and approval from the Institutional
Review Board (No. HYUH 2018-09-005-004). Human blood was drawn from healthy
donors into Heparin-treated tubes (BD Vacutainer®, Franklin Lakes, NJ, USA), and PBMCs
were isolated from whole blood via density-gradient centrifugation using Ficoll-Paque
PLUS (GE Healthcare Bio-Sciences, Uppsala, Sweden). Briefly, blood was diluted 1:1 with
phosphate-buffered saline (PBS) (Welgene, Gyeongsan-si, Korea), and the diluted blood
was overlaid on the Ficoll reagent in centrifuge tubes. These tubes were centrifuged at
400× g at room temperature for 40 min in a centrifuge with a swing-bucket rotor (Labogene,
Gimpo-si, Korea). The mononuclear layer was then collected and transferred to a new tube,
washed in PBS, and pelletized by centrifugation at 200× g under room temperature for
10 min. The supernatant was discarded, and the cells were resuspended in RPMI-1640
complete media, (LonzaTM BioWhittakerTM, Walkersville, MD, USA) supplemented with
10% fetal bovine serum (Gibco, Billings, MT, USA) and 1% penicillin/streptomycin (Gibco,
MT, USA) for subsequent treatments. Triplicate measurements were performed with blood
obtained from different donors for each replication to address interdonor variation.

2.3. Stimulation of PBMCs and Exposure to Ag NPs

PBMCs were stimulated with 5 ng/mL of phorbol 12-myristate 13-acetate (Sigma
Aldrich, St. Louis, MA, USA) and 1 µg/mL of ionomycin (Sigma Aldrich, MA, USA) and
treated with 2 µg/mL of Ag NPs for 3 h in the presence of protein transport inhibitors
Brefeldin A (eBiosciences, Invitrogen, Waltham, MA, USA) and monensin (eBiosciences,
Invitrogen, MA, USA). Cells were incubated at 37 ◦C with 5% CO2 in Petri dishes (SPL Life
Sciences, Pocheon-si, Korea).

2.4. Surface and Intracellular Marker Staining

Cells were stained with surface and intracellular markers following the Maxpar Cy-
toplasmic/Secreted Antigen Staining with Fresh Fix Protocol (Fluidigm, USA). Briefly,
cells were washed with PBS to remove excess Ag NPs and then stained with cisplatin for
viability [31]. Subsequently, cells were stained with the surface markers listed in Table S2.
After surface staining, cells were fixed in Maxpar Fix I Buffer (Fluidigm, South San Fran-
cisco, CA, USA) and permeabilized with Maxpar Perm-S Buffer (Fluidigm, CA, USA).
Then, cells were stained with intracellular markers (Table S2). After intracellular staining,
cells were fixed again with 1.6% formaldehyde and stained with Cell-ID Intercalator-Ir.
Prior to data acquisition, cells were washed and suspended at 1 × 106 cells/mL in Cell
Acquisition Solution (Fluidigm, CA, USA). Calibration beads were added 1:10 by volume
for normalization. Cells were then filtered into strainer-capped tubes and samples were
analyzed on the Helios mass cytometry platform (Fluidigm, CA, USA).
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2.5. Mass Cytometer Setup, Calibration, and Data Acquisition

A Helios mass cytometer (Fluidigm, CA, USA) was used for data acquisition. The
instrument was tuned by optimizing the nebulizer, makeup gas, current, and detector
voltage according to the manufacturer’s guidelines. For calibration of 107Ag counts, a blank
solution (5% HNO3) and a AgNO3 solution (1 ng/mL in 5% HNO3) were measured in
“solution mode”. The injection speed (or flow rate) was set to 5 × 10−7 L/s and the Push
length was set to 13 s by default. The average dual counts of 107Ag in the collected data
were used for calculating the cellular Ag NP association. To acquire data from the PBMC
samples, the instrument was set to “event mode”.

