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Abstract: Polymers that can change their properties in response to an external or internal stimulus
have become an interesting platform for drug delivery systems. Polymeric nanoparticles can be
used to decrease the toxicity of drugs, improve the circulation of hydrophobic drugs, and increase a
drug’s efficacy. Furthermore, polymers that are sensitive to specific stimuli can be used to achieve
controlled release of drugs into specific areas of the body. This review discusses the different stimuli
that can be used for controlled drug delivery based on internal and external stimuli. Internal stimuli
have been defined as events that evoke changes in different characteristics, inside the body, such as
changes in pH, redox potential, and temperature. External stimuli have been defined as the use of
an external source such as light and ultrasound to implement such changes. Special attention has
been paid to the particular chemical structures that need to be incorporated into polymers to achieve
the desired stimuli response. A current trend in this field is the incorporation of several stimuli
in a single polymer to achieve higher specificity. Therefore, to access the most recent advances in
stimuli-responsive polymers, the focus of this review is to combine several stimuli. The combination
of different stimuli is discussed along with the chemical structures that can produce it.

Keywords: stimuli-responsive; drug delivery; polymer particles

1. Introduction

Controlled release of drugs is a growing field with many challenges to overcome.
Many drugs are hydrophobic, which limits their bioavailability. Other drugs, such as
chemotherapy drugs, are very toxic and ideally should only be released once, at the
tumor site. Polymeric nanoparticles have been extensively studied as a platform for
specific and controlled drug delivery, and can potentially solve these problems. Polymeric
nanoparticles for drug delivery have been proven to increase the circulation time, enhance
drug accumulation at the tumor site in cancer therapies, reduce the side effects of drugs,
and improve tolerance [1]. Biocompatibility and biodegradability are two other factors that
make polymers so favorable [2]. Many polymers have been extensively used in the field
of drug delivery [3,4]. The most commonly used biodegradable polymers are poly(lactic-
co-glycolic) acid (PLGA) and poly (ε-caprolactone) (PCL). Whereas the most common
non-biodegradable polymers are poly (methyl methacrylate) and polyacrylate [4].

External or internal stimuli can trigger the controlled release of drugs. Internal stimuli
can be considered thermal, pH, and redox potential, while external stimuli consist of light
and ultrasound as represented in Figure 1. Moreover, dual-responsive polymers enable
drug delivery methods and therapeutic efficacy to be fine-tuned. Previous reviews have
investigated stimuli-responsive polymers and their applications in drug delivery; however,
the field has been developing quickly and there have been many advances in recent years.
Multiple stimuli polymers have emerged as the new trend to achieve finer control of the
release of drugs and avoid side effects [5–8]. While there are reviews focusing on the
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use of stimuli-responsive polymers for targeting or imaging purposes [9–13], this review
will specifically summarize the progress in stimuli-responsive polymers as particles for
controlled drug release, with a focus on the recent advances in the field. As there are
already several recent reviews discussing the role of hydrogels in drug delivery [14–19],
including the use of nanogels as particles for drug delivery, we will not include hydrogel
polymer particles in this discussion. Instead, we will discuss the attributes that make a
polymer responsive to stimuli, how they are used as drug delivery particles for controlled
drug release, and possible future uses.
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2. Single Stimuli

Stimuli-responsive polymer particles have become important in the field of drug
delivery due to the potential for controlled release. Several stimuli can be used for this
purpose. Table 1 presents a brief summary of the different stimuli that we will discuss in
this review with some examples of the active parts needed within a polymer to achieve the
desired stimuli response. Further discussion will be provided in the following sections for
each stimulus.

Table 1. Single stimuli-responsive polymers.

Stimuli Active Part Examples Ref.

pH Cleavable bonds

Imine bond: HA-mPEG
hyaluronic acid-methoxy Poly(ethylene-glycol) amine

(Di)methyl maleate bond: PDLLA-PEG
Poly(D,L-lactide)-Poly(ethylene-glycol)

[20,21]

Redox potential Disulfide bond MPEG-P(BHD-SS)-MPEG
Poly(ethylene-glycol)-b-polycarbonate-Poly(ethylene-glycol) [22]

Biorender.com
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Table 1. Cont.

Stimuli Active Part Examples Ref.

Temperature Lower critical solution (LCST)
Upper critical solution (UCST)

LCST: PNIPAM
Poly-N-isopropylacrylamide

UCST: iMAPA
Insoluble multi-L-arginyl-poly-L-aspartic

[23,24]

Light Photo-triggered groups Polydopamine [25,26]

Ultrasound Disulfide bond
Particles aggregates

PLA-S-S-PEG
Poly(L-lactide)-S-S-Poly(ethylene-glycol)

PLGA aggregates
Poly(lactic-co-glycolic acid)

[27,28]

Magnetism Incorporation of magnetic particles Iron nanoparticles [29,30]

Shear stress Flexible particles, generally hydrogels ADEN/THYM polymersomes
Adenine/thymine functionalized block co polymers [31]

2.1. Internal Stimuli
2.1.1. pH-Responsive

It is well known that different parts of the body have different pH values, especially in
the gastrointestinal tract (GI), where the pH gradient varies dramatically [32]. However, the
pH gradient is not just limited to the GI tract; different pH’s exist inside the cell itself. For
instance, lysosomes have a pH of 4.5–5, endosomes 5.5–6, Golgi apparatus 6.4, and cytosol
7.4 [33]. One of the most important differences in pH can be observed between tumors
(pH 6.5–6.8) and normal tissue (pH 7.4) [34]. This change in pH is due to a phenomenon
known as the Warburg effect [35,36]. In this phenomenon a discrepancy in pH between
healthy tissue and cancerous tissue is observed due to the rapid proliferation of cancer
cells which decreases the blood supply, limiting the supply of oxygen and nutrients. The
limited oxygen decreases the process of phosphorylation by the cells, forcing cells to take
energy from glycolysis producing lactic acid, thereby decreasing the pH of that area. Based
on the Warburg effect many studies have focused on polymeric nanoparticles sensitive to
pH [35–39].

