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Abstract: Nano-catalytic agents actuating Fenton-like reaction in cancer cells cause intratumoral
generation of reactive oxygen species (ROS), allowing the potential for immune therapy of tumor
metastasis via the recognition of tumor-associated antigens. However, the self-defense mechanism
of cancer cells, known as autophagy, and unsustained ROS generation often restricts efficiency,
lowering the immune attack, especially in invading metastatic clusters. Here, a functional core-shell
metal-organic framework nanocube (dual MOF) doubling as a catalytic agent and T cell infiltration
inducer that programs ROS and inhibits autophagy is reported. The dual MOF integrated a Prussian
blue (PB)-coated iron (Fe2+)-containing metal-organic framework (MOF, MIL88) as a programmed
peroxide mimic in the cancer cells, facilitating the sustained ROS generation. With the assistance
of Chloroquine (CQ), the inhibition of autophagy through lysosomal deacidification breaks off the
self-defense mechanism and further improves the cytotoxicity. The purpose of this material design
was to inhibit autophagy and ROS efficacy of the tumor, and eventually improve T cell recruitment
for immune therapy of lung metastasis. The margination and internalization-mediated cancer cell
uptake improve the accumulation of dual MOF of metastatic tumors in vivo. The effective catalytic
dual MOF integrated dysfunctional autophagy at the metastasis elicits the ~3-fold recruitment of
T lymphocytes. Such synergy of T cell recruitment and ROS generation transported by dual MOF
during the metastases successfully suppresses more than 90% of tumor foci in the lung.

Keywords: drug delivery; nano-catalytic medicine; MOF; autophagy; immune response; lung metastasis

1. Introduction

Metastasis is responsible for over 90% of cancer-related deaths [1,2]. It is developed in
the primary tumor in which the cancer cell escapes from the immune system and forms
the secondary tumor at distant organs [3–5]. Recently, immune therapy held promise to
suppress the metastatic cells via the cytotoxic T lymphocytes [6–8]. Despite the recent
advance in immunotherapy, the invading clusters of metastases usually smaller than
100 mm3 poorly performed vascularization and restricted physical contact of T lymphocytes,
lowering immune responses [9–12]. Furthermore, the invasion of secondary tumors fills
up the lymphatic vessels and reduces the space to recruit immune cells [13,14]. Thus, the
recruitment of cancer-specific T lymphocytes during metastasis is critical.

To elicit T cells, a potential solution is to eliminate the cancer cells to generate a high
number of cancer-associated antigens. In this regard, the reactive oxygen species (ROS),
which plays a typical role in the cellular signaling-derivatized oxygen molecules, served
as an oxidative damager in excessive expression (specifically H2O2), and could lead to
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potent oxidative harm within cancer cells [15,16]. Such ROS-responsive biological targets
have attracted great attention in the redox chemistry of cancer therapeutics via promoting
the intracellular H2O2 conversion to •OH [17–19]. It can induce a Fenton-like reaction in
the tumor in which H2O2 is disproportionated to toxic •OH, facilitating oxidization and
damaging intracellular proteins and organelles [20]. However, the failure of proteins and
organelles could simulate the genotoxic reaction and metabolic insufficiency [21], leading
to the activation of autophagy (also known as the self-defense mechanism) [22,23]. In this
mechanism, the cells engulf cytoplasmic organelles in autophagosomes and transport them
to lysosomes for degradation. This helps the clearance of •OH-damaged proteins and
organelles for detoxification [24,25].

To mitigate the activation of autophagy at tumors, different modified-MOFs have
been developed as light- or sono-enhanced Fenton reactions [26,27]. The light-responsive
materials possessing iron (Fe2+ and Fe3+) under a NIR light or radiation were able to
trigger the hydrogen peroxide to effectively produce hydroxyl radicals when compared
to the traditional Fenton methods [28,29]. Such ROS generation by photo-reduction of
Fe3+ ensures the proceeding of the reaction. For example, Hu et al. reported that the
Fe2+-loaded lanthanide-doped porous particles under NIR irradiation to cause Fe2+ to
produce localized •OH radicals in cancer mitochondrion, showing the strong mtDNA
damage [27]. In blocking the autophagic flux, chloroquine (CQ) has been developed
as a classical inhibitor of autophagy [30]. The innate immunity provides downstream
regulation of autophagy by activating the receptor that further enhances the production of
cytokines and phagocytosis [31–33]. Conversely, in adaptive immunity, an increased source
of antigens through autophagic activation promotes the CD8+ T cells for direct cytotoxicity
in cancer metastasis [33]. The autophagy activation enhances the recruitment of LC3B
protein (microtubule-associated protein 1 light chain 3B), the fusion between phagosomes
and lysosomes leading to the increased antigen presentation for adaptive immunity [34].
Thus, the autophagic inhibition is required for preventing cargo degradation, which may
help to promote the T cell infiltration in metastatic tumor suppression.

Here, a core-shell metal-organic framework nanocube (dual MOF) that integrated the
features of programmed ROS and autophagy inhibition was developed for eliciting T cells
towards tumor metastasis (Scheme 1). The dual MOF is able to program peroxide mimic
in the cancer cells and can be sustained to generate ROS via the core-shell characteristics
(step 1). With a high cellular uptake, the chloroquine (CQ) serves as an inhibitor of
autophagy, and regulates the autophagy flux by de-acidifying the lysosomes, lowering the
self-defense mechanism of cancer cells (known as autophagy) and boosting the intracellular
oxidative damage (step 2). To trigger the therapeutic processes, NH2-MIL-88B (Fe) as shell
has been chosen as a highly efficient catalysis to guarantee the upstream generation of
the amount of •OH radicals, whereas Prussian blue (PB) as a core shows catalytic activity
for the reduction of H2O2. The effective catalytic and dysfunctional autophagy at the
metastasis could elicit the infiltration of T lymphocytes. The versatile dual MOF is an
excellent ROS generator to actuate cancer cell death and enhance T cell recruitments for
immune therapy.
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Scheme 1. Schematic illustration of dual MOF catalytic activity and immune response. The dual
MOF programs peroxide mimic in the cancer cells and sustain to generate ROS via the core-shell
characteristics (step 1). With a high cellular uptake, chloroquine (CQ) served as an inhibitor of
autophagy, and regulates the autophagy flux by de-acidifying the lysosomes, lowering the self-
defense mechanism of cancer cells (step 2). The accumulation of dual MOF in lung metastasis
promotes the accumulation of specific T-cell responses (CD4+ and CD8+).