2.6. Data Analysis

FlowJo (v10.7.2) (FlowJo, LLC, Ashland, Oregon, OR, USA) and Cytobank (v9.0)
(Cytobank, Inc., Mountain View, CA, USA) were used for data gating and visualization. An
inverse hyperbolic sine (arcsinh) transformation was applied to the raw data by applying
the function: xnew= arcsin( 2

√
xraw). The cell populations were identified via manual gating

(see Figure S2) based on the surface markers used in this study (Table S2). Quantification of
cellular Ag NPs was accomplished following the method suggested by Ivask et al. [14]. The
t-distributed stochastic neighbor embedding (t-SNE) and Uniform Manifold Approximation
and Projection (UMAP) methods were used to visualize high-dimensional mass cytometry
data at single-cell resolution. In addition to the manually gated phenotypes, PhenoGraph,
an automated clustering method, was adapted to further identify cellular subsets and
quantify their populations (Figure 1).

2.7. Statistical Analysis

The data are plotted using OriginPro software program (version 2016 b9.3.2.303 Aca-
demic, Origin Lab Corporation, Northampton, MA, USA). Statistical significance was
assessed using the Mann–Whitney U test. 0.01 < p < 0.05, 0.001 < p < 0.01, p < 0.001 was
considered significant for *, **, ***, respectively.
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in human PBMC cells and dimensionality visualization performed by UMAP and PhenoGraph
clustering to visualize data at single-cell resolution.

3. Results
3.1. Physicochemical Characteristics of Silver Nanoparticles

The physicochemical properties of the PVP-coated Ag NPs, such as core size, hydrody-
namic size, zeta potential, and dissolution ratio, are summarized in Table S1 and Figure S1. To
validate the sizes of the Ag NPs such as PVPAg10, PVPAg20, and PVPAg40 from the manufac-
turer (10.2 ± 1.6, 19.7 ± 3.2, and 39 ± 4 nm and hydrodynamic sizes 18.6, 37.3, and 58 nm),
TEM and DLS were performed. TEM images shown in Figure S1A demonstrate that the Ag
NPs are relatively uniform in their sizes and shapes. Hydrodynamic sizes of PVPAg10, PVPAg20,
and PVPAg40 in DI water were measured to be 10 ± 2 nm, 21 ± 4 nm, and 39 ± 4 nm, respec-
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tively. Additionally, the hydrodynamic sizes of the Ag NPs in RPMI media were measured
by DLS to monitor aggregation/agglomeration in cell-culture media. The hydrodynamic
sizes measured in RPMI media showed a significant agglomeration, particularly for the Ag
NPs with smaller core sizes. The hydrodynamic sizes of the PVPAg10 and PVPAg20 in RPMI
media were measured to be 41 ± 13 nm and 75 ± 9 nm, respectively, about 4 times larger
than their hydrodynamic sizes in DI water, whereas the hydrodynamic size of the PVPAg40

in RPMI media was found to be 77 ± 33 nm, less than 2 times its hydrodynamic size in DI
water. As shown in Table S1, the absolute value of the zeta potentials (mV) of the Ag NPs are
significantly reduced in the RPMI media compared to in DI water. Dissolution measurements
were also performed using ICP-MS, since the dissolution of Ag NPs is an important factor for
the evaluation of Ag+ ion influences and cellular doses of Ag NPs (Figure S1B). Our results
indicate very small amounts of Ag were dissolved from all three NP sizes.

