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Abstract: Cell delivery of therapeutic macromolecules and nanoparticles is a critical drug develop-
ment challenge. Translocation through lipid raft-mediated endocytic mechanisms is being sought, as
it can avoid rapid lysosomal degradation. Here, we present a set of short α/β-peptide tags with high
affinity to the lipid raft-associated ganglioside GM1. These sequences induce effective internalization
of the attached immunoglobulin cargo. The structural requirements of the GM1-peptide interaction
are presented, and the importance of the membrane components are shown. The results contribute to
the development of a receptor-based cell delivery platform.

Keywords: cell delivery; glycan recognition; alpha-beta peptide; endocytosis; immunoglobulin

1. Introduction

The efficient translocation of macromolecular cargoes and nanoparticles through the
mammalian cell membrane is an important challenge in modern drug development [1–3].
Endocytic routes avoiding rapid lysosomal degradation are of interest because these facili-
tate endosomal escape and delivery to organelles or cytosol with limited cargo decomposi-
tion [4,5]. Triggering internalization at the lipid rafts is an emerging approach because this
gateway generates endosomes that rarely fuse with lysosomes [6–8]. Lipid raft-mediated
endocytosis can facilitate endosomal escape for the internalized cargoes [9,10]. Often, an
abundance of different ganglioside molecules decorates the extracellular surface of the
lipid rafts, on which pattern-specific recognition induces the desired endocytosis [11,12].
Ganglioside GM1 is the major receptor for the Cholera toxin, which utilizes this path-
way [13,14]. In a recent study, we showed that a pentapeptide tag (WYKYW) could bind
ganglioside GM1 with high affinity and thereby internalize an IgG complex (580 kDa) at
low nanomolar extracellular concentrations [15]. The endocytotic pathways were tested
with inhibitor experiments, demonstrating that lipid raft-mediated internalization is the
major pathway for this process. The involvement of GM1 in the mechanism was supported
by Cholera toxin co-localization and an inhibition experiment with the GM1 binder lectin
galectin-1. Cell lines expressing different amounts of cell surface GM1 displayed inter-
nalization efficiency in accordance with their GM1 content. Inducing endocytosis with
WYKYW avoided lysosomes and retained the functional structure of the cargo, which
justifies further investigations.
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Using various foldamers as cell-penetrating agents can offer efficient translocation
of cargoes while being less susceptible to hydrolysis and the immune system [16–20].
Specifically, incorporating β-amino acids can lead to tuned interactions with the target
molecule, which is beneficial to bioavailability [21]. Prior work determined the required
sugar moieties on gangliosides for high-affinity binding with the WYKYW sequence [15].
Removal of the sialic acid or the terminal disaccharide moieties caused substantial affinity
loss. In this work, our goal was to explore the structural requirements of the WYKYW–
GM1 ganglioside interaction for the peptidic partner to help rational designs for expand-
ing this family of sequences for cell delivery. Establishing a pharmacophore model of
the ganglioside–peptide interaction appeared feasible in a structure-affinity relationship
approach. To meet this challenge, we aimed to determine the effects of various amino
acid replacements in the parent sequence, including side-chain removal (Ala-scan), stereo-
chemical inversion (D-scan), and backbone homologation (β3-scan). In addition, the role of
terminal tryptophan residues was investigated with the help of spectroscopic methods. The
structure-affinity relationship analysis yielded improved unnatural peptides, efficiently
internalizing large protein cargoes.

2. Materials and Methods

Peptide Synthesis and Purification: Peptide amides were synthesized with (7-azabenzotriazol-
1-yl)tetramethyluronium hexafluorophosphate as a coupling agent (HATU) on TentaGel
R RAM resin. (Sigma-Aldrich, Budapest, Hungary, product code: 86359) Coupling was
carried out with a three times-equivalent excess of amino acid at room temperature for 3 h.
The peptide cleavage from the resin was performed with TFA/water/D,L-dithiothreitol/
triisopropylsilane (90:5:2.5:2.5), which was then precipitated in ice-cold diethyl ether. The
resin was washed with acetic acid and water. The raw products were subsequently filtered
and lyophilized. Peptide purification was performed using RP–HPLC with a C18 column.
The HPLC eluents were 0.1% TFA in water and 0.1% TFA in ACN. Analytical RP–HPLC
and ESI–MS measurements confirmed the purity of the peptides [22].

