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Abstract: Poly(lactic-co-glycolic acid) (PLGA) is one of the preferred polymeric inactive ingredients
for long-acting parenteral drug products that are constituted of complex formulations. Despite over
30 years of use, there are still many challenges faced by researchers in formulation-related aspects
pertaining to drug loading and release. Until now, PLGA-based complex generic drug products
have not been successfully developed. The complexity in developing these generic drug products
is not just due to their complex formulation, but also to the manufacturing process of the listed
reference drugs that involve PLGA. The composition and product attributes of commercial PLGA
formulations vary with the drugs and their intended applications. The lack of standard compendial
methods for in vitro release studies hinders generic pharmaceutical companies in their efforts to
develop PLGA-based complex generic drug products. In this review, we discuss the challenges faced
in developing PLGA-based long-acting injectable/implantable (LAI) drug products; hurdles that
are associated with drug loading and release that are dictated by the physicochemical properties of
PLGA and product manufacturing processes. Approaches to overcome these challenges and hurdles
are highlighted specifically with respect to drug encapsulation and release.

Keywords: poly(lactide-co-glycolide); drug delivery; sustained release; PLGA microspheres; long
acting injectable/implantable; complex generic drug products

1. Introduction

PLGA is considered as one of the best inactive ingredients for drug formulation
owing to its biodegradability and tunable properties [1]. It has been approved by the U.S.
Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for
drug delivery and many other biomedical applications. PLGA-based LAI drug products
allow extended release over long periods of time and require low dosing frequency [2],
thereby increasing patient compliance [3–5]. To date, 25 PLGA-based long-acting drug
products, all in the injectable or implantable forms, have been approved by the FDA
(Table 1) [6]. However, these PLGA-based LAI drug products are relatively expensive for
most patients [2]. Although many of these PLGA-based LAI drug products having become
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off-patent or non-exclusive, no generic version of these drug products is available in the
market [7,8]. This situation suggests that it is difficult to develop generic PLGA-based
long-acting drug products that involve complex formulations and manufacturing processes.
It is difficult for the generic pharmaceutical industry to replicate existing PLGA-based LAI
drug products.

Table 1. PLGA-based long-acting drug products approved by FDA †.

No Brand Name API Indication Type/ROA Duration Manufacturing
Method

Year
Approved Ref.

1 Lupron
Depot®

Leuprolide
acetate

Advanced prostate
cancer,

endometriosis,
fibroid

Microsphere;
I.M.

1, 3, 4, 6
months

Water-in-oil
emulsification

1989, 1995,
1997, 2011 [9,10]

2 Zoladex® Goserelin
acetate

Advanced breast
cancer in pre- and
perimenopausal

women,
endometriosis and

prostate cancer

Solid
implant; S.C. 1, 3 months Hot melt

extrusion 1989, 1996 [11]

3 Sandostatin®

LAR
Octreotide

acetate Acromegaly Microsphere;
S.C. 1 month Emulsion solvent

evaporation 1998 [9,10]

4 Atridox™ Doxycycline
hyclate

Chronic adult
periodontitis

In situ gel;
Periodontal 1 week NA 1998 [12]

5 Nutropin
Depot® Somatotropin Growth hormone

deficiency
Microsphere;

S.C. 1 month Spray drying 1999 [13]

6 Trelstar® Triptorelin
pamoate

Palliative treatment
of advanced

prostate cancer

Microsphere;
I.M.

1, 3, 6
months

Spray drying or
Coacervation

2000, 2001,
2010 [10]

7 Arestin® Minocycline
HCl Periodontal disease Microsphere;

Periodontal 2 weeks NA 2001 [12]

8 Eligard® Leuprolide
acetate

Advanced prostate
cancer

In situ gel;
S.C.

1, 3, 4, 6
months NA 2002 [12]

9 Risperidal®

Consta® Risperidone Schizophrenia,
bipolar I disorder

Microsphere;
I.M. 2 weeks Emulsion solvent

evaporation 2003, 2007 [9]

10 Vivitrol® Naltrexone
Alcohol

dependence,
opioid dependence

Microsphere;
I.M. 1 month Emulsion solvent

evaporation 2006 [9]

11 Somatuline®

Depot
Lanreotide

Acromegaly,
gastroenteropan-

creatic
neuroendocrine

tumours, Carcinoid
Syndrome

Microsphere;
S.C. 1 month Spray drying 2007 [10]

12 Ozurdex® Dexamethasone Macular edema

Solid
implant;

Intravitreal
injection

3 months Spray drying 2009 [11]

13 Propel®
Mometasone

furoate Nasal polyps

Solid
implant;

Sinus
implant

1 month NA 2011 [12]

14 Lupron
Depot-PED®

Leuprolide
acetate

Central precocious
puberty

Microsphere;
I.M. 1 month Water-in-oil

emulsification 2011 [9]

15 Bydureon® Exenatide Type 2 diabetes
mellitus

Microsphere;
S.C. 1 week

Emulsion solvent
evaporation or
coacervation

2012 [9,10]

16 Lupaneta
Pack™

Leuprolide
acetate and

norethindrone
acetate *

Endometriosis Microsphere;
I.M. 1, 3 months NA 2012 [12]
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Table 1. Cont.