3.2. Cellular Association of Ag NPs on hPBMCs: Effects of Cell Type and NP Core Size

The cellular associations of Ag NPs were investigated using high-dimensional mass
cytometry to study the effects of immune cell types and Ag NPs’ physicochemical properties.
Based on our experiences from previous studies [32,33], exposure conditions (e.g., 2 µg/mL
of exposure concentration and 3 h of exposure time) of the Ag NPs were chosen to avoid
saturation of 107Ag signal intensity on the Helios platform and to maintain adequate
cell viability while still ensuring noticeable changes to the cellular responses (Figure 1).
Using the manual-gating strategy presented in Figure S2, 13 cell types were identified
and assigned in the UMAP visualizations of the high-dimensional mass cytometry data
shown in Figure 2A,B: classical and nonclassical monocytes; plasmacytoid and myeloid
dendritic cells (i.e., pDCs and mDCs, respectively); natural killer (NK) cells; naïve and
memory B cells; and naïve, effector, and memory CD4+ and CD8+ T cells. Similar to other
nonlinear-dimensionality-reduction techniques (e.g., t-SNE and vi-SNE), UMAP is able
to reduce the dimensionality of the data to visualize in a 2D plot. Additionally, UMAP
is known to have the advantage of preserving the global data structure, while t-SNE has
the drawback of losing intercluster (or global) information. Therefore, in the UMAP plot,
cell types with similar characteristics are closely located, while distinct cell types are well
separated from each other. For instance, B cells are in the upper left region, monocytes and
DCs are in the lower left region, NK cells are in the central region, CD4+ T cells are in the
upper right region, and CD8+ T cells are in the lower right region of the UMAP. The subsets
of the CD4+ and CD8+ T cells, such as effector (denoted as E), memory (denoted as M),
and naïve (denoted as N) cells, are located more closely than the other cell types, and the
proximity of dendritic cell and monocytes, which are known to share many similarities,
also demonstrate preservation of the intercluster information in the UMAP visualization.

In Figure 2A, the amounts of cell-associated 107Ag were also overlaid on the UMAP
plots. Significant cellular associations of Ag NPs were observed, especially for the mono-
cytes and dendritic cells (DC), located in the bottom left corner of the UMAP plots. The
red-colored islands of monocytes and DCs indicate higher levels of 107Ag in these cell types,
whereas the other islands in the UMAP plots displayed blue and green colors, indicating
low-to-medium cellular levels of 107Ag, respectively. However, although the cell-type
dependance of the cellular association of Ag NPs can be easily found from visual inspection
of the UMAP plots, the differences induced by Ag NPs with different core sizes were not
clear upon visual inspection of the UMAP plots. Therefore, to support these qualitative
data of human immune cells associated with Ag NPs based on UMAP visualization, we
quantitatively compared the cellular uptake of Ag NPs with different core sizes in different
immune cell types. The boxplots shown in Figure 3 confirm our observation from the
UMAP plots. Phagocytic cells were typically associated with 2–14.2 femtograms of Ag
per cell (fg/cell), which is much higher than the typical cellular association levels of Ag
with other cell types (0–3 fg/cell) (Figure 3). Furthermore, PVPAg20 displayed around
1.5–2.5-fold higher association with classical and nonclassical monocytes, compared with
PVPAg10 and PVPAg40; and PVPAg10 and PVPAg20 were more highly accumulated in both
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types of myeloid and plasmatoid dendritic cells (mDC, pDC) than the largest nanoparticle,
PVPAg40. On the other hand, naïve B cells and NK cells showed an inclined gradient in
cellular uptake with different sizes of Ag NPs (Figure 3). It could be assumed that the
extracellular or membrane-bounded Ag NPs were engulfed by NK cells followed by the
cellular stress response considered to be cytotoxic, or by B cells with some phagocytic
properties. However, for the other cell types (e.g., CD4+ and CD8+ T cells), there was hardly
any significant size-dependent trend in their AgNP uptake.
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gated population is shown in boxplots.

3.3. Variations of Immune Cell Populations: Effect of the Core Sizes of Ag NPs

The variation between different cell populations in their immune response against the
exposure to PVPAg10, PVPAg20, and PVPAg40 was also investigated using mass cytometry.
As shown in Figure 4, the smaller Ag NPs (i.e., PVPAg10, PVPAg20) caused a significant
reduction of innate immune cell populations (e.g., classical/nonclassical monocytes, naïve B
cells and NK cells), whereas the larger-sized Ag NPs PVPAg40 showed significant increment
of adaptive immune cell types, including naïve CD4+ T and CD8+ T cells, compared with
the untreated control.