Isothermal Titration Calorimetry: ITC was performed using a MicroCal VP-ITC mi-
crocalorimeter at 35 ◦C. The monosialoganglioside GM1 was obtained from Biosynth-
Carbosynth (Bratislava, Slovakia, product code: OG03918, C73H131N3O31·xNa, HPLC
purity > 95%). The n-dodecylphosphocholine (DPC) was obtained from Avanti (Alabaster,
Alabama, product code: 850336, C17H38NO4P, purity > 99%). In individual titrations, 15 µL
of solution containing GM1:DPC 1:5 was injected into the ligand solution in the cell from a
computer-controlled 300 µL microsyringe at time intervals of 300 s. The GM1:DPC micelle
mixture was prepared in the same pH 7.2 phosphate buffer as the ligand in the cell. The
concentration of the ligand in the cell was 15 µM. The concentration of GM1 in the syringe
was 300 µM. In control experiments, GM1:DPC was titrated into the cell containing buffer
without ligand. To rule out lipid clustering, control measurements were performed with
pure GM1 in the syringe, which yielded a marked decrease in ∆H values, indicating the
GM1:DPC interaction in the micelles (Figure S6). No aggregation of the micelles was
observed after titration, which rules out any secondary inter-particle effects induced by
ligand binding. We note that such an uncontrolled aggregation phenomenon would have
been detrimental to the very sensitive ITC detection. Our finding is in agreement with
the literature results that mixed micelles of GM1 and DPC are readily formed [23]. The
experiments were repeated twice. The experimental data were fitted to one-binding-site or
two-independent-site models with adjustable parameters of ∆Hb1, Kd1, n1, and ∆Hb2, Kd2,
n2, respectively. Background subtraction and spline baseline correction was applied prior
to the application of a generalized reduced gradient nonlinear least-squares procedure. The
inert counter ions and residual solvent in the peptide, protein, and lipid samples normally
caused residual heat during mixing, which was corrected with a constant term as an addi-
tional parameter in the model. Errors were estimated by using jack-knife resampling [22].
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Tryptophan fluorescence blue-shift measurements: Fluorescence experiments were carried
out at room temperature, in 20 mM PBS (pH 7.4) with a Hitachi F-2500 fluorescence
spectrophotometer (PMT voltage: 700 V, response time: 0.08 s). Tryptophan was excited at
the wavelength of 295 nm. Emission spectra were recorded in the range 300 to 400 nm. The
excitation and emission bandwidths were set to 5 nm. Peptides were measured alone at
a concentration of 2.5 µM and with the addition of either 250 µM DPC micelles or 50 µM
GM1:250 µM DPC bicelles. Control measurements in the absence of the peptide were
subtracted from the corresponding data [22].

Circular dichroism: Circular dichroism measurements were carried out with a Jasco
J-815 CD Spectrometer. Spectra were recorded using a thermally jacketed 1 mm quartz
cuvette in the wavelength range 260 to 195 nm. The scan speed was 50 nm min−1 with
5 accumulations. Peptide concentration was 200 µM in 10 mM PBS (pH 7.4). The effect of
the binding on the CD curve was measured after adding 100:500 µM GM1:DPC bicelles. A
Julabo water thermostat controlled the temperature with an equilibration time of 10 min at
each temperature. Solvent baseline subtraction was applied [22].

Cell Culture: HeLa cells were cultured in advanced MEM (Gibco®/Invitrogen Corpora-
tion, New York, NY, USA) supplemented with 10% fetal bovine serum (FBS, PAN-Biotech,
Aidenbach, Germany). Penicillin–streptomycin (100 U mL−1, Gibco®/Invitrogen Corpora-
tion, New York, NY, USA) and 2 mM L-glutamine (Gibco®/Invitrogen Corporation, New
York, NY, USA) was added to the medium. The cells were grown at 37 ◦C in a humidified
incubator containing 5% CO2 [22].

