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Abstract: Our previous studies have revealed the ultrasmall superparamagnetic iron oxide in the
amine group USPIO-101 has an analgesic effect on inflammatory pain. Here, we further investigated
its effect on the spinal cord and brain via electrophysiological and molecular methods. We used a
mouse inflammatory pain model, induced by complete Freund’s adjuvant (CFA), and measured pain
thresholds via von Frey methods. We also investigated the effects of USPIO-101 via an extracellular
electrophysiological recording at the spinal dorsal horn synapses and hippocampal Schaffer collateral-
CA1 synapses, respectively. The mRNA expression of pro-inflammatory cytokines was detected by
quantitative real-time polymerase chain reaction (RT-qPCR). Our results showed intrathecal USPIO-
101 produces similar analgesic behavior in mice with chronic inflammatory pain via intrathecal or
intraplantar administration. The potentiated low-frequency stimulation-induced spinal cord long-
term potentiation (LTP) at the spinal cord superficial dorsal horn synapses could decrease via USPIO-
101 in mice with chronic inflammatory pain. However, the mRNA expression of cyclooxygenase-2
was enhanced with lipopolysaccharide (LPS) stimulation in microglial cells, and we also found
USPIO-101 at 30 µg/mL could decrease the magnitude of hippocampal LTP. These findings revealed
that intrathecal USPIO-101 presented an analgesia effect at the spinal cord level, but had neurotoxicity
risk at higher doses.

Keywords: ultrasmall magnetic iron oxide nanoparticles; inflammatory pain; analgesia; pro-inflammatory
cytokines; neurotoxicity; long-term potentiation

1. Introduction

The therapeutic application of iron oxide nanoparticles has been developing over
the years. Currently, the commercialized product of iron oxide nanoparticles are used
for the treatment of cancer and iron-deficiency anemia [1,2]; however, a lesser known
use for iron oxide nanoparticles is pain management. The ongoing nanoparticle-based
therapeutics in pain management [3] have several advantages for chronic pain relief, for
example, controlled release, prolonged circulation time, and limited side effects [4].

Our previous study revealed a form of amine-terminated (-NH2) ultrasmall super-
paramagnetic iron oxide (USPIO) called USPIO-101, which has an analgesic effect on
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inflammatory pain [5]. This analgesic response probably happens by attenuating inflamma-
tory cell infiltration and reducing reactive oxygen species (ROS) production in the paw [5].
However, this was the first report to demonstrate that USPIO itself could have analgesic
ability not in conjugation with other pain-relieving drugs.

Spinal cord synaptic plasticity is an in vitro, cellular, molecular model for pain [6].
Long-term potentiation (LTP) at the superficial dorsal horn synapses could also represent
the nociceptive nerve signal. On the contrary, the decreased LTP level could stand for
the analgesic effect of the treated compound or anti-allodynia signal [7]. However, less is
known about the analgesic effect of USPIO-101 in the spinal cord via electrophysiological
evidence. Here, we use in vitro extracellular recording to measure the effect of USPIO-101
on the spinal LTP to demonstrate the analgesic effect of USPIO-101 on the spinal cord.

Before developing the application of USPIO-101, one crucial indication was to lower
cell cytotoxicity. In addition, USPIO-101 in a small size could probably interfere with
normal body function via crossing the blood–brain barrier [8]. Therefore, the cytotoxicity of
USPIO-101 is unclear. However, some reports have revealed the cytotoxicity of other types
of USPIO. For example, the acute intravenous (iv.) injection of USPIO caused thrombosis,
cardiac oxidative stress, and DNA damage in mice [9]. Furthermore, USPIO also triggered
interleukin (IL)-6-related acute-phase inflammation [10] with a mechanism of endoplasmic
reticulum (ER)-mitochondria Ca2+ crosstalk, which was mediated by cyclooxygenase-2
(COX-2) [11] in hepatocytes. Finally, superparamagnetic iron oxide (SPIO) administration,
either locally or systemically, gave an acute inflammatory response [12]. These reports
inspired us to consider that USPIO-101 could probably have neurotoxicity in neuronal
cells. Thus, we investigated the toxicity of USPIO-101 in neuron-like or microglial cells via
measuring the ROS production or mRNA expression of pro-inflammatory cytokines in the
present study.

Synaptic plasticity is fundamental to many neurobiological functions, including mem-
ory and pain [13]. Moreover, the hippocampus’s long-lasting potentiated synaptic field
potentials are a proposed cellular mechanism for memory [14]. Here, we examined the
toxicity effect of USPIO-101 on hippocampal LTP, which represented a higher level of
neurobiological functions via in vitro extracellular recording at Schaffer collateral/CA1
synapses.

In this study, we revealed further analgesic evidence for using USPIO-101 at the spinal
cord and the possible neurotoxicity that should be concerned for future application.

2. Materials and Methods
2.1. Drugs and Administration

The amine-terminated (-NH2) iron oxide nanoparticles (Fe3O4 NPs) were commer-
cially purchased from TANBead (USPIO-101, Taiwan Advanced Nanotech Inc., Taoyuan,
Taiwan), and the stock concentration was 10 mg/mL. For behavioral tests, the intrathecal
or intraplantar injection, the stock solution was used in a volume of 10 µL. For in vitro
electrophysiological study, 1000X dilution was used for perfusion.