In the case of monocytes, the classical monocytes contributed 1.0, 1.6, and 2.3%,
whereas nonclassical monocytes contributed 0.7, 1.0, and 1.2% of the total leukocyte popula-
tions for the samples exposed to PVPAg10, PVPAg20, and PVPAg40, respectively. Interestingly,
the samples exposed to the smaller Ag NPs displayed reduced cellular abundances com-
pared to the untreated control sample, whereas the sample exposed to the larger Ag NPs
(i.e., PVPAg40) displayed similar levels of cellular abundance as the control sample. As
described in the previous section (Figure 3), since monocytes are phagocytic cells, they
have a greater tendency to ingest foreign particles than nonphagocytic cells [34,35], and
smaller Ag NPs were easily engulfed by membrane transfusion. Higher association with
the smaller Ag NPs may cause apoptosis, resulting in decreases to monocyte populations
(Figure 4). Similarly, for the samples exposed to the PVPAg10, PVPAg20, and PVPAg40, the
percentage of the populations consisting of naïve B cells were found to be 4.5, 5.6, and 7.5%,
which are 1.7-, 1.4-, and 1.1-fold lower than those of the control sample, and the percentage
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of the populations consisting of NK cells were found to be 4.1, 4.7, and 5.5%, which are 1.5-,
1.3-, and 1.1-fold lower than those of the control sample (Figure 4). As discussed previously,
the cellular uptake of large-sized Ag NPs (i.e., PVPAg40) found on naïve B cells and NK
cells initiated innate cellular responses with a particle size-dependent manner.
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PVPAg10, PVPAg20, and PVPAg40 Ag NPs.

The populations of naïve CD4+ T cells were 1.4-, 1.3-, and 1.2-fold higher in the samples
exposed to PVPAg10, PVPAg20, and PVPAg40; and those of naïve CD8+ T cells were 1.2- and
1.1-fold higher only in PVPAg10, PVPAg20; and no significant fold changes were found in
PVPAg40, respectively, than those of the control sample. Similarly, we also observed that the
APCs, such as mDC and pDC, are highly associated with the smaller Ag NPs (i.e., PVPAg10

and PVPAg20) (Figure 3) and that a percentage of the population of naïve T cells (i.e., naïve
CD4+ and naïve CD8+ T cells) showed significant increases when they were exposed to the
smaller Ag NPs (Figure 4).

3.4. Variations of PhenoGraph Subclusters of Immune Cell Populations: Effect of the Core Sizes of
Ag NPs

In addition to the manual gating, an automated clustering approach, such as the Pheno-
Graph clustering algorithm, was applied to discover cellular subsets and monitor their im-
munomodulatory responses to the Ag NP exposures. A total of 24 cellular subsets were
identified by the PhenoGraph clustering algorithm (Figures 5A and S3 and Table 1), and most
of these clusters were matched to manually gated cell types (Figure 2A). The PhenoGraph-
based clusters were identified as subsets of both innate and adaptive immune cell populations
(Figure 5A,B)—in particular, four subset populations from the NK cell type, naïve CD4+
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T cells, two subset clusters of memory CD4+ T cells, and five clusters as subsets of naïve
CD8+ T cells. The other cell types, such as the effector CD4+ T cell, effector/memory CD8+ T
cell, naïve/memory B cell, and classical/nonclassical monocytes, were clustered as one type
(Figure S5). Among the cellular subsets, the significant cell types were identified as classical
monocytes (#16), naïve B cells (#7), NK cells (#4), naïve CD4+ T cells (#2), effector CD4+ T
cell (#18), naïve CD8+ T cell (#1) and effector CD8+ T cells (#14), respectively (Figure 5B).
Based on this automated clustering of cellular subsets, we further studied immunomodulatory
responses of cellular subsets exposed to Ag NPs with different sizes.
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Table 1. List of cellular phenotypic surface markers.