Drug-loaded polymeric nanoparticles with pH-sensitive functional groups can alter
their density of charges in response to a variation in pH. This mechanism is based on
the hydrophobicity of the nanoparticles as a result of protonation or deprotonation [40].
For example, co-polymer micelles can release a drug in response to pH changes as we
can see in Figure 2 [41–43]. Palanikumar et al. synthesized polymeric nanoparticles with
a functionalized membrane of acid-triggered peptide (ATRAM) [44]. ATRAM peptide
has a pKa of 6.5, which gives it a high specificity for use in the acidic microenvironment
of tumors.
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Another approach that can be used to make particles pH-responsive is the incorpo-
ration of cleavable bonds. The most important cleavable bonds are imine, hydrazone,
hydrazide, oxime, and (di)methyl maleate. Table 2 shows a list of these cleavable bonds
that can be incorporated into polymers with the relevant pH for drug delivery [45,46].

Table 2. Cleavable pH-responsive bonds.

Cleavable Bond pH

Imine <5–7
Hydrazone <5
Hydrazide <5

Oxime <5
(di)Methyl maleate <6.8

For instance, poly(L-histidine)-b-poly(ethylene glycol) (PH-PEG) combined with
poly(L-lactic acid)-b-poly(ethylene glycol) (PLA-PEG) has been studied for tumor tar-
geting [47]. The advantage of this system is the sharp transition between a stable and an
unstable drug delivery system. It is non-ionized and hydrophobic at pH 7.4, but ionized
and hydrophilic at pH 6.6 [48]. Zhang et al. produced a nano-carrier that is pH-responsive
by using an imine bond [20]. In another example of pH-responsive polymers, Sun et al.
synthesized polymeric nanoparticles of poly(D, L-lactide) (PDLLA) and poly(ethylene
glycol) (PEG) which were linked by a (di)methyl maleate group [21]. In a weak acidic
environment, the PEG dissolves, promoting endocytosis of the particles and the release of
the drug [21]. The acidic pH at the tumor site triggers the cleavable bond, decreasing the
PEG density and increasing the uptake of the particles by the cells (Figure 3).

2.1.2. Redox Potential-Responsive

Drug delivery systems for cancer and gene therapy are advantageous when they de-
grade directly in the nucleus and the cytosol of the cell while maintaining their stability in
the extracellular environment [49]. Many redox processes occur in the intracellular environ-
ment, such as NADP+/NADPH, O2/O2

−, and glutathione (GSH) [50]. Specifically, GSH
has attracted interest in the drug delivery field. GSH’s chemical name is γ-L-glutamyl-L-
cysteinyl-glycine, and it is a peptide composed of glycine, cysteine, and L-glutamic acid [51].
GSH’s concentration is used in drug delivery due to the abrupt concentration change be-
tween the intracellular (1–10 mM) and the extracellular environment (1–10 µM) [52–54]
(Table 3). Nevertheless, GSH concentration in tumor tissue has been found to be four-fold
higher than healthy tissue in mice, making GSH level a good trigger for drug delivery
systems [55,56]. However, the cancer environment changes between different types of
cancer. For example, in brain tumors, GSH concentration has been found to be between
0.5–3 mM [57]. Gamcsik et al., categorized many different cancer tissues and the difference
in GSH levels compared to healthy tissue [58]. However, due to the high variability be-
tween the studies, the numbers have not been included in Table 3. Nevertheless, there is a
general trend towards using increased levels of GSH in cancer tissue as a trigger for drug
delivery systems.

The design of drug delivery systems sensitive to redox potential can be very versatile,
and the use of polymers for these kinds of conformations is very popular [59]. One tech-
nique used to create degradable polymeric micelles involves using amphiphilic copolymers
with a disulfide bond connecting the two blocks [60–62]. In a study by Sun et al., polymer
micelles were used to deliver doxorubicin. Micelles were synthesized by using a graft
copolymer of poly(acrylic acid)-g-poly(ethylene glycol) (PAA-g-PEG) which contains a
disulfide bond [63]. By adding this disulfide bond micelles remained assembled until
they found reductive conditions that could break the bond. Another approach for GSH-
responsive particles is the incorporation of a GSH-responsive crosslinking agent in the core
or the shell of the micelle [64]. The mechanism of how these polymeric micelles disassemble
is based on the reduction of the disulfide bond in the polymer by the interaction with GSH,
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Figure 4 [65]. The micelle destabilization can shift the hydrophobic/hydrophilic balance
promoting the fragmentation of the polymer into monomers, releasing the drug [66].
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Table 3. GSH level for different cellular environments.