2. Method
2.1. Materials

Polyvinylpyrrolidone (PVP, average molecular weight (MW) = 50,000 g/mol, Sigma-
Aldrich, St. Louis, MO, USA), hydrochloric acid (HCl, 36.0%, Sigma-Aldrich), potassium
ferricyanide (K3[Fe(CN)6], Sigma-Aldrich), pluronic (F127, Sigma-Aldrich), iron (III) chlo-
ride hexahydrate (FeCl3·6H2O, Sigma-Aldrich), acetic acid (CH3COOH), and aminotereph-
thalic acid (NH2-BDC, Thermo Fisher Scientific, Lancashire, UK). Chloroquine (CQ) was
obtained from Sigma-Aldrich. Aqueous solutions were prepared with deionized (D.I.)
water (17.7 MU cm) produced from Milli-Q water purification. All other chemicals used in
this work were obtained from commercial suppliers which were of analytical grade and
used without any further purification.

2.2. Synthesis of PB MOF

The synthesis procedure of Prussian blue (PB) was carried out via a modified approach
developed by Yamauchi group [35]. In a typical process, 3 g of PVP and 0.2267 g of
K[Fe(CN)6] were dissolved into 40 mL D.I. water under vigorous stirring and then 35.0 µL
of HCl was added to form a clear solution. The resulting solution was continuously stirred
for 30 min and placed into an autoclave at 80 ◦C for 20 h. The mixture was washed many
times with ethanol and the resultant product was dried by particle lyophilization.

2.3. Synthesis of NH2-MIL88

The synthesis procedure of NH2-MIL88B (Fe) was carried out via a hydrothermal
route by dissolving 0.1783 g of FeCl3 and 0.16 g of F127 in 15 mL of D.I. water. After 45 min
of stirring, 150 µL of acetic acid was added to regulate the size of nanoparticles followed
by another 45 min of stirring. Then, 60 mg of NH2-BDC was added to the mixture for
the further stirring of 2 h, and the resulting mixture was transferred to an autoclave at
110 ◦C for 16 h. After aging, the mixture was washed several times with D.I. water and the
resultant was obtained by particle lyophilization.
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2.4. Synthesis of MIL88@PB (Dual MOFs)

The dual MOFs were synthesized via the hydrothermal route by coating the PB with
NH2-MIL88B (Fe) MOF as an outer shell through a layer-growth method. Briefly, 17.83 mg
of FeCl3·6H2O and 3.75 mg of F127 were added to 4 mL of D.I. water, and this mixture
was further added to 28 mL of PB solution (0.00813 g/mL). After 1 h of stirring, 37.5 µL of
acetic acid was added, followed by another 1 h of stirring. Then, 6 mg of NH2-BDC was
added. After continuous stirring of 2 h, the resulting mixture was autoclaved at 110 ◦C for
16 h. After aging, the mixture was washed by ethanol and D.I. water for three times, and
the precipitates were collected. The final product was obtained by particle lyophilization.

2.5. Characterizations

The morphologies of PB, MIL88 and MIL88@PB nanoparticles were analyzed by field
emission scanning electron microscopy (FE-SEM) and cryo-high-resolution transmission
electron microscope (Cryo-HRTEM, JEM-2010, JEOL, Tokyo, Japan). Nanoparticle’s diame-
ter and surface charge were analyzed by dynamic light scattering (DLS, Nano-ZS, Malnern,
Malvern, UK). Powder X-ray diffraction (XRD) patterns were tested on a Rigaku Japan
TTRAX III equipped with Cu Ka radiation of 2 theta range. Fourier-Transform infrared
(FTIR) spectrum was analyzed in the range of 500–4000 cm−1 with a resolution of 4 cm−1.

2.6. In Vitro Drug Release

To load CQ into the dual MOF nanoparticles, the nanoprecipitation method with
2 mg of PB, MIL88, and dual MOFs dissolved into 15 mL of PBS solution by adding
1.8 mg of CQ. The drug release test was carried out by collecting 2 mL of supernatant by
washing the mixture for UV-vis absorption (The Evolution 350 UV-Vis Spectrophotometer,
Therma Fisher Scientific). The mixture was replaced with fresh 2 mL of PBS solution. The
experiment was carried out for 50 h to measure the drug encapsulation efficiency.

2.7. In Vitro Cellular Toxicity

A total of 100 µL of B16F10 (a murine tumor cell line; skin melanoma cells) cells at a
density of 1× 104 cells per well were seeded into 96-well plates using standard cell medium
(DMEM) and incubated for 24 h in 5% CO2 at 37 ◦C. Then, the cells were treated with
100 µL of MOF nanoparticles at different concentrations (12.5, 25, 50, 75 and 100 µg/mL)
for another 24 h. Cells were washed carefully three times with PBS solution and cell
cytotoxicity assay was carried out by adding 10 µL of MTT Presto blue solution to each
well incubated for 10–15 min before. Finally, a plate reader (Synergy HT Multidetection
microplate reader, BioTek Instruments, Inc., Santa Clara, CA, USA at a wavelength of
570 nm) was used to measure the absorbance of each well and expressed the percentage of
cell viability.

2.8. In Vitro Cellular Uptake

For the cellular uptake experiment, 20 µL of quantum dots (QDs) was loaded into PB,
MIL88, and dual MOF with different concentrations (75, 100, 200 and 400 µg/mL). The
QD-labeled MOFs were added to 1 × 105 of B16F10 cells which were seeded on coverslip
in 6-well plates for 24 h. The medium was replaced with 1 mL of MOFs solution and
further incubated for 24 h at 37 ◦C. Then, the staining method is carried out by replacing
the 1 mL of medium with 3% formaldehyde solution to fix the cells for 30 min of incubation.
Subsequently, the cell solution was removed, and 1 mL of Triton (0.1%) was added for
30 min of incubation for permeabilization. Finally, the cell nuclei and cytoskeleton were
stained by 1 mL of DAPI (1 µg/mL) for 20 min and F-actin (300 units/mL) overnight at
37 ◦C. Between each step, the cells were washed carefully with PBS three times. The cells
were mounted on glass slides and observed by confocal laser scanning microscopy (CLSM
Zeiss LSM 800, Oberkochen, Germany).
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2.9. In Vitro LC3B Autophagy Protein Expression (Regulation of Autophagosomes)