Cell Type Phenograph Cluster Marker Expression

Naïve CD4+ T cell

#2 CD3+CD4+CD27+CD38+CD45RA+

#3 CD3+CD4+CD27+CD38+CD45RA+

#5 CD3+CD4+CD27+CD38+CD45RA+

#9 CD3+CD4+CD27+CD38+CD45RA+

Effector CD4+ T cell #18 CD3+CD4+CD27-CD38-CD45RA-

Memory CD4+ T cell #6 CD3+CD4+CD27+CD38+CD45RA-

#10 CD3+CD4+CD27+CD38-CD45RA-HLA-DRmid

Naïve CD8+ T cell

#1 CD3+CD8+CD27+CD38+CD45RA+

#8 CD3+CD8+CD27+CD38+CD45RA+

#11 CD3+CD8+CD27+CD38-CD45RA+

#19 CD3+CD8+CD27+CD38midCD45RA+

#21 CD3+CD8+CD27+CD38midCD45RA+

Effector CD8+ T cell #14 CD3+CD8+CD27+CD38-CD45RA+

Memory CD8+ T cell #15 CD3+CD8+CD27+CD38midCD45RA-HLA-DRmid

Naïve B cell #7 CD19+CD20+CD27-CD38+CD45RA+HLA-DR+

Memory B cell #13 CD19+CD20+CD27+CD38+CD45RA+HLA-DR+CD16midCD11c+

NK cell

#4 CD19-CD8a+CD27-CD38+CD45RA+CD11c+

#17 CD19-CD8a+CD27midCD38+CD45RA+

#22 CD19-CD8a-CD27-CD38+CD45RA-HLA-DR+CD11c+CD123+

#24 CD19-CD8a-CD27-CD38+CD45RA+HLA-DR+CD123+

Classical monocyte #16 CD14+CD11c+CD123midHLA-DR+CD38+

Nonclassical monocyte #20 CD14-CD11c+CD123midHLA-DR+CD38-CD66a+

Dendritic cell #23 CD11c+CD123+HLA-DR+CD38+

Unassigned #12 CD3+CD4+CD27+CD38-CD45RA+
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3.5. Variations of in Intracellular Cytokine Expression: Effect of the Core Size of Ag NPs

As shown in Figure 6, variations in intracellular cytokine expression for the manually
gated hPBMC cell types were analyzed and visualized as a heatmap. The number inside
each box is the log2 expression ratio of 11 cytokines in 13 immune cell types exposed
to AgNPs of different sizes compared with the untreated control sample. The red and
blue colors in the heatmap represent the numerical data of up- and downregulations of
cytokines, and the color scale used blue to red, representing lower- and higher-value data
points (−4 for blue and 4 for red). In NK cells, proinflammatory cytokines, such as IL-2,
IL-17A, IL-17F, MIP1β, TNFα, and IFNγ, were significantly upregulated upon exposure to
all PVPAg10, PVPAg20, and PVPAg40 NPs.

Interestingly, in the samples exposed to Ag NPs of different sizes, the TNFα and IFNγ

cytokines displayed slight increments in fold changes (PVPAg10: 2.0 and 1.7, PVPAg20: 2.1
and 1.7 and PVPAg40: 2.2 and 1.9) as the previously described cellular abundances of NK
cells (Figure 4). In contrast, there are slight changes in MIP1β cytokine, which displayed
significant fold changes in the samples exposed to smaller Ag NPs (PVPAg10: 1.8, PVPAg20:
1.6) than the largest Ag NP (PVPAg40: 1.1). The log2-fold expression pattern of IL-17A,
IL-17F, MIP1β, TNFα, and IFNγ in effector CD4+ T cells increased slightly more in samples
exposed to PVPAg10 (0.9, 1.6, 2.4, 2.8 and 3) and PVPAg20 (5, 2.1, 2.8, 3.2 and 3.5) than in those
treated with PVPAg40 (3.8, 1, 1.1, 2.2 and 1.9). This finding confirms the cellular association
of Ag NPs with effector CD4+ T cells, as previously described in Figure 3. However, there
are no significant changes observed in the cellular abundance of effector CD4+ T cells in
all exposure conditions (Figure 4). The cell viability was observed by cisplatin uptake
following exposure of Ag NPs, denoting that most of the cells remain substantially viable
(Figure S4).
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4. Discussion