No Brand Name API Indication Type/ROA Duration Manufacturing
Method

Year
Approved Ref.

17 Bydureon®

Pen
Exenatide Type 2 diabetes

mellitus
Microsphere;

S.C. 1 week
Emulsion solvent

evaporation or
coacervation

2014 [9,10]

18 Signifor®

LAR
Pasireotide Acromegaly Microsphere;

I.M. 1 month Emulsion solvent
evaporation 2014 [9,10]

19 Bydureon
Bcise® Exenatide Type 2 diabetes

mellitus
Microsphere;

S.C. 1 week
Emulsion solvent

evaporation or
coacervation

2017 [9,10]

20 Triptodur™ Triptorelin
pamoate

Central precocious
puberty

Microsphere;
I.M. 6 months

Oil-in-water
emulsifica-
tion/phase
separation

2017 [9]

21 Zilretta® Triamcinolone
acetonide Osteoarthritis

Microsphere;
Intra-

articular
3 months NA 2017 [12]

22 Sublocade® Buprenorphine
Moderate-to-
severe opioid

addiction

In situ gel;
I.M. 1 month NA 2017 [12]

23 Sinuva™ Mometasone
furoate Nasal polyps Solid Sinus

implant 3 months NA 2017 [14]

24 Perseris™ Risperidone Adult
schizophrenia

In situ gel;
S.C. 1 month NA 2018 [12]

25 Fensolvi®
Leuprolide

acetate
Central precocious

puberty
In situ gel;

S.C. 6 months NA 2020 [15]

API: active pharmaceutical ingredient; ROA: route of administration; S.C.: subcutaneous injection; I.M.: intramus-
cular injection; * norethindrone acetate tablet for oral use; NA: information not available. † not intended to be
fully exhaustive.

2. Complexity in Developing Generic PLGA-Based LAI Drug Products

In order for a generic PLGA-based LAI drug product to obtain approval in the Ab-
breviated New Drug Application (ANDA), the generic candidate is required to achieve
qualitative and quantitative (Q1 and Q2) sameness as the reference listed drug (RLD) [16].
In other words, generic drug manufacturers have to prove that their generic PLGA-based
long-acting drug products are pharmaceutically, therapeutically, and biologically equiv-
alent to the RLD. The generic drug products should have the same API, dosage form,
strength, administration route, absorption rate of the API, safety profile, and efficacy as the
RLD [2]. Failing to do so would likely end up in suspension of marketing authorisation,
such as the cases of Novosis Goserelin, Goserelin Cell Pharm, and Novimp [17].

One of the limiting factors for creating biosimilar PLGA-based LAI drug products is
the complexity of the manufacturing process. Minor modifications in the manufacturing
process, involving quality assurance/quality control (QA/QC) systems, can create a major
impact in terms of efficacy, bioactivity, stability, and safety of the product [18]. For example,
Nutropin Depot®, a treatment for growth hormone deficiency in children, has been with-
drawn from the market due to manufacturing issues [19]. There is a need for a standard
compendial in vitro method for measuring the drug release profiles [20]. Equivalent Q1/Q2
as the RLD does not mean that generic PLGA-based LAI drug products have the same
in vitro or in vivo pharmacokinetic profiles as RLD, owing to the sameness potentially
being derived from the test methods of differing protocols [16]. The establishment of a
validated universal testing protocol, as well as a systematic manufacturing process, is
imperative for comparison between the generic PLGA-based LAI and the RLD.

Generally, the manufacturers of generic PLGA-based LAI drug products need about
2000–5000 doses of the RLD to run tests in order to prove their generic drug products are
the same as RLD [21]. However, the supply of RLD has been limited. Some drug companies
might use regulatory restrictions or commercial tactics to block the supply of RLD to generic
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drug companies [21]. One of the common anti-generic strategies involves exploitation
of the citizen petitions to section 505(q) of the Federal Food, Drug, and Cosmetic Act to
delay approval of a pending ANDA [21]. The drug companies might use their commercial
contracts or agreements with the distributors to restrict the drug supply to generic drug
companies [21]. Such limited distribution may have been imposed by the drug companies
as part of a drug safety program (i.e., Risk Evaluation and Mitigation Strategy) implemented
by the FDA [21].

To assist the generic pharmaceutical companies in their ANDA application, the FDA
publishes product-specific guidance (PSG) describing the Agency’s expectations on the
development of generic drug products that are therapeutically equivalent to a specific
RLD [22]. The PSG contain information about the recommended bioequivalence studies,
dissolution test methods, sampling times, expectations and evidence that are required to
support the ANDA approval. However, not all PSG are available for the 25 approved PLGA-
based LAI drug products. In this connection, a regulatory science research programme
under the Generic Drug User Fee Amendments (GDUFA) was established to support
PLGA-based complex generic drug product development [12]. Several grants and contracts
have been warranted for the following areas: (a) in vitro–in vivo correlations (IVIVC),
(b) in vitro release testing methods, (c) characterisation of PLGA and polylactic acid (PLA),
(d) modelling and simulation of PLGA/PLA-based drug products, (e) protein–PLGA
interactions, (f) separation of PLGA polymeric mixture, and (g) impact of PLGA properties
on product performance [23]. While outcomes from these studies are yet to be fully used
as a guidance for industry, the generic drug companies are encouraged to discuss with
FDA for any new method/solution pertaining to these areas of focus. As the medicines
regulatory authority, EMA has set up a recommended framework to follow, which includes
the comparative quality, clinical and non-clinical studies [24]. Overall, the FDA and the
EMA are consistently establishing the proper standards and guidelines for the development
of PLGA-based complex generic drug products.