LC3B, an autophagy protein on autophagosome, expression was evaluated. CQ-
loaded PB, MIL88, and dual MOFs at different concentrations were treated to B16 cells to
investigate the activity of autophagosomes and fusion with lysosomes. The QD-labeled
MOFs were added to 1 × 105 green fluorescence-expressed B16F10 (GFP-B16F10) cells,
which were seeded on a coverslip in 6-well plates for 24 h. The medium was replaced
with 1 mL of MOF solution and further incubated for 24 h at 37 ◦C. Then, the staining
method was carried out by removing the 1 mL of medium and adding 3% formaldehyde
solution to fix the cells for 30 min incubation. After that, the cell solution was replaced
with 1 mL of Triton (0.1%) and 20–30 min incubation for permeabilization. The cell nuclei
and cytoskeleton were stained with 500 µL per well with DAPI (1 µg/mL) and F-actin
(300 units/mL) for 2 h, and then, 1 mL of LC3B primary antibody was added with 5%
of blocking buffer bovine serum albumin (BSA) overnight at 4 ◦C, respectively. Finally,
secondary antibody (LC3B) was added with blocking buffer (BSA) for 1 h of incubation. The
cells were mounted on glass slides and tested the MOF treated autophagosome activation
by Confocal laser scanning microscopy (CLSM Zeiss LSM 800, Oberkochen, Germany).

2.10. In Vitro Catalytic Performance of Dual MOFs

The catalytic performance of MOFs by detection of •OH radicals in vitro was evaluated
by demising methylene blue (MB) method. It was tested at pH 6.4 and 7.4 by adding
100 µg/mL of PB, MIL88, and dual MOFs into 250 µL of glutathione (GSH, 40 µM) and
100 µL of H2O2 solution. Methylene blue of 50 µL (500 µM) was added to detect the ROS
generation in addition to MOF. The MOF catalytic activation was measured by UV-Vis
Absorption. The experiment was conducted for 4 h to detect the initiation of Fenton reaction
and catalytic activation of MOFs.

2.11. Tissue Section Immunostaining

Animal study and surgical procedures were performed in accordance with the protocol
approved by the Institutional Animal Care and Use Committee (IACUC), National Tsing
Hua University, Hsinchu, Taiwan (IACUC protocol and approval number are 10704).
Female C57BL/6 mice of 6 to 8 weeks old (purchased from National Laboratory Animal
Center, NLAC, Taiwan) were adopted as the animal model of tumor growth inhibition
experiment. For the development of mouse lung metastasis, 1 × 106 GFP-B16F10 cells were
trypsinzed, washed, and suspended in DMEM in advance. Then, 100 µL of 1 × 106 GFP-
B16F10 cells resuspended with PBS was injected to the mouse intravenously. After 13 days
of cancer cell injection, the QD-labeled PB, MIL88, or dual MOF nanoparticles were injected
into the mice. Then, 24 h post injection, the mouse was sacrificed, and lung tissue was
surgically excised to make a frozen section. The organs were perfused in PBS and further
transferred to 4% paraformaldehyde overnight at 4 ◦C. Subsequently, they were fixed in
OCT gel at −80 ◦C for frozen section slicing. Dehydrated frozen tissue was carried by
immersing it for 10 min with 100% methanol. The slices were washed with PBS (Gibco,
10010023) to remove the OCT residue. Before staining, 100 µL of blocking buffer (BSA)
was added and incubated for 1 h at room temperature. Then, 100 µL of diluted primary
antibody CD8 (Rabbit-anti CD8 α, Abcam, ab217344, 1:1000 dilution) and CD4 (Rat-anti
CD4, Abcam, ab25475, 1:1000 dilution) were added and incubated overnight at 4 ◦C.
After 24 h, the secondary antibody CD8 (Donkey anti-rabbit 488, Jackson, 112545143) and
CD4 (Donkey anti-rat 647, Jackson, 112605167) were added to samples for another 1 h
of incubation. Between each step, the slices were washed for three times carefully with
1× PBS solution through an autoshaker. DAPI mounting medium (Abcam, ab104139) was
used and the slide was sealed with nail polish. The tissue images were captured with
Confocal laser scanning microscopy (CLSM Zeiss LSM 800, Oberkochen, Germany).
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2.12. In Vivo Flow Cytometry Analysis

The in vivo flow cytometry analysis was plied to examine T cells in lung metastasis.
Briefly, 100 µL of 1 × 106 GFP-B16F10 cells resuspended with PBS was injected to the
mouse intravenously. For the treatment groups, the NPs were injected via a 27-gauge
needle through a tail vein 13 days post implantation of a tumor. After 24 h, the mice
were sacrificed on the 14th day and the lungs were dissected for immune staining. The
isolated tissues were mechanically disrupted and were added into the RBC lysis buffer
for lyses red cells. Then, to attain tumor single-cell suspensions, enzymatic digestion in
0.1 mg/mL collagenase solution (Sigma, C0130), 0.1 mg/mL Liberase solution (TL Roche),
1 µg/mL DNase solution (Sigma, DN25), and 6.6 µg/mL dispase I solution (Sigma, D4818)
in HBSS buffer (Sigma, H8264) for 30 min. The suspension was filtered through a 70 µM
filter after digestion to remove the cellular debris. For B16F10 cells, the formed single-cell
suspension was then stained with fluorochrome-labeled antibodies were analyzed by flow
cytometry after the surface staining for 30 min at 4 ◦C. The characterization of the T cell
subsets was performed using fluorochrome conjugated anti-mouse Abs: anti-CD4 PE (BD,
553730), anti-CD3e FITC (BD, 553062), anti-CD8a APC (BD, 553035), and anti-CD45 PE-Cy7
(BD, 552848). The isolated spleen was mechanically disrupted and added into RBC lysis
40 buffer for lyses red cells. Then, to attain tumor single-cell suspensions and to remove
debris, the suspension was filtered through a 70 µM cell strainer. The characterization of
the matured DC cell subsets was performed using antibody anti-mouse CD11c-FITC (BD,
553801), anti-Mouse CD80-APC (BD, 560016), and anti-MouseCD86-PE-Cy7(BD,560582).
Data were acquired using a BD FACSAriaTM II flow cytometer (Invitrogen, Thermo Fisher
Scientific, Oregon, USA) and analyzed with Flow Jo software (version 7.6.1).