Environment GSH Level

Intracellular 1–10 mM
Extracellular 1–10 µM
Brain Cancer 0.5–3 mM
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Figure 4. Disulfide bond responsive to redox potential (GSH).

Xu et al. synthesized a triblock copolymer, with a disulfide bond [22]. Doxorubicin
(an anticancer drug) was encapsulated in the polymeric system. The GSH concentration
gradient was used as a delivery trigger to achieve specificity for cancer cells. By combining
the enhanced permeability and retention effect (EPR) with the GSH gradient, particles
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delivered the drug to cancer cells. Figure 5 shows how the increase of GSH triggers the
release of doxorubicin from the particles. The highest concentration of GSH achieved the
fastest release of the drug.
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2.1.3. Thermo-Responsive

Temperature is one of the most investigated triggers for stimuli-responsive drug
delivery systems. The temperature stimulus can be internal or external. Several studies
have highlighted an increase in temperature at pathological sites and tumors because of
the abnormal blood flow, a high rate of cell proliferation, and metabolic activity. These
temperature differences between healthy and tumorous tissue can be used as a trigger
for drug delivery systems [47]. External temperature can also be applied to activate the
delivery of a drug. For instance, hyperthermia can be used as a cancer treatment where the
temperature increases to 45 ◦C at the tumor site, damaging and killing cancer cells [67].

Many different materials can be used that are temperature-responsive. However,
temperature-sensitive polymers are one of the most well-known materials. These polymers
change their structure from a shrunken to a swollen form, in response to temperature
change. The characterization of these polymers is made by the upper critical solution
temperature (UCST) or the lower critical solution temperature (LCST) [59,68–70]. The
change in the polymer conformation is activated by reaching one of those temperatures,
leading to either swelling or shrinking as shown in Figure 6.

The first polymer studied of this kind was poly(N-isopropyl acrylamide) (PNIPAM)
Figure 7. This polymer attracted the attention of researchers due to its biocompatibility
and corresponding LCST of around 32–33 ◦C in water, which is close to the temperature
of the human body [71,72]. The LCST of the polymer can be changed by shifting the
hydrophilic/hydrophobic balance by coupling it with another polymer. It has been proven
that hydrophilic compounds make the LCST behavior of the polymer disappear; therefore,
by changing the ratio of hydrophilic compounds the LCST can be shifted [73]. If the
comonomer used is hydrophobic, it increases the LCST. If the comonomer is hydrophilic,
the LCST will decrease [73,74].
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Polymers responsive to temperature have emerged in biomedicine, as a potential tar-
geted drug delivery system. Peralta et al. synthesized a temperature-responsive nanocarrier
to deliver magnetic mesoporous silica nanoparticles, based on PNIPAM [75]. Nanosilica
is a porous material that can be used to deliver drugs (in this case ibuprofen), and the
combination with PNIPAM on the surface of the particles prevents the release of the drug at
low temperatures (Figure 8). The drug release from the particles was tested at two different
temperatures, 20 ◦C, and 40 ◦C, without the grafted polymer on the surface (Figure 8A)
and with the grafted polymer on the surface (Figure 8B). When the polymer was not used,
the drug was released immediately, with no difference between the temperatures; however,
by grafting PNIPAM to the surface of the particles the release increased from 20% at a
temperature of 20 ◦C to 80% at a temperature of 40 ◦C initially, and at 40 ◦C a final release
of almost 100% of the drug was achieved.

LCST polymers are the dominant temperature-responsive polymers in drug delivery
applications; however, UCST polymers have been gaining more importance in recent
years [23,76]. Compared to commonly used LCST polymers, there are fewer polymers
that exhibit a UCST response [77]. Lin et al. synthesized a thermo-sensitive nanocarrier
based on a UCST response for doxorubicin using the insoluble fraction of multi-L-arginyl-
poly-L-aspartate (iMAPA) [78]. Additionally, iMAPA was crosslinked with hyaluronic acid
(HA) to achieve selectivity to the receptors of malignant tissue. iMAPA-HA exhibits a
phase transition in aqueous solutions becoming soluble at high temperatures with a UCST
response. Semenyuk et al. proposed the use of poly(N-acryloyl glycinamide) (PNAGA),
a UCST-responsive polymer soluble at high temperatures [79]. Figure 9 describes the
technology proposed to deliver an enzyme based on a UCST thermo responsive polymer.
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2.2. External Stimuli
2.2.1. Light-Responsive

Drug carriers that are responsive to light are attractive for drug delivery as the spa-
tiotemporal release of the encapsulated material can be controlled. Many physical and
chemical processes can be triggered by the radiation of a specific wavelength. Functional
groups sensitive to this kind of interaction have the ability to break cleavage bonds, switch
the electrostatic charge, or change the chemical conformation from cis to trans [80]. Poly-
mers incorporating these functional groups can be used as light-responsive drug delivery
systems [33,81,82].

The safe use of light in medicine is conditional on the wavelength of the light itself.
Certain wavelengths can go deeper into the body but damage healthy tissue at the same
time. Therefore, the use of far-UV light (a wavelength shorter than 200 nm) should be
excluded from these treatments due to its potential hazard. Long-UV lasers (200–400 nm),
however, can leave both the drug and tissue intact while releasing the drug from the poly-
mer [83,84]. Visible light (400–700 nm) can also be used as a trigger, but these wavelengths
are only suitable for topical treatments due to their limited penetration depth [85]. Finally,
NIR radiation (750–1000 nm) has the advantage of penetrating deeper into the tissue and
being benign [86].