Preparation of Carrier–Protein Complexes: A solution of the biotinylated peptide, bi-
otinylated monoclonal mouse anti-human [24] antibody and unlabelled Neutravidin (NA)
(ThermoFisher Scientific, Watham, MA, USA, product code: 31000) was mixed at a molar
ratio of 3:1:1. The secondary Alexa Fluor 647-conjugated F(ab’)2-goat anti-mouse IgG
(Gibco®/Invitrogen Corporation, New York, NY, USA, product code: 31006) was added
to the solution subsequently at a molar ratio of 1:1 relative to the primary antibody. The
dilution of this complex was set before adding to HeLa cells [22].

Live Confocal Laser Scanning Microscopy: HeLa cells were plated on six-chamber µ-
Slides VI 0.4 (ibidi, Gräfelfing, Germany) for overnight culturing in MEM + 10% FBS
at 1.25 × 104 cells per cm2 (or 1.5 × 104 cells per channel). After washing with PBS, the
cells were incubated at 37 ◦C with the complexes in MEM + 1% FBS medium for the
required time lengths, which was followed by washing with PBS. The cells were stained
with 100 ng mL−1 Hoechst 33342 (Sigma-Aldrich St. Louis, MO, USA) in MEM medium for
30 min at 37 ◦C. Cell membranes were visualized after a 5 min treatment with FITC-labelled
WGA lectin at 0.2 µg mL−1 at room temperature. The cells were incubated in Leibovitz’s
L-15 medium (Gibco®/Invitrogen Corporation, New York, NY, USA) during microscopic
analysis. Cell fluorescence was analyzed to observe the localization of the cargo, using a
Leica SP5 AOBS confocal laser scanning microscope with a 405 nm UV diode (for Hoechst
staining), a 488 nm argon laser line (for FITC staining), and a 633 HeNe laser line (for
Alexa Fluor 647 staining). An appropriate spectral filter was used for each channel for the
detection of the emissions [22].

Image Analysis: We used Mask R-CNN, a deep learning-based image segmentation
platform for identifying cells and extracting their properties; U-Net, another deep learning
approach; and CellProfiler software for feature extraction. Cell nuclei were identified on
the basis of the Hoechst signal using a very heavily augmented training set of The Data
Science Bowl 2018 competition. The augmentation was performed by learning image styles
and generating synthetic images of similar types with Pix2Pix, a generative adversarial
network (GAN) deep network. Subsequently, a Mask R-CNN network was trained, and
individual nuclei were inferred. A similarly augmented image set was used to train a
U-Net deep convolutional neural network, using the FITC-WGA lectin channel images and
binary masks marking the cytoplasm as foreground. The trained U-Net network predicted
the foreground pixels corresponding to cytoplasm. We approximated the cytoplasm with
a watershed region propagation algorithm on the weighted sum image of the U-Net
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prediction and the FITC-WGA lectin channel. With the help of the detected objects (nucleus
and cytoplasm) as masks, cellular features such as Alexa 647 intensity values, textural
properties, and morphological descriptors were extracted. The integrated intensities of
individual cells were used for the final statistical analysis [22].

Protease assays: Peptides were dissolved in 100 mM TRIS–HCl buffer (pH 8.0) con-
taining 10 mM CaCl2 at 100 mM concentration. Chymotrypsin (Sigma-Aldrich, Budapest,
Hungary) stock solution was 0.5 mg/mL in the same buffer. A total 500 mL peptide so-
lution was measured in a reaction vessel and 50 mL protease stock was added. Samples
of 50 mL were taken after 2, 6, 25 and 60 min. The samples were diluted into 500 mL
5% TFA aliquots. The samples were then injected into HPLC–MS using a Phenomenex
C18-XB Peptide column (250 × 4.6 mm, 3.6 mm). For the experiments with trypsin, the
same method was used, except for the buffer, which did not contain any CaCl2.