3. Results and Discussion
3.1. Characterization of PB, MIL88, and Dual MOF Nanoparticles

The dual MOFs mainly consisted of two elements, PB nanocubes and MIL88 shells,
as shown in Figure 1a. To investigate the morphologies of resulting particles, scanning
electron microscopy (SEM) and transmission electron microscopy (TEM) were applied.
SEM and TEM images reveal the surface characteristics of PB, MIL88, and MIL88@PB
with their morphologies of cubes and bipyramidal hexagons (Figure 1b–m). The sizes of
PB nanocubes were ranged from 200 to 260 nm, showing a smooth and sharp surface on
its structure (Figure 1b–d). As revealed in Figure 1e–g, MIL88 exhibited monodisperse
bipyramidal hexagons with an average length of 130 nm. After MIL88 coating, dual MOFs
could maintain the cubic structures as PB (Figure 1h,i), but a clear shell constructed by
MIL88 was observed in TEM analysis (Figure 1m). The well-coating of MIL88 on PB
was potentially attributed to the affinity of molecule absorption between PB and MIL88
precursors. The evidence from elemental mappings also indicated that the elements of Fe,
N, and C were distributed on the dual MOFs (Figure 1n–p), implying the successful coating
of two materials.

The growth of dual MOF also reflected the size distribution of PB, MIL88, and dual
MOFs, where the hydrodynamic diameter of PB, MIL88, and dual MOFs displayed 144,
185, and 296 nm in agreement with the DLS technique, respectively (Figure 2a). The
zeta potential results of PB, MIL88, and dual MOFs showed the surface charge of −1.07,
−1.59, and −6.53 (Figure 2b). The lower surface charge of dual MOF was probably partly
caused by the defects of MIL88, since the crystallinity of MIL88 on PB was decreased
(as demonstrated on TEM, Figure 1m). Furthermore, the chemical bonds of dual MOFs,
representing the binding energy at 711 and 721 eV corresponding to the Fe2p1/2 and
Fe2p3/2, suggested that all Fe atoms in dual MOFs were in the trivalent state specifying their
interactions with the organic ligand, 2-Aminoterephtalic acid (Figure 2c,d). Furthermore,
Fourier-transform infrared (FTIR) spectrum results revealed that a strong peak at 2090 cm−1

(Figure 2e) in PB and dual MOF, indicating the stretching absorption of CN bands from
the PB. The absorption bands at 1156–1096 cm−1, which is attributed to the stretching
vibration of C-O in the backbone of Pluronic F127 (Figure 2e, MIL88). Four absorption
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bands at 1585, 1495, 1436, and 1381 cm−1 are attributed to the symmetric and asymmetric
vibrations of carboxyl groups. In addition, two bands at 3466 and 3363 cm−1 could
be observed as the characteristics of symmetric and asymmetric stretching absorptions
of primary amine groups of NH2-BDC linkers. Meanwhile, dual MOF displayed the
functional groups of inner PB layer and outer MIL88, respectively. Next, the crystal
structures of three particles were evaluated by X-ray diffraction (XRD, Figure 2f). XRD
analysis of PB exhibited the major diffraction planes at (200), (220), and (400), which are
the characteristic of the PB crystal planes indexed face-centered cubic lattice (Figure 2f
in symbol diamond). After coating with MIL88, dual MOF revealed both the diffraction
pattern of PB and MIL88 without any changes, indicating the slight effects of coating
process in crystallinity. The lower XRD intensity of PB in dual MOF was caused by the
shield effects of MIL88 on PB. The MOF is an instable material in the presence of water.
In our study, the preservation of materials was carried out by the drying process under a
vacuum to avoid the hydrolysis. The hydrolysis could lead the breaking of Fe–O bonds
and exposing more =C–H groups [36]. The colloidal stability of PB, MIL88, and dual MOF
in cell culture medium (DMEM supplemented with 10% FBS serum) for 24 h were also
estimated to understand the process (Figure S1). The variation of size and surface charge
could be observed in both MIL88 and dual MOF, indicating the hydrolysis effect.
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Figure 1. Synthesis and characterizations of dual MOFs. (a) The schematic illustration of the synthesis
process of CQ-loaded dual MOF (CQ-dual MOF). The dual MOF system was reached by coating
the inner Prussian blue (PB) with an outer MIL88 as a metal source and NH2BDC as an organic
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dual MOFs.



Pharmaceutics 2022, 14, 527 8 of 16

Pharmaceutics 2022, 14, x  8 of 16 
 

 

was carried out by the drying process under a vacuum to avoid the hydrolysis. The hy-

drolysis could lead the breaking of Fe–O bonds and exposing more =C–H groups [36]. The 

colloidal stability of PB, MIL88, and dual MOF in cell culture medium (DMEM supple-

mented with 10% FBS serum) for 24 h were also estimated to understand the process (Fig-

ure S1). The variation of size and surface charge could be observed in both MIL88 and 

dual MOF, indicating the hydrolysis effect. 

The catalytic performance of PB, MIL88, and dual MOFs were investigated by the 

detection of •OH radicals. The experiments via adding MOFs into H2O2 solution were 

performed for 4 h at pH 6.4 and 7.4, respectively. Methylene blue (MB), a detecting dye, 

is added to evaluate ROS generation in the reaction mixture to understand Fenton reac-

tion. Generally, the iron-based MOF reacted with H2O2 turn to ferric ions and release •OH 

radicals, facilitating the MB reaction and turning it into reaction color. This also confirms 

that MOFs can catalytically activate H2O2 to produce •OH radicals. At pH 6.4, MIL88 ini-

tiated the Fenton reaction immediately and consumed all ferric ions within 1 h, exhibiting 

no higher reaction ability over time (Figure 2g,h). Compared to MIL88, PB exhibited the 

slower Fenton reaction rate and sustained generation of ROS for four hours. Dual MOF 

performed the programmed ROS generation to manipulate the Fenton reaction, which 

demonstrated the strong Fenton reaction in the first hour and sustained reaction for an-

other 3 h. The dual MOF catalytic activation happened through the various dynamics of 

electron transfer initiated by Fenton reaction in MIL88 and PB. We further tested the MOF 

catalytic activity at pH 7.4, which showed no significant reaction; only a weak Fenton re-

action occurred. 

 

Figure 2. Characterizations of single and dual MOFs. (a) Size distribution and (b) zeta potential 

ofPB, MIL88, and dual MOFs. (c) XPS spectrum of all the elements and (d) Fe2p spectrum of dual 

MOFs, demonstrating all the iron components in the trivalent state. (e) FTIR and (f) X-ray diffraction 

spectrum of PB(  ), MIL88(  ), and dual MOF. Slight disappearances reflections of 2-Theta and 

intensities in the dual MOF were due to the shielding effect of MIL88 on PB. (g,h) Catalytic perfor-

mance of control, PB, MIL88, and dual MOF. 