UV and NIR light are, therefore, the most suitable wavelengths for light-responsive
drug delivery particles. An example of a drug delivery system using polymers sensitive to
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both UV and NIR is the research by Liu et al. which used polymer micelles for the encapsu-
lation of a drug [87]. In this study, dextran was combined with 2-diazo-1,2-naphthoquinone
(DNQ) which is a photo-triggered group activated by interaction with UV light. However,
in this study, they proved that the DNQ group can also be triggered by using NIR light
which is safer than UV. When the radiation is applied, the DNQ changes charge, resulting
in a change of the polymer from amphiphilic to hydrophilic, allowing delivery of the
drug [87].

Polydopamine (PDA) is a biopolymer used for drug delivery due to its biocompatibil-
ity, easy polymerization on the surface of particles, and its NIR-sensitive properties [88–91].
PDA exhibits a strong NIR absorption, which allows for the controlled release of encap-
sulated particles when irradiated with a laser at 750–1000 nm [25,26]. Wu et al. delivered
proteins by attaching proteins in a mesoporous PDA delivery system [92]. By applying
NIR to the system, two different types of proteins were released (Figure 10).
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2.2.2. Ultrasound-Responsive

Ultrasound is high-frequency sound waves (greater than 20 kHz) produced by me-
chanical oscillations. Ultrasound has been used in medical applications frequently because
it is a non-invasive technique that can penetrate centimeters deep into the tissue. It also has
the ability to focus on a single point with high intensity. Therefore, the use of ultrasound-
responsive polymers for drug delivery has recently been of interest to researchers [93].

High intensity focused ultrasounds (HIFU) can focus on a very small area; therefore,
historically it has been used as a tumor treatment. Nevertheless, nanocarriers based
on polymers responsive to ultrasound are beginning to be developed [94,95]. Disulfide
bonds (S-S) are mechano-labile weak bonds that respond rapidly to HIFU, improving
the ultrasound response of polymeric nanocarriers [96,97]. For example, in the research
by Li et al., a block copolymer of polylactic acid (PLA) and polyethylene glycol (PEG)
with a disulfide bond (PLA-S-S-PEG) was synthesized for drug delivery purposes [27].
Nanoparticles were then obtained by self-assembly of the copolymer, including a central
disulfide linkage to promote sensitivity to HIFU.

Papa et al. produced nanoparticle aggregates based on polylactic-co-glycolic acid
(PLGA), to carry doxorubicin [28]. The use of ultrasound triggers the separation of the
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aggregates, releasing the drug into the desired area of the body (Figure 11). For the son-
ication process, the particles were exposed to ultrasound for 3 min with an intensity of
2.2 Watt/cm2. After the sonication process, size and aggregate distribution were character-
ized using diffraction light scattering and scanning electron microscopy. After applying
ultrasound, the particles disintegrated into either single particles or smaller aggregates.
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2.2.3. Others

The previously mentioned single stimuli are those most commonly used in polymers
for drug delivery; however, other stimuli can be implemented such as magnetism and
shear force.

Magnetism could be used as an external stimuli. A magnetic PDDS has the capability
of targeting a disease site and releasing the drug when a magnetic field is applied. Several
studies have combined metallic nanoparticles with polymers for this purpose. The use of
a polymer helps with the compatibility of the particles, can incorporate an active target,
and increase the circulation time [29,30,98–100]. However, the magnetic properties of these
systems is achieved by the metallic nanoparticles, such as iron as was used in the studies
by Cao et al. [29] and García-García et al. [30] They both used polymers as a coating on the
iron nanoparticles to achieve better biocompatibility and targeting.

Shear stress is a type of mechanical force that is interesting as a target for PDDS
because it is associated with blood flow. Shear stress is commonly used as a diagnostic
tool for cardiovascular diseases. Normal shear stress in arteries is 10–70 dyn cm−2 and
1–6 dyn cm−2 in veins, while for cardiovascular pathologies or hemorrhages it increases
up to 100 dyn cm−2 [101]. Therefore, this difference can be used as an internal stimulus for
PDDS. Some micelles and polymersomes have been studied due to their ability to deform
their shape and release the drug under specific shear conditions. Rifaie-Graham et al.
synthesized polymersomes that change shape with shear stress, thereby releasing the cargo
in high shear stress conditions [31]. Shen et al. prepared micelles that are responsive to
ROS production and shear stress to treat atherosclerosis, which is a type of cardiovascular
disease [102]. However, most research on shear stress-responsive polymers has focused on
hydrogel nanoparticles because of their flexibility [101].

3. Combination of Various Stimuli for Polymers

Based on the type of environment and the response needed, different multiple-
response polymers can be synthesized: pH/temperature, pH/redox, temperature/redox,
enzyme/pH, temperature/light [103], light/redox, double pH, and temperature/pH/redox
(Table 4).
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Table 4. A summary of recent multiple responsive polymers used for particle drug delivery
systems (PDDS).

Polymer Stimuli Description Ref.