3. Results

First, we performed an Ala-scan on the WYKYW sequence, substituting each of the five
amino acids one by one, and measured their affinity to GM1:DPC bicelles using isothermal
titration calorimetry (ITC) [25]. Dissociation constants (Table 1, Figures S1–S3) revealed
that any side chain removal from the original sequence was detrimental to binding. This
finding suggests that WYKYW is a minimal sequence because all side chains were essential
in stabilizing the GM1–WYKYW complex. Modification of the central Lys led to the largest
affinity decrease, indicating the role of the cationic function. Removal of the neighboring Tyr
residues had the second largest effect on the affinity. From the Ala-scan, we can conclude
that the core tripeptidic sequence (YKY) has a dominant contribution to stabilizing the
GM1–WYKYW complex.

Table 1. Binding affinities (KD [nM]) of the WYKYW analogues to ganglioside GM1. The binding
stoichiometry (n1) was 0.5 in all cases. Superscripts indicate the corresponding peptide termini.

NW Y K Y WC

original 23.8
Ala-scan n.f. [a] 5755 10,467 1694 1060
D-scan 881 892 4523 3243 3926
β-scan 4.3 60 332 40 86

[a] not fittable.

High-affinity WYKYW–GM1 interactions project a precise fit between the two partners,
which requires a specific stereochemical pattern along the peptidic chain. We tested this
with a systematic D-amino acid substitution. Again, we found that any configuration
change resulted in a marked decrease in the affinities. The central Lys residue was the most
sensitive. Interestingly, inversion of Tyr4 and Trp5 yielded lower affinities than the Ala
replacement. This observation suggests that stereochemical inversion not only disrupted
the interaction, but that the modified side-chain orientation exerted an extra destabilization
effect. We concluded that no change in the amino acid configuration is tolerable, which
strongly supports that the molecular recognition between GM1 and WYKYW requires a
specific peptide geometry. To further test the sensitivity of the interaction to the backbone
homologation, we carried out β3-amino acid replacements in the sequence. Strikingly,
the incorporation of the β3-h-Trp at the N-terminal yielded improved affinity. The GM1–
WYKYW complex displayed good tolerance to the backbone homologation, except for the
central β3-h-Lys residue. This pattern in the structure-affinity relationship corroborates that
the central YKY motif and its fine geometry play crucial roles in ganglioside recognition.
The protease resistance of the homologated sequences was also measured. As expected,
the single β3-amino acid replacements at the central residues provided increased stability
against proteases (Table S1).
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While the structure-affinity relationship study revealed the importance of the central
YKY motif, the Trp residues at the termini contribute a large interaction surface, pointing
to the role of hydrophobic interactions. We hypothesized that these residues immerse
into the fatty acid region of the membrane [25] and thereby stabilize the WYKYW–GM1
interaction over the membrane surface. The Trp fluorescence maximum wavelength
depends on the environment; relocation of the aromatic side chain from an aqueous
solvent to a hydrophobic environment causes a blue shift [26]. The Trp fluorescence
was measured in the presence of DPC micelles and GM1:dodecylphosphocholine (DPC)
bicelles (Figure 1). WYKYW alone had an emission maximum of 350 nm. The addition
of DPC micelles caused a minor blue shift and intensity increase. In contrast, GM1:DPC
bicelles induced a blue shift of the emission maximum to 341 nm, accompanied by a
marked intensity increase. This observation suggests that Trp moved to a hydrophobic
environment in the membrane and became partially shielded from the water. The
extent of the shift was consistent with a relative permittivity of 7, which suggests that
the Trp side chains were neither in the aqueous medium nor completely buried in
the hydrophobic interior near the headgroups of the amphipathic lipids [27]. This
location is in good accordance with the requirement that the segment YKY is close to the
carbohydrate moiety of GM1.
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Figure 1. The blue-shift of the tryptophan fluorescence emission in interaction with GM1:DPC
micelles. Emission spectra obtained for peptide WYKYW alone (black, 2.5 µM), WYKYW + DPC
(DPC 250 µM, dash-dotted), and WYKYW + GM1:DPC (+GM1:DPC 50:250 µM, dotted).