3.2. In Vitro Drug Release 

To measure the encapsulation efficiency, the supernatant of loading drug was col-

lected by centrifugation of the mixture. The CQ loading efficiency was calculated by meas-

uring the initial drug and released drug in supernatant with time different points. Due to 

the MOF having the porous structures with the affinity to CQ via the p-p interactions and 

van der Waal forces, the resulting loading efficiency reached about ~70%. The loading 

content was kept in a similar concentration at 1 mg/g particles for three types of particles 

700 710 720 730 740

  

 

0 400 800

 

 

0 200 400 600
0

10

20

30

40

Size (nm)

P
ro

b
a
b

il
it

y
 (

%
)

PB

Dual MOF

NH2-MIL88

(a) (b) (c)

(e) (f) (g)

Binding energy (eV)

In
te

n
s
it

y
 (

a
.u

.)

Fe2p3/2

Fe2p1/2

(d)

Fe2p

O1s

N1s
C1s

PB MIL88 Dual 
MOF

Control

Fe2+ + H2O2 Fe3+ + OH- +  OH 

Fenton Reaction

(h)

Binding energy (eV)

In
te

n
s

it
y

 (
a
.u

.)

1000200030004000

Wavenumber (cm-1)

T
ra

n
s
m

it
ta

n
c
e
 (

%
) PB

NH2-MIL88B 

Dual MOF

Stage 1 Stage 2

Figure 2. Characterizations of single and dual MOFs. (a) Size distribution and (b) zeta potential
ofPB, MIL88, and dual MOFs. (c) XPS spectrum of all the elements and (d) Fe2p spectrum of
dual MOFs, demonstrating all the iron components in the trivalent state. (e) FTIR and (f) X-ray
diffraction spectrum of PB(

Pharmaceutics 2022, 14, x  8 of 16 
 

 

was carried out by the drying process under a vacuum to avoid the hydrolysis. The hy-
drolysis could lead the breaking of Fe–O bonds and exposing more =C–H groups [36]. The 
colloidal stability of PB, MIL88, and dual MOF in cell culture medium (DMEM supple-
mented with 10% FBS serum) for 24 h were also estimated to understand the process (Fig-
ure S1). The variation of size and surface charge could be observed in both MIL88 and 
dual MOF, indicating the hydrolysis effect. 

The catalytic performance of PB, MIL88, and dual MOFs were investigated by the 
detection of •OH radicals. The experiments via adding MOFs into H2O2 solution were 
performed for 4 h at pH 6.4 and 7.4, respectively. Methylene blue (MB), a detecting dye, 
is added to evaluate ROS generation in the reaction mixture to understand Fenton reac-
tion. Generally, the iron-based MOF reacted with H2O2 turn to ferric ions and release •OH 
radicals, facilitating the MB reaction and turning it into reaction color. This also confirms 
that MOFs can catalytically activate H2O2 to produce •OH radicals. At pH 6.4, MIL88 ini-
tiated the Fenton reaction immediately and consumed all ferric ions within 1 h, exhibiting 
no higher reaction ability over time (Figure 2g,h). Compared to MIL88, PB exhibited the 
slower Fenton reaction rate and sustained generation of ROS for four hours. Dual MOF 
performed the programmed ROS generation to manipulate the Fenton reaction, which 
demonstrated the strong Fenton reaction in the first hour and sustained reaction for an-
other 3 h. The dual MOF catalytic activation happened through the various dynamics of 
electron transfer initiated by Fenton reaction in MIL88 and PB. We further tested the MOF 
catalytic activity at pH 7.4, which showed no significant reaction; only a weak Fenton re-
action occurred. 

 
Figure 2. Characterizations of single and dual MOFs. (a) Size distribution and (b) zeta potential 
ofPB, MIL88, and dual MOFs. (c) XPS spectrum of all the elements and (d) Fe2p spectrum of dual 
MOFs, demonstrating all the iron components in the trivalent state. (e) FTIR and (f) X-ray diffraction 
spectrum of PB(  ), MIL88(  ), and dual MOF. Slight disappearances reflections of 2-Theta and 
intensities in the dual MOF were due to the shielding effect of MIL88 on PB. (g,h) Catalytic perfor-
mance of control, PB, MIL88, and dual MOF. 

3.2. In Vitro Drug Release 
To measure the encapsulation efficiency, the supernatant of loading drug was col-

lected by centrifugation of the mixture. The CQ loading efficiency was calculated by meas-
uring the initial drug and released drug in supernatant with time different points. Due to 
the MOF having the porous structures with the affinity to CQ via the p-p interactions and 
van der Waal forces, the resulting loading efficiency reached about ~70%. The loading 
content was kept in a similar concentration at 1 mg/g particles for three types of particles 

700 710 720 730 740

  

0 400 800

 

0 200 400 600
0

10

20

30

40

Size (nm)

Pr
ob

ab
ili

ty
 (%

) PB

Dual MOF
NH2-MIL88

(a) (b) (c)

(e) (f) (g)

Binding energy (eV)

In
te

ns
ity

 (a
.u

.)

Fe2p3/2
Fe2p1/2

(d)

Fe2p

O1s

N1s
C1s

PB MIL88 Dual 
MOFControl

Fe2+ + H2O2 Fe3+ + OH- +  OH 
Fenton Reaction

(h)

Binding energy (eV)

In
te

ns
ity

 (a
.u

.)

1000200030004000
Wavenumber (cm-1)

Tr
an

sm
itt

an
ce

 (%
) PB

NH2-MIL88B 

Dual MOF

Stage 1 Stage 2

), MIL88(

Pharmaceutics 2022, 14, x  8 of 16 
 

 

was carried out by the drying process under a vacuum to avoid the hydrolysis. The hy-
drolysis could lead the breaking of Fe–O bonds and exposing more =C–H groups [36]. The 
colloidal stability of PB, MIL88, and dual MOF in cell culture medium (DMEM supple-
mented with 10% FBS serum) for 24 h were also estimated to understand the process (Fig-
ure S1). The variation of size and surface charge could be observed in both MIL88 and 
dual MOF, indicating the hydrolysis effect. 