PMAEFc-ONB-PDMAEMA
poly(2-methacryloyloxyethyl ferrocenecarboxylate)-

(5-propargylether-2-nitrobenzyl
bromoisobutyrate)-poly(di-methylaminoethyl

methacrylate)

Light
pH

Temperature
Redox:

-oxidative
-reduction

pH-responsive and LCST: PDMAEMA.
Oxidation/reduction: ferrocenyl groups.

Light responsive: o-nitrobenzyl
methyl esters.

[104]

Poly[HBCEEM-b-(NIPA-r-PEGMA)] (PHNP)
2-(2-((4-

(hexyloxy)benzyloxy)carbonyl)ethylthio)ethyl
acrylate, N-isopropyl acrylamide, poly(ethylene

glycol methyl ether acrylate)

pH
Temperature

Redox

pH-responsive: HBCEEA.
Disulfide bond (S-S): redox responsive.

Temperature-responsive: NIPA and PEGMA.
[105]

Fc-DEAE-AM
poly(2-(3-(N-(2-(diethylamino)ethyl)acrylamido)-

propanoyloxy)ethyl
ferrocenecarboxylate)

Redox
pH
CO2

Redox-responsive: Fc.
pH-responsive and CO2: DEAE. [106]

PDA
Polydopamine

Light
pH

Redox (if S-S)

NIR-responsive and pH: dopamine.
Redo-responsive: incorporation of disulfide

bond (S-S).

[25,88,89,92,
107,108]

P(MEO2MA-co-OEGMA)-b-P(MAA-co-
SPMA)

Poly(2-(2-methoxyethoxy)ethylmethacrylate-co-
oligo(ethylene glycol)

methacrylate)-block-poly(methacrcid-co-
spiropyran

methacrylate)

pH
Light

Temperature

UV light-responsive: SP-MC.
pH-responsive: P(MAA-co-SPMA).

LCST: change based on monomer ratio.
[109]

PSB-block-P(NIPAM-A))
poly(sulfobetaine)-b-poly(N-isopropylacrylamide-

co-dopamine methacrylamide)
iMAPA-HA

insoluble Multi-L-arginyl-poly-L-aspartate-
hyaluronic acid

700DX-P(NIPAAm/AIPAAm-PMM)
poly(N-isopropylacrylamide)

-2-aminoisoprpylacrylamide-2-propionic-3-methyl-
maleic

PAA@PHEMA
poly(acrylic

acid)-poly(2-hydroxyethylmethacrylate)
PBM-b-ND

poly(butyl methacrylate)-b-poly(N-
isopropylacrylamide-co-N,N-dimethylacrylamide)

PMAA-b-PNIPAM
poly(methacrylic

acid)-b-poly(N-isopropylacrylamid
poly(NIPAM-co-GMA)

poly(N-isopropylacrylamid)-co-glycidyl
methacrylate

Temperature
pH

Thermo-responsive (LCST): NIPAM.
Thermo-responsive (UCST): iMAPA,

combined with
pH-responsive block:

-poly(acrylic acid) PAA,
-metal–catecholate,

-iMAPA,
-N-alkyl groups,

-PDPA,
-hydrazine units.

[78,110–115]
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Table 4. Cont.

Polymer Stimuli Description Ref.

HA-VE and PBAEss
hyaluronic acid-vitamine E

poly(β-amino ester)
mPEG-P(TPE-co-AEMA)

poly ethylene
glycol-poly(tetrapheny-lethene-co-2-azepane ethyl

methacrylate)
HA-SH-CS

thiol-hyaluronic acid-chitosan
PPZ

Polyphosphazene
PEG modified trimethyl chitosan

Polyethylene glycol-trimethyl chitosan
PAE(-ss-mPEG)-g-Chol

poly(-amino ester)-g-poly(ethylene glycol) methyl
ether-cholesterol
PEG-SS-CPT

Polyethylene glycol- disulfide bond- camptothecin

pH
Redox

Redox-responsive: disulfide bond (S-S).
pH-responsive segments:

-poly(β-amino ester),
-(PAEMA): pH > 6.8 hydrophobic, pH < 6.8

hydrophilic,
-polyelectrolyte complexes,

-cross-linked polyphosphazene,
-trimethyl chitosan,

-copolymer poly(-amino
ester)-g-poly(ethylene glycol) methyl

ether-cholesterol.

[116–122]

PEG-PEI-GEM
polyethylenimine-graft-poly(ethylene glycol)-

gemcitabine

pH
Light

Light-responsive:
photo-cleavable-o-nitrobenzyl, with a linker

of
thermosensitive: PEG–PEI.

[123]

PEO-PEtG-PEO
Poly(ethyl glyoxylate)-Poly(ethylene oxide)

Light (UV)
Redox

Redox-responsive: disulfide bond (S-S).
Light-responsive: o-nitrobenzyl moiety. [124]

BU-PPG
Uraciland-oligomeric polypropylene glycol

Temperature
Light

Light-responsive: uracil.
Thermoresponsive: oligomeric PPG. [103]

pDHPMA-DOX
poly[N-(1, 3-dihydroxypropyl)
methacrylamide]-doxorubicin

pH
Enzyme

Enzyme-responsive: Gly–Phe–Leu–Gly
(GFLG), with a linker of

pH-responsive: hydrazone bond.
[125]

Dual-responsive nanoparticles or micelles are synthesized by means of a block copoly-
mer [125–127]. Block copolymers function similarly to surfactants or dispersants. These
are molecules with short chains or hydrophilic and hydrophobic components, that form
micelles with a hydrophobic core and a hydrophilic outer shell. In solution, block copoly-
mers exist as individual polymer chains. However, once the critical micelle concentration
(CMC) is reached, they start to form micelles [128]. In some cases, block copolymers can
also form nanoparticles through kinetically controlling factors such as temperature, solvent
contents, and pH. For nanoparticles to form, the CMC should be <10−3 wt% with a free
energy change greater than 5 kT [129].