Nevertheless, even if generic drug developers have overcome the above-mentioned
challenges, the anticipated return would not be good enough to compensate for the amount
of time and resources spent on the development of PLGA-based complex generic drug
products. In this scenario, generic drug developers would rather submit their newly
developed PLGA-based long-acting drug products as a new drug application (NDA) with
a new indication, dosage form or strength. The return of filing an NDA is envisaged to
be higher than that of the generic version. To assist in generic product development that
provides more affordable healthcare, this review aims to highlight challenges in association
with materials, formulations, processing and testing attributes and provide an insight to
possible solutions and strategies.

3. Lack of a Standard Compendial Method for In Vitro Release Studies

PLGA- and PLA-based polymers have been exploited for the delivery of a broad class
of APIs, including small-molecule drugs, proteins, peptides, and nucleic acids, covering a
wide range of treatments listing from cancers, endocrine disorders, psychiatric illnesses, to
periodontal diseases [25]. Despite over 30 years of development along with 25 approved
formulations, a standard compendial method with which a new PLGA formulation can be
compared has yet to be established [20,26]. Each of the PLGA-based LAI drug products has
its own unique features, and is specifically tailored to fit certain desired characteristics and
demands, such as suitable particle size, high drug loading capacity and controlled release
profile [27]. Among the common drug delivery systems used for PLGA-based long-acting
drug products, such as microparticles, nanoparticles, micelles, drug conjugates, and LAI,
only microparticles and LAI have been approved by the FDA [12]. Each PLGA-based
long-acting drug product has its individual required drug release/action profiles as a
function of route of administration, dosage form design (i.e., size, shape, surface charge,
drug interaction, and inclusion of targeting moiety), drug load, and drug properties (i.e.,
solubility, stability, potency, site of action, and clearance rate). Each of these parameters
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significantly impacts the overall performance of PLGA-based long-acting drug products
and their distribution in the body. Without fully understanding the material (drug and
polymer) and product properties, it will be difficult to achieve the desired therapeutic
outcomes.

Due to the abovementioned complexities, the development of in vitro release testing
and the establishment of IVIVC have been challenging [26]. There is a need for a compendial
in vitro release method to analyse PLGA-based complex generic drug products [18]. An
ideal in vitro release testing method should have good reproducibility and the ability to
discriminate between different PLGA formulations as well as different production batches
of a formulation, should the latter be met with a variation in product quality. The method
should allow inter-laboratory comparisons [18].

Conventional in vitro release methods, such as dialysis, sample-and-separate, and
continuous flow methods, have been evaluated for their suitability for analysing PLGA-
based LAI drug products [18]. In a release study of four risperidone-loaded PLGA micro-
sphere formulations of different particle porosity and size, the continuous flow method
showed better differentiation against all formulations than the sample-and-separate method
(Figure 1) [18]. The continuous flow method was able to differentiate the release of risperi-
done ascribing to the porosity of microspheres (i.e., Formulations 3 and 4 vs. Formulations
1 and 2), as well as their particle sizes (i.e., Formulations 1 vs. 2).
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Figure 1. (A) The sample-and-separate method, and (B) the continuous flow method used in dis-
crimination of the in vitro release profiles of risperidone from four PLGA microsphere formulations
with equivalent compositions but different manufacturing processes. In comparison to the sample-
and-separate method, the continuous flow method can better differentiate the release of risperidone
ascribing to the porosity of microspheres (i.e., Formulations 3 and 4 vs. Formulations 1 and 2), as
well as their particle sizes (i.e., Formulations 1 vs. 2). (Reprinted from Journal of Controlled Release,
218, Jie Shen, Stephanie Choi, Wen Qu, Yan Wang and Diane J. Burgess, In vitro-in vivo correlation
of parenteral risperidone polymeric microspheres, 2–12, Copyright (2015), with permission from
Elsevier [18]).

An accelerated in vitro release study at 45 ◦C using the continuous flow method was
developed for PLGA microspheres with equivalent compositions under different manu-
facturing processes [28]. The continuous flow method can differentiate three risperidone
microsphere formulations with different porosity attributes from their accelerated in vitro
release profiles. The accelerated in vitro release study was developed to suit labile API
such as naltrexone, which degrades by more than 30% over 30 days in phosphate buffer
saline solution (pH 7.4) [29]. It was found that higher temperature allows faster polymer
erosion and drug diffusion, thereby accelerating drug release within a shorter period of
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time. However, an elevated temperature study resulted in the degradation of naltrexone. To
overcome this problem, a small amount of sodium ascorbate can be added as an antioxidant
to suppress the degradation of naltrexone.