The catalytic performance of PB, MIL88, and dual MOFs were investigated by the 
detection of •OH radicals. The experiments via adding MOFs into H2O2 solution were 
performed for 4 h at pH 6.4 and 7.4, respectively. Methylene blue (MB), a detecting dye, 
is added to evaluate ROS generation in the reaction mixture to understand Fenton reac-
tion. Generally, the iron-based MOF reacted with H2O2 turn to ferric ions and release •OH 
radicals, facilitating the MB reaction and turning it into reaction color. This also confirms 
that MOFs can catalytically activate H2O2 to produce •OH radicals. At pH 6.4, MIL88 ini-
tiated the Fenton reaction immediately and consumed all ferric ions within 1 h, exhibiting 
no higher reaction ability over time (Figure 2g,h). Compared to MIL88, PB exhibited the 
slower Fenton reaction rate and sustained generation of ROS for four hours. Dual MOF 
performed the programmed ROS generation to manipulate the Fenton reaction, which 
demonstrated the strong Fenton reaction in the first hour and sustained reaction for an-
other 3 h. The dual MOF catalytic activation happened through the various dynamics of 
electron transfer initiated by Fenton reaction in MIL88 and PB. We further tested the MOF 
catalytic activity at pH 7.4, which showed no significant reaction; only a weak Fenton re-
action occurred. 

 
Figure 2. Characterizations of single and dual MOFs. (a) Size distribution and (b) zeta potential 
ofPB, MIL88, and dual MOFs. (c) XPS spectrum of all the elements and (d) Fe2p spectrum of dual 
MOFs, demonstrating all the iron components in the trivalent state. (e) FTIR and (f) X-ray diffraction 
spectrum of PB(  ), MIL88(  ), and dual MOF. Slight disappearances reflections of 2-Theta and 
intensities in the dual MOF were due to the shielding effect of MIL88 on PB. (g,h) Catalytic perfor-
mance of control, PB, MIL88, and dual MOF. 

3.2. In Vitro Drug Release 
To measure the encapsulation efficiency, the supernatant of loading drug was col-

lected by centrifugation of the mixture. The CQ loading efficiency was calculated by meas-
uring the initial drug and released drug in supernatant with time different points. Due to 
the MOF having the porous structures with the affinity to CQ via the p-p interactions and 
van der Waal forces, the resulting loading efficiency reached about ~70%. The loading 
content was kept in a similar concentration at 1 mg/g particles for three types of particles 

700 710 720 730 740

  

0 400 800

 

0 200 400 600
0

10

20

30

40

Size (nm)

Pr
ob

ab
ili

ty
 (%

) PB

Dual MOF
NH2-MIL88

(a) (b) (c)

(e) (f) (g)

Binding energy (eV)

In
te

ns
ity

 (a
.u

.)

Fe2p3/2
Fe2p1/2

(d)

Fe2p

O1s

N1s
C1s

PB MIL88 Dual 
MOFControl

Fe2+ + H2O2 Fe3+ + OH- +  OH 
Fenton Reaction

(h)

Binding energy (eV)

In
te

ns
ity

 (a
.u

.)

1000200030004000
Wavenumber (cm-1)

Tr
an

sm
itt

an
ce

 (%
) PB

NH2-MIL88B 

Dual MOF

Stage 1 Stage 2

), and dual MOF. Slight disappearances reflections of 2-Theta
and intensities in the dual MOF were due to the shielding effect of MIL88 on PB. (g,h) Catalytic
performance of control, PB, MIL88, and dual MOF.

The catalytic performance of PB, MIL88, and dual MOFs were investigated by the
detection of •OH radicals. The experiments via adding MOFs into H2O2 solution were
performed for 4 h at pH 6.4 and 7.4, respectively. Methylene blue (MB), a detecting
dye, is added to evaluate ROS generation in the reaction mixture to understand Fenton
reaction. Generally, the iron-based MOF reacted with H2O2 turn to ferric ions and release
•OH radicals, facilitating the MB reaction and turning it into reaction color. This also
confirms that MOFs can catalytically activate H2O2 to produce •OH radicals. At pH 6.4,
MIL88 initiated the Fenton reaction immediately and consumed all ferric ions within 1
h, exhibiting no higher reaction ability over time (Figure 2g,h). Compared to MIL88, PB
exhibited the slower Fenton reaction rate and sustained generation of ROS for four hours.
Dual MOF performed the programmed ROS generation to manipulate the Fenton reaction,
which demonstrated the strong Fenton reaction in the first hour and sustained reaction for
another 3 h. The dual MOF catalytic activation happened through the various dynamics
of electron transfer initiated by Fenton reaction in MIL88 and PB. We further tested the
MOF catalytic activity at pH 7.4, which showed no significant reaction; only a weak Fenton
reaction occurred.

3.2. In Vitro Drug Release

To measure the encapsulation efficiency, the supernatant of loading drug was collected
by centrifugation of the mixture. The CQ loading efficiency was calculated by measuring
the initial drug and released drug in supernatant with time different points. Due to the
MOF having the porous structures with the affinity to CQ via the p-p interactions and
van der Waal forces, the resulting loading efficiency reached about ~70%. The loading
content was kept in a similar concentration at 1 mg/g particles for three types of particles
for the comparison of treatment effects. The release profiles were shown in Figure S2, which
displayed the sustained release patterns for each group.

3.3. In Vitro Cellular Uptake and Cytotoxicity of PB, MIL88, and Dual MOF

PB, MIL88, and dual MOF were incubated with B16F10 (a murine tumor cell line; skin
melanoma cells) for 24 h to verify the cell uptake. CdSe quantum dots (QDs) was loaded
into the particles by the hydrophobic interaction for tracking their intracellular behaviors.
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After 24 h of incubation, CLSM was applied to evaluate the cellular uptake, in which the
nucleus and cytoskeleton were stained by DAPI and F-actin, respectively. CLSM images
of B16F10 cells in Figure 3a displayed that only few PBs were observed in the cytoplasm.
For MIL88 and dual MOF groups, the amounts of particles in the cells were higher than
PB group. As documented in literature, the rod-like nanoparticles (such as MIL88) with
the anisotropic properties could enhance the internalization efficiency in a lying-down or
standing-up manner [37]. On the other hand, dual MOF possessed the negative charges
which improved the nonspecific interactions with the plasma membrane [38,39]. Therefore,
the two types of particles improved the cell uptake efficiency. The results of flow cytometry
were also used to quantify the cell uptake in Figure 3b, indicating the stronger accumulation
of MIL88 and dual MOF in B16F10.
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Figure 3. (a) CLSM images of cellular uptake of B16F10 incubated with PB, MIL88, and dual MOF
labeled by QDs. Blue, red, and green fluorescence represent nucleus staining with DAPI, particle
staining with QDs, and cytoskeleton staining with F-actin, respectively. (b) Flow cytometry analysis
of PB, MIL88, and dual MOF after 24 h of incubation in B16F10 cells. (c) Cell viability of B16F10 cells
in the presence of PB, MIL88, and dual MOF solution at various concentrations. (d) Cytotoxicity of
B16F10 cells incubated with CQ-loaded dual MOF at various concentrations. Quantitative significant
statistical data were calculated via Student’s t-test, ** p < 0.01.