3.1. pH/Temperature-Responsive Polymers

pH/thermo-responsive polymers are the most widely studied dual-responsive poly-
mers [78,110–112,128]. Similar to the individual pH-responsive polymers and temperature-
responsive polymers, these dual-responsive polymers allow for a much more specific and
targeted environment to activate the polymer. Often, dual-responsive polymers will be for-
mulated by conjugating a pH-sensitive polymer to a thermo-sensitive polymer [130]. How-
ever, some have used a mixture of the two different classes of sensitive polymers [131]. The
most common building block for thermo-responsiveness is poly(N-isopropylacrylamide)
(PNIPAAm) [132]. This particular polymer can go from a water-soluble state to a water-
insoluble state through an LCST transition. The building blocks for pH-responsiveness are
often polymers such as weak acids, acrylic acids, poly[2-(diisopropylamine)ethyl methacry-
late] (PDPA), and chitosan [113,131,133,134]. Once mixed, they follow the same process of
a normal block copolymer to create micelles or nanoparticles.
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pH and temperature-responsive polymers are frequently proposed for potential cancer
therapies since the tumor environment has an increased temperature and a decreased
pH [135–137]. In the research of Zhang et al., the effectiveness of nanoparticles made from a
block copolymer of thermo-responsive hydrophilic poly(N-isopropylacrylamide-co-acrylic
acid) [P(NIPAM-co-AAc)] and a hydrophobic polycaprolactone (PCL), was explored [134].
[P(NIPAM-co-AAc)] is a common polymer used for thermo-sensitive applications and
PCL was chosen for its good drug encapsulation properties. This study showed that the
nanoparticles released the encapsulated drug much faster at higher temperature and lower
pH conditions, as are commonly seen in the tumor environment [134].

Zheng et al. created nanoparticles using another pH and thermo-responsive copoly-
mer consisting of poly(methacrylic acid) (PMAA) and poly(N-isopropylacrylamide) (PNI-
PAM) [115]. PMAA is sensitive to pH while PNIPAM is sensitive to temperature. These
nanoparticles were loaded with doxorubicin (DOX), a common chemotherapy drug. Through
experimentation, it was found that these particles released the DOX in acidic environments.
This phenomenon was due to the electrostatic attraction between DOX (positively charged)
and the polymer (negatively charged). This interaction prevented the release at neutral pH.
However, the protonation of the carboxylic groups of the polymer at acidic pH weakened
the interaction between DOX and the polymer, allowing for the release of the drug. The
release rate was observed to be even faster when the temperature was increased above
the LCST. Pourjavadi et al. used N-isopropylacrylamide (NIPAM) co-polymerized with
glycidyl methacrylate (GMA), a common monomer that contains an epoxy ring, to form a
copolymer of poly(NIPAM-co-GMA) (PNG) [114]. This combination of polymers provides
a pH and thermo-sensitive release (Figure 12). The decrease of the pH combined with
the increase in temperature to a physiological level produces a higher cumulative release,
which is selective for body temperature and the pH of the endosomes.
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coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery,
110418, Copyright (2020), with permission from Elsevier.

3.2. pH/Redox-Responsive Polymers

Because redox reactions and differences in pH occur naturally in the body, these two
stimuli are very appealing for drug delivery applications [133]. These types of polymers
have been created for a myriad of applications, such as enhancing drug delivery and tumor
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cell uptake, creating a faster drug release rate within the cytoplasm and nucleus, and
further stabilizing the stability of nanoparticles in vivo [116,133].

Bahadur et al. conjugated polyethylene glycol and cyclo(Arg-Gly-Asp-d-Phe-Cys)
(cRGD) peptide to poly(2-(pyridin-2-yldisulfanyl)ethyl acrylate) (PDS) to create an RPDSG
polymer [138]. Nanoparticles were created with this copolymer and DOX was encapsulated
inside the nanoparticles. To induce a redox reaction, varying amounts of GSH were used in
the experiment. It was found that the concentration of GSH within the extracellular fluid
is less than 0.01 mM and is 1–11 mM intracellularly. After experimentation in different
pH values and with different concentrations of GSH, the DOX release rate was found to
be much slower at higher pH values. Under acidic conditions, the ester bonds of PDSG
can be hydrolyzed to produce a faster release rate than at neutral pH, and therefore a
faster release rate was achieved at pH 5.5 than at pH 7.4. Moreover, the amount of DOX
released was observed to increase with a higher concentration of GSH. Mahmoud et al.
took advantage of the characteristic inflammation caused by infections, cancer, or other
diseases as inflamed tissues have a decreased pH as well as having reactive oxygen species
present [139]. Mahmoud et al. synthesized polymeric nanoparticles that incorporate a
thioether moiety into the polymer backbone [139]. In this study, they created environments
that simulated healthy tissue and infected tissue with differences in pH and redox potential.
It was found that the particles subjected to a pH of 5 in the presence of H2O2 were the only
ones to disperse and degrade.