Elevated temperature accelerated release studies may not be suitable for poorly soluble
drugs, such as triamcinolone and dexamethasone. This is because the release kinetics of
poorly soluble drugs is slower at elevated temperatures [29–31]. It has been postulated
that PLGA plasticisation occurs at elevated temperatures, resulting in the closure of the
microspheres’ internal channels and surface pores [32]. The elevated temperature also
facilitates drug recrystallisation within the microspheres. The summation of these effects
leads to reduced drug release.

For each given drug, the PLGA-based long-acting product may have its own release
and IVIVC profiles. The established IVIVC may be used as a surrogate for bioequivalence
(BE) studies, thus reducing the time and resources required for generic drug product devel-
opment [20]. Among the three primary IVIVC categories, i.e., A, B, and C, level A is the most
common type of IVIVC because it contains a point-to-point correlation between the in vitro
dissolution rate and the in vivo input rate. Therefore, the FDA recommends establishing
level A IVIVC using at least two formulations with different release kinetics [33].

Level A IVIVCs have been successfully developed in rabbits for PLGA microspheres
that are equivalent in formulation composition containing small-molecule drugs (e.g.,
naltrexone) [20], as well as peptides (e.g., leuprolide) [34]. The developed IVIVCs can
not only detect in vitro performance changes (i.e., release characteristics) resulting from
manufacturing process differences, but can also predict the in vivo performances of the
microspheres. When the in vivo pharmacokinetic profiles (fraction absorbed/released) of
Vivitrol® were predicted from its in vitro release profile using three different developed
IVIVCs, all three predicted in vivo pharmacokinetic profiles were similar to the experi-
mental in vivo pharmacokinetic profile obtained in rabbits [20]. However, the developed
IVIVCs were specifically tailored for naltrexone-loaded microspheres (i.e., Vivitrol®), and
were not suitable for other small-molecule APIs with different release profiles.

It was recently reported that IVIVCs developed using PLGA microsphere formulations
with consistent in vitro burst release characteristics demonstrate better predictability with
respect to their in vivo pharmacokinetics profile [35]. Seven compositionally equivalent
risperidone and five compositionally equivalent leuprolide acetate formulations were
prepared using different solvent systems and mixing methods. The resulting PLGA mi-
crospheres exhibited varying burst release profiles due to differences in particle size and
porosity. The formulations were grouped into low and high burst release, respectively, for
the development of IVIVCs. As a result, the IVIVCs developed using low-burst-release
formulations showed good predictability for formulations with low burst release and vice
versa. The IVIVCs developed using low-burst-release formulations are not suitable for the
prediction of formulations with high burst release.

4. Constraints Related to the Physicochemical Properties of PLGA

The physicochemical properties of PLGA affect drug release and their influences
have been well studied in vitro [36–38]. Examples of this include PLGA composition
(ratio of lactide to glycolide), molecular weight (MW) and weight distribution, polymer
architecture (e.g., linear or star-shaped), polymer end-cap, crystallinity, glass transition
temperature (Tg), porosity, particle size, particle size distribution, surface morphology,
drug content, hydrophilicity, and hydration rate [18]. To facilitate the reading, a summary
of the constraints related to the physicochemical properties of PLGA during its formulation
in the development of LAI drug products is listed in Table 2.

Studies have shown that PLGA with a lactide-to-glycolide ratio of 50:50 has the fastest
biodegradation rate (50–60 days) [1]. Due to the hydrophilic nature of glycolic acid, PLGA
composition with a higher proportion of glycolic acid has a higher hydration rate [39]. On
the other hand, PLGA composition with a lower proportion of glycolic acid gives rise to a
slower drug release rate. PLGA characterised by a smaller particle size (200 nm) degrades
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faster in vivo compared to in vitro [38]. In smaller PLGA particles, the water uptake is
higher because of a shorter diffusion diameter [40]. In larger PLGA particles, the degraded
oligomers have a longer path to diffuse out from the internal of the particles to the surface,
during which autocatalysis of PLGA can affect pH changes and drug instability [41].

Table 2. Types of constraints related to the physicochemical properties of PLGA during its formulation
and the development of long-acting drug products.

Physicochemical Property Type of Constraints Ref.

Lactide:glycolide ratio
Increase hydration rate and drug

release rate by increasing
proportion of glycolic acid

[39]

Glass transition temperature
(Tg)

A higher processing temperature
than Tg produces PLGA

microspheres with a dense matrix
and a smooth surface

[42]

Molecular weight (MW) Affect drug release kinetics [43]

Polymer architecture
(i.e., star or linear
branched chain)

Affect drug release characteristics;
difficult to characterise the type of
polymer by using conventional gel
permeation chromatography and

nuclear magnetic resonance
spectroscopic methods

[44]

Porosity
High porosity results in faster

polymer degradation and
drug release

[43]

Particle size Affect PLGA degradation and
drug release [38]

Drug-polymer interaction Produce by-products
and impurities [8]