The cytotoxicity of PB, MIL88, and dual MOF was examined by incubating particles
with B16F10 (a murine tumor cell line; skin melanoma cells) at various concentrations
for 24 h. The in vitro cell cytotoxicity studies of three groups were tested by using MTT
assay. The results demonstrate that the dual MOFs showed higher cytotoxicity compared
to the remaining groups. Compared to the control group, all the three groups increase the
cytotoxicity when increasing MOFs concentration (Figure 3c). Conversely, the dual MOF
group at 100 µg/mL showed significant cytotoxicity compared to the PB and MIL88 groups,
which might be caused by programmed ROS generation effects of dual MOF. The outer
coating shell, i.e., MIL88, not only had the ability of loading CQ but also increased the cell
cytotoxicity (Figure 3d).
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3.4. In Vitro Cellular Uptake and LC3B Protein Expression (Regulation of Autophagosomes)

LC3B, an autophagic marker, also known as Atg8 protein, is associated with com-
plete autophagosome formation. Therefore, increased LC3B is a good indication for au-
tophagososme formation [30], and LC3B protein expression reflects the regulation of
autophagosomes. While MOFs entered the tumor region, the cancer cells interacted with
the ferric ions of MOFs could trigger the initiation of Fenton reaction, converting excessive
intrinsic non-toxic H2O2 into highly oxidative •OH radicals. The release of •OH radical
attacks and inactivates organelles and proteins. On this basis, autophagic responses are
activated through the recruitment of LC3B proteins to degrade the proteins and organelles.
To confirm the recruitment, LC3B protein expression of B16F10 treated by PB, MIL88, and
dual MOFs were evaluated by CLSM. As shown in Figure 4a, CLSM images demonstrated
that three groups (PB, MIL88, and dual MOFs) can actuated the LC3B expression when
compared to control group, whereas dual MOFs showed slightly higher expression of LC3B
compared to other groups, indicating the activation of autophagososmes. Furthermore, the
expression of LC3B quantified by Image J software also reflected the results (Figure 4b). As
documented in the literature, pre LC3B cleaved to form LC3-I by Atg4 and activated by
Atg7 protein to form LC3-II. An increased expression of LC3-II demonstrates increased
autophagy [40]. Autophagy-regulated proteins (LC3B/Atg8, Beclin-1/Atg6, Atg7, Lamp-2,
p62, and aggregates of polyubiquitin) in autophagosome formation and lysosomal fusion
(Figure 4c).
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Figure 4. Autophagy activation through LC3B protein expression. (a) Confocal fluorescence images
of B16F10 cells incubated with PB, MIL88, and MIL88@PB (100 µg/mL) (blue, green, and red fluores-
cence represent nucleus, cytoskeleton, and NP staining with DAPI, F-actin, and QD, respectively;
purple fluorescence represents LC3B expression, which shows the quantity of autophagosomes),
the experiment was conducted three times on three independent 6-well plates. (b) Autophagosome
quantification of PB, MIL88, and MIL88@PB by image J analysis software. (c) Schematic represen-
tation showing increased LC3B expression leads to increased autophagy expression. Quantitative
significant statistical data were calculated via Student’s t-test, ** p < 0.01.
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3.5. CQ Inhibition of LC3B Protein Expression

Having demonstrated the LC3B protein expression in B16F10 cells, the co-delivery of
autophagy inhibitor (CQ) in MOFs was also investigated. The experiment was performed
with dual MOFs, CQ alone, and CQ-dual MOF groups. CLSM images in Figure 5a ex-
hibited the strong fluorescence expression of LC3B (purple fluorescence) in MIL88 and
Dual MOFs groups once the particles co-delivering CQ. Compared to particles’ groups,
the CQ along group revealed the slightly LC3B expression, which might be caused by
the autophagy inhibition effect. After quantifying the results, the CQ-loaded dual MOF
groups demonstrated the increased autophagosome numbers (Figure 5b). Based on these
results, the amounts of autophagosomes were not only affected by the sustained ROS gen-
eration but also the inhibition of degradation of resulting autolysosomes. As the literature
documented, the unprotonated CQ can be soluble and diffuse freely in cell membranes
and organelles [41,42]. When protonated in an acid environment, such as the lysosomal
compartment, CQ would be trapped since the protonated form is insoluble in a lipid mem-
brane. Because of protonation and accumulation of CQ in the lysosomal compartment, it
would deplete hydrogen ions and change the internal environment, leading to blocking
the degradation substrates in lysosomes and stopping the metabolization. This would
inhibit normal lysosomal functioning, which has been demonstrated to be the main reason
for blocking the fusion of autophagosomes with lysosomes [41,42]. The acidity-tropic
nature of CQ promotes its accumulation and trapping in cancer cells, further facilitating its
pharmacological autophagy inhibition. Such blocking effects by CQ combined with MOF
on catalytic ROS generation, controlling the degradation of damaged cellular organelles,
which leads to the oxidative damage induced by nanocatalytic therapy, and a significant
increase in autophagosomes.
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Figure 5. Autophagy regulation by CQ, CQ-MIL88, and CQ-dual MOF. (a) Confocal florescence
images of B16F10 cells incubated with CQ, CQ-MIL88, and CQ-dual MOF (100 µg/mL). Purple
florescence represents LC3B expression, which shows the quantity of autophagosomes. Blue, green,
and red fluorescence represent nucleus, cytoskeleton, and NP staining with DAPI, F-actin, and QD,
respectively. The experiment was conducted for three times on three independent 6-well plates.
(b) The quantification of autophagosome of B16F10 cells incubated with CQ, CQ-MIL88, and CQ-
dual MOF (100 µg/mL) by image J analysis software. Quantitative significant statistical data were
calculated via Student’s t-test, * p < 0.05, ** p < 0.01.
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3.6. In Vivo Study of Mice Bearing Lung Metastasis Treated with Dual MOF