In recent years, the combination of GSH concentration and pH has gained impor-
tance in the drug delivery field [117–120,122,140]. Wang et al. created dual-responsive
polymeric nanoparticles based on pH and GSH concentration to deliver multiple drugs
in cancerous environments [121]. The disulfide bond connecting poly(ethylene glycol)
(PEG) and camptothecin (CPT), a chemotherapeutic drug, allows for the release at high
concentrations of GSH (Figure 13), while the NH-N bond between PEG and doxorubicin
(DOX), another chemotherapeutic drug, allows for the breaking of the hydrazine bond in
acidic environments.

Pharmaceutics 2022, 14, x FOR PEER REVIEW 15 of 24 
 

 

redox potential. It was found that the particles subjected to a pH of 5 in the presence of 
H2O2 were the only ones to disperse and degrade.  

In recent years, the combination of GSH concentration and pH has gained importance 
in the drug delivery field [117–120,122,140]. Wang et al. created dual-responsive poly-
meric nanoparticles based on pH and GSH concentration to deliver multiple drugs in can-
cerous environments [121]. The disulfide bond connecting poly(ethylene glycol) (PEG) 
and camptothecin (CPT), a chemotherapeutic drug, allows for the release at high concen-
trations of GSH (Figure 13), while the NH-N bond between PEG and doxorubicin (DOX), 
another chemotherapeutic drug, allows for the breaking of the hydrazine bond in acidic 
environments.  

 

Figure 13. A schematic illustration of the configuration of the nanocarrier, based on double sensitive 
polymers with NH-H bonds and S-S bonds [121]. Reprinted from Colloids and Surfaces B: Biointer-
faces, 205, N. Wang et al., A Traceable, GSH/PH Dual-Responsive Nanoparticles with Spatiotempo-
rally Controlled Multiple Drugs Release Ability to Enhance Antitumor Efficacy, 111866, Copyright 
(2021), with permission from Elsevier. 

3.3. Double-pH-Responsive Polymers  
Not only can polymers be made with responses to different stimuli, but they can also 

be fabricated to respond to the same stimuli but at different values. Polymers like this 
respond to stimuli similar to an “AND” logic gate [141]. The second event will only occur 
once the first event has happened. Double pH-responsive polymers are an example of this 
type of technology. A polymer capable of responding to two different pH values, PPC-
Hyd-DOX-DA, was synthesized by Du et al. and made into DOX encapsulated nanopar-
ticles [142]. This nanoparticle changes its surface charge from negative to positive when 
exposed to the pH of a tumor environment (~6.8). This change in surface charge encour-
ages cellular internalization by the tumor cells. Once inside the endosome, the pH (~5.0) 
triggers DOX release within the cell [142]. This technique helps ensure that drugs targeted 
for tumors are specifically within the site before subsequent release. 

Another example of a dual pH-responsive polymer is poly([2,2′-(propane-2,2-
diylbis(oxy))bis(ethane-2,1-diyl) diacrylate]-co-[hexane-1,6-diyl diacrylate]-4,4′-tri-
methylene dipiperidine), (poly-β-aminoester ketal) [141]. When the pH is decreased, the 
tertiary amines in the backbone of this polymer are protonated, switching the polymer 
from hydrophobic to hydrophilic. This then leads to an increase in water uptake which 
causes bulk dissolution, which then triggers ketal hydrolysis causing surface degradation. 
These particles are stable at physiological pH but degrade at a pH of 5, subsequently re-
leasing the contents of the nanoparticle.  

3.4. Multiple-Stimuli-Responsive Polymers 
There has been a trend in recent years to incorporate the potential for many stimuli 

to trigger the drug release by a carrier to a specific disease site [90,106,107,109,123,124]. 
Poddar et al. synthesized a triple-stimuli-responsive polymer to achieve the release of a 

Figure 13. A schematic illustration of the configuration of the nanocarrier, based on dou-
ble sensitive polymers with NH-H bonds and S-S bonds [121]. Reprinted from Colloids and
Surfaces B: Biointerfaces, 205, N. Wang et al., A Traceable, GSH/PH Dual-Responsive Nanoparticles
with Spatiotemporally Controlled Multiple Drugs Release Ability to Enhance Antitumor Efficacy,
111866, Copyright (2021), with permission from Elsevier.

3.3. Double-pH-Responsive Polymers

Not only can polymers be made with responses to different stimuli, but they can
also be fabricated to respond to the same stimuli but at different values. Polymers like
this respond to stimuli similar to an “AND” logic gate [141]. The second event will only
occur once the first event has happened. Double pH-responsive polymers are an example
of this type of technology. A polymer capable of responding to two different pH values,
PPC-Hyd-DOX-DA, was synthesized by Du et al. and made into DOX encapsulated
nanoparticles [142]. This nanoparticle changes its surface charge from negative to positive
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when exposed to the pH of a tumor environment (~6.8). This change in surface charge
encourages cellular internalization by the tumor cells. Once inside the endosome, the pH
(~5.0) triggers DOX release within the cell [142]. This technique helps ensure that drugs
targeted for tumors are specifically within the site before subsequent release.