The MW of PLGA is considered to be one of the significant factors affecting drug
release. It can influence drug release rate and its pharmacokinetic profiles [42,43]. PLGA
with a higher MW generally tends to have a slower degradation rate and drug release
kinetics, as it needs more time to hydrolyse into soluble oligomers [45]. Low-MW PLGA
(16 kDa) has nonetheless been demonstrated to show a lower burst release than that of
high-MW PLGA (60 kDa), as uneven drug distribution takes place in the latter [46]. High-
MW PLGA may translate to the formation of a larger matrix. Large PLGA microspheres
increase propensity for drug release due to the higher drug loading and drug-induced
porous structure, which confers a higher drug diffusion rate [47,48]. Octreotide acetate
has been used as a model drug for studying the drug release behaviour of microspheres
prepared from different blends of high- and low-MW PLGA [49]. When low-MW PLGA
(5 kDa) is blended with high-MW PLGA (51 kDa) at a weight ratio of 3:7, the resulting
mixed PLGA microspheres are characterised by a lower burst release compared to that
of commercial Sandostatin Lar®. A blend of low-MW PLGA reduces the rate of polymer
precipitation during microsphere solidification, which enables the formation of a dense
polymer matrix. As a result, the mixed PLGA microspheres experience a more effective
drug encapsulation and a lower rate of drug diffusion.

Contrary to previous studies, an in vitro release study of four PLGA microsphere
formulations with similar drug loading showed that the drug release is independent of
the MW of PLGA [43]. Indeed, the drug release is dependent on the glass transition
temperature and the porosity of the microspheres (Figure 2) [43]. Formulations with a
higher porosity allow more water to penetrate into PLGA microspheres, which accelerates
polymer degradation and drug release. Formulation with a lower Tg is characterised by a
higher PLGA chain flexibility, which enhances the water accessibility and drug release of
the microspheres.
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The glass transition temperature of PLGA dictates the particulate microstructure and
drug release. The processing temperature of PLGA polymer matrix higher than its Tg
temperature produces PLGA microspheres with a dense matrix and a smooth surface,
whereas the processing temperature lower than its Tg temperature produces porous mi-
crospheres [42]. Temperatures higher than Tg of PLGA may result in an increase in chain
plasticity, allowing polymer rearrangement into a dense matrix. As a result, the release
profiles of PLGA microspheres made at higher temperatures exhibit a lag phase followed
by a burst release profile (Figure 3).

The degradation rate of PLGA may impact the release of drug from PLGA micro-
spheres, and is likely affected by the surrounding pH, temperature, and additive [1,50].
Acidic pH conditions (pH 2.4) have been found to exert little effect on the burst release
behaviour of PLGA microspheres [51]. The use of pH-modifying excipients, such as mag-
nesium hydroxide or acetate, has an insignificant impact on PLGA degradation [52]. The
introduction of triethyl citrate was found to accelerate the in vitro release of a PLGA formu-
lation containing a hydrophobic drug, triamcinolone acetonide, due to increased mobility
and higher diffusion of the polymer in release media [50]. Autocatalysis plays an important
role in PLGA degradation [53,54]. During degradation, hydrolysis of the PLGA produces
lactic and glycolic acids by-products. The accumulation of these acidic by-products within
PLGA microspheres further catalyses the hydrolysis of PLGA, resulting in the formation of
a network of pores and channels for drug release [55], detectable by using low-temperature
scanning electron microscopy (cryo-SEM) [56]. The release profile of PLGA formulations is
also governed by the drug–polymer interaction, as in the case of Sandostatin LAR®. In the
presence of the acid terminal PLGA linear chain, the interactions between octreotide and
PLGA become so significant that they result in bond breaking and formation, i.e., acylation
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of octreotide [8]. The interaction between octreotide and linear PLGA chains prevents the
release of peptides during the initial release phase [8].
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PLGA microspheres used for osteoarthritis knee pain may be subjected to degradation
due to the static pressure of the joint cavity and shearing force. A static pressure of 4.0
MPa can accelerate polymer degradation and drug release [57]. PLGA:drug weight ratio is
also an important factor influencing the release of PLGA particulates. PLGA microspheres
with a low drug loading exhibit a distinct tri-phasic release profile, while those with high
drug loading mostly display mono- or bi-phasic release kinetics [10,58]. With reference
to protein drugs, which are macromolecular therapeutics, their encapsulation by PLGA
alone is characterised by the surface deposition and initial burst release of protein drugs.
PLGA by itself has insufficient viscous forces to retain the protein molecules in the core
of the microspheres. The protein drug encapsulation may be improved by incorporating
hyaluronic acid (HA) into PLGA microspheres [59]. The addition of HA increases the
viscosity of the PLGA matrix, resulting in a decrease in the diffusion of protein molecules
to the surface of PLGA microspheres during processing, thereby reducing burst release
tendency.

The type of polymer (i.e., star or linear branched chain) may affect the release character-
istics of drugs. Conventional analytical methods, such as gel permeation chromatography
and nuclear magnetic resonance spectrometry, are capable of characterising MW, lac-
tide:glycolide (L:G) ratio, and end-group of linear chain PLGA formulations, but they may
not adequately characterise star-branched PLGA formulations. Recognising this limitation,
an analytical method based on gel permeation chromatography with multiple detectors (i.e.,
refractive index detector, viscometer, and light scattering detector) was developed to char-
acterise branched PLGA polymer, particularly the number of branches per molecule [44].
The method can not only differentiate the glucose-star PLGA polymer from Sandostatin
LAR®, but also other branched PLGA from different manufacturers. This makes it possible
to relate the drug release property to the type of polymer.