The aromatic side chains dominated the circular dichroism spectrum, preventing
direct conclusions about the backbone geometry. However, intensity loss at 198 nm was
observed upon adding the GM1:DPC bicelles (Figure 2). To test the contribution to this
region from the aromatic rings, WAKAW and AYKYA were synthesized and measured
(Figure S4 long-dashed). Thus, the intensive peak at 198 nm could be assigned to Trp–Trp
face-to-edge interactions in solution [28,29], which is lost in the GM1-bound form.
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100:500 µM GM1:DPC bicelles (dotted).

As previously shown, binding did not occur with the pentasaccharide moiety of
GM1 without the hydrophobic sphingosine and fatty acid parts in the membrane [15].
Removal of the sialic acid also strongly decreased affinity. Together with the Trp residues’
membrane insertion, these findings suggested an interaction model for WYKYW–GM1 in-
teractions (Figure 3).
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Figure 3. Pharmacophore hypothesis generated from the SAR and Trp-fluorescence data.

The model rationalizes the importance of the stereochemical configuration. It also
explains the backbone homologation tolerance at the termini. The position of Trp side
chains in the dynamic membrane is adaptive, whereas the side chain distances have to be
more specific in the YKY segment to recognize the oligosaccharide moiety.
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The nanomolar affinity to GM1 of the α/β-peptidic sequences projected their ability
to trigger endocytosis. Therefore, we tested these carriers for protein internalization as
previously described [30]. The peptides were attached to a Neutravidin hub through a
biotinylated linker (Figure 4). The cargo was a protein complex containing a primary and
a fluorescent secondary antibody. We chose penetratin as a linker sequence because it
is unable to internalize the protein cargo by itself, but its cationic nature improves the
solubility of the construct. Control experiments were run with the Neutravidin-antibody
complex without carrier peptides.
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Figure 4. Schematic representation of the bottom-up designed modular carrier–hub–antibody cargo–
secondary antibody–fluorescent-dye construct.

Their internalization efficiency was monitored with CLSM (Figure 5). HeLa cells were
incubated with the carrier–cargo complexes for 1 or 4 h at an extracellular concentration
of 80 nM. The α/β-peptidic tags were able to induce endocytosis. We carried out an
AI-based quantitation with the different analogues (Figure 6). Strikingly, no correlation
was found with the GM1 binding affinities measured for the single carrier sequences. We
hypothesized that the multiple presentations of the carrier on the complex increases avidity,
thereby facilitating the endocytosis. To this end, we prepared the NA(biotinyl-Penetratin-
WYKβYW)4 constructs, where the KD of the monomers were 332 nM. ITC measurements
showed a KD of 38 nM for the multivalent construct (Figure S5), explaining the efficient
internalization. The stoichiometry of this interaction was 1:1 relative to the concentration
of the hub Neutravidin, in contrast to the 2:1 carrier:GM1 ratio. We note that Neutravidin
is a tetrameric protein that can display two carrier peptides simultaneously toward the
membrane. These findings strongly support the avidity-increasing effect of the multivalent
presentation of the carrier.
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Figure 5. Delivery of the IgG cargo into HeLa cells, using the carrier WYKYW and its α,β-peptidic
derivatives. The schematic representation of the carrier–cargo complex is given in Figure 4. Images are
tagged by the carrier sequence measured (β denotes the corresponding β3-amino acid). Alexa Fluor
647-conjugated secondary antibody is indicated in magenta; green staining defines cell membranes
(WGA-FITC). Nuclei are indicated in cyan. The carrier–cargo complexes we applied at a concentration
of 80 nM, and cells were incubated for 1 h. In the control measurement, cells were treated with IgG
complex without the ganglioside-binding carrier peptides attached.
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