Another example of a dual pH-responsive polymer is poly([2,2′-(propane-2,2-
diylbis(oxy))bis(ethane-2,1-diyl) diacrylate]-co-[hexane-1,6-diyl diacrylate]-4,4′-trimethylene
dipiperidine), (poly-β-aminoester ketal) [141]. When the pH is decreased, the tertiary
amines in the backbone of this polymer are protonated, switching the polymer from hy-
drophobic to hydrophilic. This then leads to an increase in water uptake which causes
bulk dissolution, which then triggers ketal hydrolysis causing surface degradation. These
particles are stable at physiological pH but degrade at a pH of 5, subsequently releasing
the contents of the nanoparticle.

3.4. Multiple-Stimuli-Responsive Polymers

There has been a trend in recent years to incorporate the potential for many stimuli
to trigger the drug release by a carrier to a specific disease site [90,106,107,109,123,124].
Poddar et al. synthesized a triple-stimuli-responsive polymer to achieve the release of a
drug under the conditions of pH 5, 40 ◦C, and GSH ≥ 10 mM [106]. In this study, they
synthesized two different polymers, 2-(2-((4-(hexyloxy)benzyloxy)carbonyl)ethylthio)ethyl
acrylate (HBCEEA), which is sensitive to pH, and the copolymer of N-isopropyl acrylamide
(NIPA) and poly(ethylene glycol methyl ether acrylate) (PEGMA), which is sensitive to
temperature and redox potential. The combination of these polymers creates the triple-
responsive polymer poly[HBCEEM-b-(NIPA-r-PEGMA)] (PHNP) [105]. The drug release
from the polymer is much faster in the presence of all three stimuli, as shown in Figure 14.
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Reactive and Functional Polymers, 154, P. Poddar et al., Synthesis of a New Triple-Responsive
Biocompatible Block Copolymer: Self-Assembled Nanoparticles as Potent Anticancer Drug Delivery
Vehicle, 104679, Copyright (2020), with permission from Elsevier.

Lei et al. used mesoporous silica as the nanocarrier for doxorubicin and coated
the particles with polydopamine [108]. As previously discussed, polydopamine (PDA) is
highly sensitive to NIR, and with the incorporation of a disulfide bond, the particles became
responsive to pH and GSH as well, achieving a multi-stimuli-responsive drug carrier. As
shown in Figure 15A, mesoporous silica-disulfide bond-polydopamine (MSN-SS-PDA)
and in Figure 15B, mesoporous silica-polydopamine (MSN-PDA), the incorporation of
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a disulfide bond increases the release rate when exposed to a low pH and high GSH.
Moreover, when combined with NIR the highest cumulative release rate is observed at
acidic pH combined with GSH (Figure 15D) as opposed to the neutral pH with GSH
(Figure 15C), proving the multi-stimuli nature of the particles [108]. The use of an acidic
pH degrades the polydopamine that coats the silica particles, allowing for a faster release
of the drug.
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and (D) MSN-S-S-PDA NIR pH 5 [108]. Reprinted from Materials Science and Engineering C, 105,
W. Lei et al., Polydopamine-Coated Mesoporous Silica Nanoparticles for Multi-Responsive Drug
Delivery and Combined Chemo-Photothermal Therapy, 110103, Copyright (2019), with permission
from Elsevier.

Furthermore, Zhang et al. synthesized a quintuple-stimuli-responsive nano-
carrier based on the self-assembly of an amphiphilic diblock copolymer [104]. The
conjugation of poly(2-methacry-loyloxyethyl ferrocenecarboxylate)-(5-propargylether-2-
nitrobenzylbromoisobutyrate)-poly(dimethylaminoethyl methacrylate) (PMAEFc-ONB-
PDMAEM), allows for the release of the drug based on temperature, pH, light, oxidation,
and reduction.

4. Conclusions and Future Research

Stimuli-responsive polymer particles have become a trend in the drug delivery field
due to the potential to trigger the release of drugs at specific sites, owing to changes in the
environment. Specifically, in cancer research, stimuli-responsive polymer particles have
become important because of the great divergence between the environment of healthy
tissue and cancer tissue. In this review, many of the different stimuli that can be used
to trigger the release of drugs have been studied and discussed. The current trend in
stimuli-responsive PDDSs is to combine two or more stimuli. We explored the recent
combinations that have been studied such as pH/temperature, pH/redox, light/pH, etc.,
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as summarized in Table 4. Taking a more synergistic approach to the use of polymers in
PDDSs, a combination of different stimuli would increase the specificity of delivery and
maximize the dosage release at the tumor site.

Currently, only simple polymeric drug delivery systems, such as PLGA particles, are
available commercially. There is a significant opportunity in the market for more complex
drug delivery systems such as those using responsive polymers. A few startup companies
exist that are exploring the potential of stimuli-responsive particles for drug delivery
applications; however, there are many challenges to overcome in taking these products
to market. For instance, although using stimuli-responsive polymer particles has many
advantages for drug delivery, not many have been tested in vivo. In fact, the combination of
multiple stimuli in particles has not been tested in clinical trials at all, and only a few have
been used in animal studies [102,143,144]. The increase in the complexity of multiple stimuli
particles creates a significant hurdle in terms of the practical application of these particles
in animal studies and eventually clinical trials. In addition, the stringent requirements as
to reproducibility of particles in drug delivery systems will require fastidious production
methods. Therefore, more research is needed to address the complexity in producing
multiple stimuli particles, as this complexity hinders the commercial application of these
types of particle systems.
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