Physicochemical properties of nanoparticles are known to affect their toxicity and other
interactions with cells. Previous literature reporting that smaller NPs can become more
highly agglomerated than the larger NPs due to their high surface reactivity, which tends
to form larger clusters in order to reduce their surface energy and increase stability [36–40].
In addition, under the same mass-dose condition, there is a higher number of particles
per volume of smaller NPs than of larger NPs, so the higher collision probability of the
smaller NPs may facilitate NP aggregation/agglomeration [36,37,41,42]. Our data on the
zeta potentials indicate that the high ionic strength and proteins in RPMI media play an
important role in determining the Ag NPs physicochemical properties in RPMI media and
that these properties are different for the Ag NPs with smaller (i.e., PVPAg10 and PVPAg20)
and larger (i.e., PVPAg40) core sizes (Table S1). Additionally, the ICP-MS data indicate very
small amounts of Ag were dissolved from all three NP sizes. This dissolution analysis
could be attributed to the protein corona of Ag NPs by FBS protein of RPMI media [43].
Reduction in the dissolution of Ag NPs due to the presence of serum proteins has also
been reported [37,43,44]. These studies suggest that proteins adsorbed on the surface
of Ag NPs may block oxidation, thus slowing the release of Ag+ ions. Our results also
confirm the size-dependent dissolution of NPs reported by previous studies, in which
dissolution ratio decreases as the NP’s size increases, and if the NP is large enough, ion
dissolution rarely occurs [37,45]. Though the dissolution amounts are small, our results
show that PVPAg10 and PVPAg20 have 10 times higher dissolution ratios than PVPAg40.
Dissolution of the Ag NPs is known to be strongly affected by the size of the NP as well as
the composition of the surrounding medium [38,46–48], and our studies are consistent with
these results. Overall, the low dissolution ratio of the Ag NPs used in this study showed
that cellular Ag association, either estimated or measured, can be assumed to be due to the
cellular internalization of Ag NPs, rather than of dissolved Ag+ ions. The physicochemical
properties of Ag NPs may play crucial roles throughout the processes of cellular uptake,
intercellular trafficking, and cytotoxicity.

Numerous studies have reported the size dependence of the cellular association of NPs.
Among their various physicochemical properties, the core size of a nanoparticle is known
to play an important role in determining the process of its cellular uptake [49]. For instance,
the internalization of smaller NPs consumes less energy and therefore happens more
easily than it does for larger NPs. NPs with sizes ranging from 10 to 30 nm may actively
cross the cell membrane, whereas internalization of NPs of larger sizes requires a passive
mechanism, such as endocytosis [50]. Previous studies [51–54] have also suggested that
smaller nanoparticles, such as PVPAg10 and PVPAg20 used in this study, undergo membrane
transfusion or micropinocytosis cellular uptake through nonspecific internalization through
innate immune cells (e.g., monocytes and dendritic cells). In contrast, larger nanoparticles,
such as PVPAg40 used in this study, are known to undergo endocytosis, either via the
clathrin- or caveolae-dependent mechanism or the micropinocytosis process of cellular
internalization through innate immune cells, including naïve B cells, NK cells, monocytes,
and DCs [54–56]. Our observations confirm that cellular association of Ag NPs in hPBMCs
are strongly dependent on both physicochemical properties (i.e., the Ag NPs core size) and
cell types (e.g., phagocytic or nonphagocytic cells).