5. Complex Drug Release Mechanism

It has been reported that most of the early developed PLGA-based injectable depot
formulations have initial burst release characters, resulting in high drug concentration
in the body a few days after the injection (Figure 4) [18,60]. The undesired in vivo burst
release from PLGA microspheres could lead to the development of severe adverse effects.
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On this note, understanding the mechanism of drug release is of utmost importance [61].
However, the release profiles of PLGA-based LAI drug products are highly complex and
are greatly affected by PLGA characteristics and their interaction with drugs, excipients,
the surrounding medium, pH, and temperature. In most cases, the drug release profiles
can be identified by comparing the outcomes of in vitro study and in vivo investigation,
as inferred from pharmacokinetic study, as well as between different animal models (rat,
rabbit, human) of the latter. The factors affecting the drug release and matrix degradation
of PLGA microspheres in vitro and in vivo have been discussed previously [45,62,63]. Prior
to the development of a reliable in vitro release method, it is important to understand the
mechanism of “release” from a PLGA-based LAI drug product in vivo. This information is
available either on the basis of reported data, or through investigations performed by the
respective generic drug makers.
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the initial burst release region, and the green arrows indicate the therapeutically effective region. In
both profiles, the serum drug concentrations in the initial burst release region are much greater than
that of the therapeutically effective region (Reprinted from Journal of Controlled Release, 219, Yeon Hee
Yun, Byung Kook Lee, Kinam Park, Controlled Drug Delivery: Historical perspective for the next
generation, 2–7, Copyright (2015), with permission from Elsevier [60]).

One of the challenges in probing the release mechanism is to retrieve the PLGA for-
mulation after in vivo administration. A group of researchers used cage implants for
degradation and drug release studies from PLGA microspheres. The cage is designed in
such a way that the introduction of microspheres is simple, and the retrieval of micro-
spheres is possible when necessary. A silicone rubber/stainless steel cage implant system
was developed for the establishment of IVIVCs of two different triamcinolone acetonide-
loaded PLGA formulations in rats (Figure 5) [61]. The cage was implanted subcutaneously,
recovered, and analysed for release kinetics and mass loss. Subsequently, release of the
API was compared to the in vitro data. The results showed that faster-than-expected drug
release could be observed from the PLGA microspheres in vivo (Figure 5). The rate of PLGA
degradation increased in vivo. However, inflammatory responses were observed 2 weeks
after the cage implantation in vivo. The inflammatory response may further promote PLGA
degradation, thereby increasing drug release.

Dialysis membrane and continuous flow methods have traditionally been used for
in vitro release studies of ocular formulations [64,65]. The main limitation of these methods
is that they do not resemble the human ocular aqueous flow [66]. To overcome this
limitation, a two-compartment in vitro model of the eye (known as PK-Eye) (Figure 6)
was developed to determine the release kinetics of small-molecule drug as well as protein
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drug-loaded PLGA microparticles [64,67]. The clearance times obtained from the in vitro
model study were then used together with the published human ocular pharmacokinetics
data to establish an IVIVC for intraocular clearance times of the PLGA microparticles. The
results indicated that the model could be used to develop an IVIVC for ocular formulations.
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profile of dexamethasone loaded PLGA microparticles. (Reprinted from Journal of Pharmaceutical
Sciences, 104, Sahar Awwad, Alastair Lockwood, Steve Brocchini, Peng T. Khaw, The PK-Eye: A novel
in vitro ocular flow model for use in preclinical drug development, 3330–3342, Copyright (2015), with
permission from Elsevier [67]).
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6. Differences in the Manufacturing Process

Various technologies have been applied in the fabrication of drug-loaded PLGA
particulates. Conventional emulsification techniques such as water-in-oil (W/O), oil-in-
water (O/W), and water-in-oil-in-water (W/O/W) have been widely used owing to their
inexpensiveness and the ease of controlling process parameters [68]. Switching from one
of these emulsion-based techniques to another significantly affects the properties of the
obtained PLGA particles in terms of drug loading, drug encapsulation efficiency, and
drug release behaviour. For instance, triptorelin acetate-loaded PLGA microspheres have
been developed using the liquid-in-oil-in-oil (L/O/O) emulsification method. They are
characterised by higher drug loading and encapsulation efficiency with reduced initial
burst release compared to that of prepared by solid-in-oil-in-oil (S/O/O) method [69]. This
is attributed to the better solubility of triptorelin acetate in acetic acid. The globule phase of
emulsion, which allows it to be efficiently encapsulated in PLGA using the L/O/O method,
exhibits a very low initial burst release tendency followed by a sustained release phase of
drug [69].