The effects of particles on in vivo T cell recruitment in lung metastasis were inves-
tigated in mice bearing B16F10 lung metastases. For tracking purposes, PB, MIL88, and
dual MOF were labeled in advance with QD. Figure 6a displayed the CLSM images of
lung metastases after the tumor-bearing mice were treated with PB, MIL88, and dual MOF
at 24 h post injection. Several results can be drawn by the results. First, three systems
can accumulate in lung, which might be attributed by margination and EPR (enhanced
permeation and retention) effects of particles [12]. Second, all groups exhibited a strong
expression of CD4+ and CD8+ (the typical markers of the upregulation of the T cell surface
and indicated immune activity) (Figure 6b). The accumulation of T cells can be understood
by the ROS generation in the lungs, in which Fe2+ ions of MOF reacted with H2O2 in tumor
environment and inactive the organelles and proteins for the aberrant accumulation. Fur-
ther activation of autophagy increases the antigens that could load into MHC class I and II
to induce direct cytotoxic reaction and produce immunoprotective properties in the tumor.
Figure 6c represented the enlarged images of CLSM exhibited CD4+ and CD8+ expression
in lung metastasis tumor, indicating the good distribution of CD8+ expressed cells.
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Figure 6. In vivo study of mice bearing B16F10 lung metastases treated with PB, MIL88, and dual
MOF. (a) CLSM images of lung expressing CD4+ and CD8+ after treated with PB, MIL88, and dual
MOF. Purple and green florescence represents CD4+ and CD8+ expressed cells. (b) Quantification
of CD8 and CD4 expression by image J software. (c) The enlarged CLSM image of lung treated by
dual MOF.

CQ-loaded MIL88 and dual MOF were injected intravenously to lung metastasis-
bearing mice to estimate the eliciting of T cells. As shown in Figure 7a, CLSM images
of lung metastases-bearing mice treated with CQ-MIL88 and CQ-dual MOF at 24 h post
injection exhibited many strong CD4+ and CD8+ expressed cells. The significant improve-
ment of T cells could be understood by the combination effects of CQ and Fenton reactions.
As previous described, CQ trapped in lysosomal compartment would deplete hydrogen
ions and change the internal environment. It blocked the degradation substrates in lyso-
somes and stopped the metabolization, inhibiting the self-protection of autophagosomes.
Therefore, it caused cell death and released tumor-associated antigens to elicit T cells to
tumors. With the recruiting of T cell, the metastatic suppression effects of CQ-MIL88 and
CQ-dual MOF were investigated by injecting 100 µL of particles intravenously to lung
metastasis-bearing mice at 7 days after tumor implantation. Subsequently, the tumor foci
number was calculated after 14 days. The B16F10 metastasis is a type of aggressive tumors
which prefers to colonize the distinct organs via circulation. The images in Figure 7b
revealed the macroscopic appearance of lungs treated by CQ-MIL88 and CQ-dual MOF.
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Compared to control group, the numbers of tumor nodules were decreased. After calcula-
tion, there were ~440 tumor foci in the control group, but fewer than 10 tumor foci were
observed after CQ-MIL88 and CQ-dual MOF, indicating the preliminary suppression of
the tumor. Flow cytometry also displayed the relative population of T cells after various
treatments (Figure 7c). Compared to the PB group, the CQ-dual MOF possessing the effects
on programmed ROS generation and autophagy inhibition displayed a three-fold greater
of CD8+ expression. Such effective T cell eliciting also reflected to tumor inhibition in
Figure 7b. The gating strategy of T cells in flow cytometry was given in Figure S3. In the
literature, CQ effectively blocked autophagy at the lysosomal degradation step in mouse
breast cancer cell lines, and targeting autophagy-inhibited melanoma tumor growth by
inducing a massive infiltration of immune cells, including NK cells and CD8+ into B16-F10
tumor cells [43,44]. Compared to their results, our systems integrated to dual MOF and
dysfunctional autophagy could elicit higher numbers of T lymphocytes at the metastasis.
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Figure 7. In vivo study of mice bearing B16F10 lung metastases treated with CQ-MIL88 and CQ-
dual MOF. (a) CLSM images of lung metastases treated by CQ-MIL88 and CQ-dual MOF. (b) Images
of dissected lung metastases treated by PBS (control), CQ-MIL88, and CQ-dual MOF. (c) Patterns of
flow cytometry showing the CD4+ and CD8+ expression of T cells in lungs after various treatments.
Quantitative significant statistical data were calculated via Student’s t-test, ** p < 0.01.

To understand the toxicity in vivo, both liver and kidney functions, including alanine
aminotransferase (ALT), alkaline phosphatase (ALP), blood urea nitrogen (BUN), and
serum creatinine (CRE), were evaluated 48 h post treatment. In brief, 100 µL of solution
containing with 0.5 wt% MIL88 or dual MOF was injected into 6- to 8-week-old female
C57BL/6 mice intravenously. Then, 48 h post treatment, an analysis of blood biochemistry
(ALT, ALP, BUN, and CRE) was performed by 20 µL of whole blood withdrawn via
submandibular through AmiShield (ProtectLife International Biomedical Inc., Taoyuan,
Taiwan). Compared to the control group, only slight influence in liver and kidney functions
was detected after treating MIL88 and dual MOF (Figure S4). On the other hand, despite the
materials exhibiting potential in immune therapy, the limitations for translation into clinic
need to be further overcome in the future. First, controlled drug release might be affected
by tumor heterogeneity, including blood flow, pH variation, and oxygenation, leading
to the decrease of responses and insufficient drug release. Second, the accumulation of
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materials in the tumor might also be limited because of the recognition of immune system
and clearance of the reticuloendothelial or mononuclear phagocyte system. To translate
the system to industrial application, the challenges in biological problems, scale-up of
manufacturing, biosafety, regulations, and cost utility must be addressed.

4. Conclusions

A core-shell metal-organic framework nanocube composed of a Prussian blue core and
Fe2+-containing metal-organic framework shell was developed to program reactive oxygen
species and transported Chloroquine at a lung metastasis. The internalization-mediated
cancer cell uptake exhibited the strong colocalization of nanocubes to cancer cells in vitro
and in vivo. By co-delivering Chloroquine, the inhibition of autophagy through lysosomal
deacidification was observed by MOF nanocubes, facilitating the block of the self-defense
mechanism. At the tumor site, the core-shell nanocube with effective catalytic performance
and dysfunctional autophagy elicited the ~3-fold infiltration of T lymphocytes. The synergy
of T cell recruitment and ROS generation transported by dual MOF in the metastatic tumors
inhibit the tumor foci in lung. Such cube-shaped nanocatalytics may provide a new avenue
for lung disease therapy, potentially leading to the effective clinical immune therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14030527/s1, Figure S1. Colloidal stability of PB,
MIL88 and dual MOF in DMEM + 10% FBS over 24 h; Figure S2. CQ release patterns of PB, MIL88
and dual MOF; Figure S3. The gating strategy of T cells in flow cytometry; Figure S4. Liver function
(ALT and ALP) and kidney function (BUN and CRE) at 48 h postinjection of PBS, MIL88 and dual
MOF (n = 5).
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