Significant cellular associations of Ag NPs were observed in monocytes and den-
dritic cells (DC), which is in good agreement with the previous studies [32,33] and cur-
rent understanding of the cellular association of NPs; since monocytes are prominent
antigen-presenting cells (APCs), they have a natural tendency to ingest foreign particles via
phagocytosis [57,58]. Previous studies [34,55] have suggested that antigen-presenting cells
recognize nanoparticles as foreign antigens, engulf and process them, then present them to
effector cells via the major histocompatibility complex, thereby priming the antigen-specific
cellular immune response. The smaller Ag NPs, PVPAg10 and PVPAg20, were preferentially
associated with APCs, such as monocytes and DCs, to initiate immune responses. Previous
studies suggest that naïve CD4+/CD8+ T cells proliferate and differentiate rapidly when
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they are primed by APCs [59,60]. Their proliferation and differentiation result in effector
and memory T cells, as well as their antigen-specific T-cell receptors that can recognize
and exert immune response against Ag NPs [35,61]. Furthermore, our data show that
the PVP-coated Ag NPs, although taken up in considerable quantity by naïve, effector, or
memory CD4+ and CD8+ T-cells, do not have significantly adverse effects on the number
or viability of T-cells. These PVP-coated Ag NPs are therefore minimally hazardous to the
adaptive immune response and can potentially be used in T-cell-targeted immunotherapy
(Figure 7A,B).
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In NK cells, proinflammatory cytokines, such as IL-2, IL-17A, IL-17F, MIP1β, TNFα,
and IFNγ, were significantly upregulated upon exposure to Ag NPs of different sizes
(10–40 nm). NK cells are members of the innate immunity, which provides the initial
immune responses. This explains why the cytokine secretion of NK cells was much more
significant than that of their adaptive immune counterpart, effector CD8+ T cells, which
would need antigen-specific stimulation to elicit immune responses. Among the proin-
flammatory cytokines, the TNFα and IFNγ secreted by NK cells were previously reported
to induce the elimination of infected cells or activate macrophages (or monocytes in the
peripheral blood) to kill the phagocytosed microbes [62–64]. The NK cells secreted TNFα
and IFNγ to promote inflammation and activate monocytes to eliminate the phagocytosed
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Ag NPs. The MIP1β is also known as a chemokine that promotes migration when cells
are exposed to a stimulus. Previously, it was reported as the chemokine responsible for
T-cell recruitment, which initiates antigen-specific responses in adaptive immunity [65,66].
On the other hand, Granzyme B and perforin were not significantly released, particularly
in NK cells. The secretion of these cytokines helps NK cells initiate the apoptosis process
in infected cells in the case of viral or bacterial infections [63]. In this study, the absence
of granzyme B and perforin—as well as the presence of IFNγ—in NK cells indicate that
the immune response against Ag NPs did not depend on the ‘killing’ of cells having high
Ag NP association, but rather on the activation of monocytes to decompose the Ag NPs in
phagolysosomes. Effector CD4+ T cells are members of the adaptive immunity, which pro-
vides antigen-specific immune responses that happen later than innate immune responses.
Therefore, the secretion of IL-17A, IL-17F, MIP1β, TNFα, and IFNγ in effector CD4+ T cells
following their exposure to Ag NPs promotes immunomodulatory inflammation [67]. Re-
cently, the immunomodulatory effect of NPs has gained the interest of scientists in cancer
research, and metallic NPs have been exploited as radio-sensitizing agents in radiother-
apy [68]. We proved in the current study that Ag NPs have immunomodulatory effects in
human peripheral blood immune cells. It would be interesting to also examine their ability
to inhibit thioredoxin reductase enzymes, which play a key role in radiotherapy [69,70].
The methodology presented in our study opens new potential for examining the enzymatic
inhibition ability of metallic NPs at a single-cell level and further applications of NPs in
cancer treatments.

5. Conclusions

Our study provides an appropriate ex vivo model for predicting heterogeneous im-
mune responses in human PBMC at the single-cell level though mass cytometry analysis.
Herein, we uncovered in-depth knowledge of the silver nanoparticle’s interaction with
immune cells that can be exploited in the design of nanomaterials with engineered im-
munomodulatory properties for future clinical application. The methodology presented
here can be further applied on other metallic NPs to investigate their immunomodulatory
effects to be utilized as drug carriers or radio-sensitizing agents in cancer treatments.
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