Studies have shown that heterogeneous emulsification generates PLGA microspheres
with various sizes [70]. PLGA particulates produced by emulsification techniques often
show batch-to-batch variation due to the lack of control in the mixing process [71]. The non-
uniformity of the particle size causes inconsistent drug release, which affects the overall
efficiency of drug delivery [72]. PLGA particulates synthesised on a batch-to-batch basis
using emulsion solvent evaporation and electrospraying methods have constantly suffered
from low production yield and scaled up reproducibility [73,74]. The challenges came from
the alteration of production conditions and inadequate control of mixing, heat and/or
mass transport during the preparation process [75]. Additionally, it is difficult to generate
homogeneous PLGA particulates using the emulsion solvent evaporation technique. The
processing parameters of this technique, such as shearing rate, and stirring rate require
stringent control; otherwise, they will produce PLGA particles with varying sizes [76].
Progesterone-loaded PLGA microparticles prepared by emulsion solvent evaporation and
electrospraying methods are different in size, with the electrospraying method generating
smaller particle sizes under a high voltage electrical field [27,77].

Emerging emulsification technologies, such as membrane emulsification and microflu-
idics, have been developed to overcome the limitations encountered by conventional
methods. Emulsification that uses membranes with a defined pore size is able to create
uniform particles, and this method can consistently reproduce PLGA particles with a low
polydispersity compared to the conventional double emulsion method (Figure 7A–D) [78].
In microfluidics, PLGA particles are synthesised in a miniature device to gain better control
of the mixing rate, heat, and mass transfer [79]. Progesterone-loaded PLGA microspheres
prepared by microfluidics show a narrower size distribution compared to that obtained
using the emulsion solvent evaporation technique [27]. To facilitate the reading, a com-
parison of the PLGA particles produced by microfluidics vs electrospraying and spray
drying methods is illustrated in Figure 7a–f [80]. The microfluidic method offers high
reproducibility and production rate for large-scale synthesis [81]. It has been reported
that up to hundreds of grams of PLGA nanoparticles can be produced per day using a
microfluidic device [71]. This production rate is ideal for clinical studies, but may not be
sufficient for industrial production [82]. PLGA microparticles prepared using microfluidics
display a slower drug release compared to that of the emulsion solvent evaporation and
spray drying techniques, respectively. The delay in drug release can probably be attributed
to the limited diffusional mass transport through the core of polymer [80].
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Despite advances in the drug delivery field, there is still no “one size fits all” manu-
facturing process. Each of these processes faces different challenges in creating an ideal
particulate for efficient drug delivery. The type of encapsulated drug is also an important
consideration when it comes to choosing a preferred manufacturing method. Processing of
lipophilic drugs is preferably performed using the single emulsion solvent evaporation,
nanoprecipitation, and salting out methods [83,84]. The double emulsion, spray drying,
and electrospraying methods can be used to encapsulate both lipophilic and hydrophilic
drugs [85–87]. The drugs may remain intact or be degraded during the manufacturing pro-
cess if the processing parameters, such as solvent, temperature, stirring rate, and number
of washing and drying steps, are not standardised. The choice of manufacturing process
conditions governs the ultimate drug release profiles of the particulates.

Reverse engineering encompasses the elucidation of the post-production composition
and important product attributes of commercial PLGA formulations [7,88,89]. The gathered
data enable scientists to map the formulation onto the processing parameters, leading to
the development of a feasible manufacturing process [88]. In a reverse engineering study
of Vivitrol®, a significant reduction of PLGA MW (42.25%) was encountered during the
preparation of generic formulations [88]. Instead of using the MW of PLGA similar to that
of Vivitrol®, PLGA of a higher MW was used to produce microspheres in a similar size
range. Special attention should be given to pH-sensitive protein or peptide drugs [90], as
they are prone to oxidation and acylation by physical stresses during encapsulation. In a
reverse engineering study of Bydureon®, some insoluble peptide impurities were identified
during the processes of encapsulation and in vitro release [89]. The quantity of acylated
exenatide by-products was found to increase over time during these processes.

7. Strategies to Improve Encapsulation Efficiency and Drug Release

One of the challenges in drug formulations is to encapsulate protein drugs in high
loading. The hydrophilic nature of protein drugs makes their partition into the hydrophobic
PLGA matrix poor, and they easily leach into the surrounding aqueous phase, resulting
in low encapsulation efficiency [91]. Grafting PLGA with other biodegradable polymers,
such as polyethylene glycol (PEG), to form a block copolymer with both hydrophilic and
hydrophobic sites may be useful for peptide encapsulation [92]. The amphiphilic PLGA–
PEG block copolymer can facilitate formation of micelles in the primary emulsion, thus
enhances the encapsulation of hydrophilic drugs [93,94].

Hybrid formulations between PLGA and different types of lipids and vegetable oils
have been proposed as a new solution for challenging drugs. The hybrid formulations
enable higher drug loading, encapsulation efficiency, improving drug bioavailability, and
enhancing the overall therapeutic efficacy [95]. The approach was developed by Zhang
et al. [96] in designing core-shell hybrid formulation comprising a PLGA core surrounded
by lipid-PEG shell. The resulting hybrid formulation has a higher drug encapsulation
efficiency in comparison to plain PLGA particles due to the protecting lipid monolayer that
helps to maintain the drugs in the PLGA core. The hybrid formulation works particularly
well to carry hydrophobic drugs such as paclitaxel, with an encapsulation efficiency beyond
80% [97].

Hydrophobic ion pairing has been adopted in the development of PLGA particulates
to deliver charged hydrophilic small molecules and peptides [91]. This method relies on the
ion pairing of a charged drug molecule to oppositely charged molecules of a carrier, result-
ing in the formation of a water-insoluble (hence hydrophobic) uncharged complex. Dextran
sulphate has been used to form hydrophobic ion pairing complex with protein drug, re-
sulting in elevated protein entrapment in PLGA nanoparticles of more than 65% [98,99].
Recently, the quality by design approach has been used to evaluate various PLGA particu-
lates for protein therapeutic delivery [10]. This approach enables systemic guiding of the
development of PLGA-protein drug products under the relevant authorities.

Studies have shown that not only the type and concentration of PLGA, but also the
processing parameters, such as solvent type, volume, and excipients, affect the encapsu-
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lation efficiency of the resulting drug-loaded PLGA microspheres. Attention should be
paid during the production of PLGA therapeutics using a spray drying process. Certain
aspects of the processing parameters, such as heat/mass transfer, inlet air temperature, and
drying gas flow rate are required to be systematically modified in order to be optimised
(Figure 8) [87]. The concentration of PLGA should be adjusted to facilitate water removal
during drying [100], while maintaining a certain viscosity [101] to prevent drug leakage
from the polymer. Emulsifiers such as polyvinyl alcohol may be used to increase the
viscosity of PLGA solution, preventing the outward diffusion of encapsulated drug from
the internal PLGA particulates [102]. The addition of stabiliser, such as proline, lysine, or
sucrose may further increase the encapsulation efficiency [103].
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ature, and drying gas flow rate, requires optimisation in order to achieve the desired final products.
(Reprinted from Journal of Controlled Release, 321, Nian-Qiu Shi, Jia Zhou, Jennifer Walker, Li Li, Justin
K. Y. Hong, Karl F. Olsen, Jie Tang, Rose Ackermann, Yan Wang, Bin Qin, Anna Schwendeman, Steven
P. Schwendeman, Microencapsulation of luteinizing hormone-releasing hormone agonist in poly
(lactic-co-glycolic acid) microspheres by spray-drying, 756–772. Copyright (2020) with permission
from Elsevier [87]).

MFFDs have been reported to outshine the conventional approaches in terms of drug
encapsulation performance. The encapsulation efficiency obtained from the processes
of MFFDs is significantly higher than that of spray drying and emulsification solvent
evaporation methods [80]. Additionally, the amount of drug loss is significantly reduced.
Microfluidics and electrospraying methods are preferred over conventional methods as
they are able to encapsulate both hydrophobic and hydrophilic drugs [85,104].
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The miscibility between PLGA polymer and drug plays an important role in drug
loading efficiency of PLGA particulates [105–107]. Immiscibility between PLGA and drug
can result in phase separation and uneven localisation of the drug within PLGA bulk and
on the PLGA surface [108]. The Flory–Huggins interaction parameters have been used to
predict the miscibility of various drug-polymer systems [109–111]. The model can also be
used to predict the miscibility between polymer mixtures [112,113] or between polymer
and solvent [114,115]. Molecular modelling is a useful tool for studying the interactions of
small-molecule drugs with PLGA of various lactide:glycolide ratios [106]. QronoMetricsTM,
a computational drug delivery platform that is able to develop LAI formulations may be
useful for generic drug companies. However, the modelling depends on sufficient in vitro
and in vivo evidence to predict the potential outcomes of a candidate.

High drug loading and low initial release are essential criteria for parenteral con-
trolled drug delivery. Although PLGA has the ability to control drug release up to several
months [116,117], but studies have shown that most of the PLGA formulations exhibit
initial burst release followed by slow and incomplete release [118]. One of the promising
solutions to address these challenges is to integrate PLGA with other polymers, creating
block copolymers, composites, and hybrids. Studies on the multiblock PLGA copolymers
have shown that water uptake is higher than sole PLGA [119,120]. Additives such as
alginate, carboxymethylcellulose, polyvinyl alcohol, poloxomer, gelatin, and chitosan have
been embedded in PLGA formulations to extend drug release [121,122].

8. Conclusions

Realising the challenges faced in developing generic PLGA-based long-acting drug
products, both the pharmaceutical industry and drug regulatory authorities are required
to work together closely to overcome these problems. Regular workshops and meetings
have been organised by the FDA with industry for the development of complex generic
drug products, including those that are PLGA-based. The FDA has also engaged with
academics and industry through grants disbursement and contracts offered to support the
development of complex generic drug products under the GDUFA programme. Several
IVIVCs have been successfully developed in animals for compositionally equivalent PLGA
microsphere formulations. Nonetheless, it is still a long way until the establishment
of compendial methods with clinical relevance. Furthermore, limited product-specific
guidance is available specifically pertaining to bioequivalence studies. To achieve success
in PLGA-based long-acting generic drug product development, it is imperative to optimise
material, formulation and processing strategies, along with established testing methods
in vitro and in vivo.
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