2.2. The Particle Size, Zeta Potential, and Surface Group Measurement of Iron
Oxide Nanoparticles

The particle size distribution and zeta potential were measured by dynamic light
scattering (DLS) (Beckman Coulter DelsaTM Nano instrument, CA, USA) with deionized
water (ddH2O) as the solvent. Fourier transform infrared (FTIR) spectra analyzed the
surface group of the iron oxide nanoparticles via Nicolet FTIR spectrometers (Thermo
Scientific, MA, USA) in the range 500–4000 cm−1 using a resolution of 1 cm−1 and 10 scans.
In advance of testing, the particles were placed in an oven (60 ◦C) overnight to remove
water and then ground with potassium bromide (KBr) powder to increase the absorption
of infrared light and eventually pressed to obtain self-supporting discs.
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2.3. Animal

Male ICR mice were used in all the experiments: for spinal cord slices electrophys-
iological recording, we used 4~6-week-old mice; others were 6~8-week-old mice. All
animals were purchased from Bio-LASCO Inc. (Taipei, Taiwan). Mice were housed 4~5 per
cage under 12 h light/dark controlled (AM/PM 7:00) with free access to food and water.
The animals used for electrophysiological recording were housed in the NHRI laboratory
animal center and approved by the NHRI laboratory animal center. The animals used
for the behavioral test were housed and performed in National Cheng Kung University
(NCKU) Laboratory Animal Center and approved by NCKU Medical College Animal Care
Guidelines.

2.4. CFA Inflammatory Pain Model and Behavior Tests

CFA (complete Freund’s adjuvant; Sigma-Aldrich, Saint Louis, MO, USA) or saline
10 µL were injected into the plantar surface of the left hind paw to induce an inflammatory
pain model [5]. Mice were placed in individual test boxes for the mechanical pain sensitivity
test. Mice were habituated for at least two days in the testing environment daily for one
hour. Before the examination, at least one hour of habituation was necessary. A series of
von Frey hairs with logarithmically increasing stiffness (0.02–2.56 g, Stoelting, Wood Dale,
IL, USA), perpendicular to the plantar surface of the left hind paw was applied for 1 s,
until it buckled. We marked a positive response if the animal exhibited any nocifensive
behaviors after removing the filament, including quick paw withdrawal, licking, or shaking
the paw. The first filament was chosen to be close to the 50% withdrawal threshold. If
there was no response, the next filament was a higher force; if there was a response, the
next filament was a lower force. This continued until at least four readings were obtained
after the first change of direction [15]. The analysis of the 50% paw withdrawal threshold
was determined using the Dixon up–down method and calculated using the formula: 50%
threshold (g) = 10(X+kd)/104, where X = the value (in log units) of the final von Frey filament,
k = tabular value for the response pattern (see Appendix 1 in [16]) and d = the average
increment (in log units) between von Frey filaments [16].

2.5. Electrophysiological Recordings
2.5.1. Spinal Cord Slice

Transverse spinal cord slices (350 µm) were dissected as described previously with
modifications [17,18]. Mice were sacrificed with overdose isoflurane and transcardial
perfusion with cold artificial cerebral spinal fluid (aCSF) immediately; then, the spinal cord
was removed from the spinal column. After dissection of the spinal cord pia-arachnoid
membrane in cold aCSF, the spinal cord’s lumbosacral enlargement (L1–S3) was maintained.
Then, we collected spinal cord slices from the L4~L6 region with a vibratome (DTK1000,
Dosaka) and equilibrated slices at room temperature for at least one hour before recording.
The aCSF consisted of (mM): NaCl 117, KCl 4.5, CaCl2 2.5, MgCl2 1.2, NaH2PO4 1.2,
NaHCO3 25 and glucose 11, and was oxygenated with 95% O2/5% CO2 (pH 7.4).

We recorded the field excitatory postsynaptic potentials (fEPSPs) at the spinal cord
superficial dorsal horn synapses of the mouse spinal cord slices with a continuously
perfused oxygenated aCSF at 1~2 mL/min. Glass pipettes (resistance, 5~8 MΩ) were filled
with aCSF. Then, according to Terman’s report [19], we determined the position of the
stimulating electrode and the recording glass pipette. First, the stimulating electrode was
attached to the spinal cord slice’s dorsal root remnant; second, the recording glass pipette
was placed on the superficial dorsal horn area of the spinal cord slice. Signal acquisition was
measured by Multiclamp 700B amplifier (Molecular Devices) and sampled by pCLAMP
10.2 and an analog-to-digital converter (Digidata 1322A), filtered at 2~5 kHz, digitized at
10 kHz, and stored for off-line analysis.

The stimulation signals were sequentially evoked (Grass S88) for thirty seconds, once,
with a 0.5-ms pulse. Low-frequency stimulation (2 Hz, 120 s) was applied to induce long-
term potentiation (LTP). The baseline of fEPSP was obtained 10 min from the beginning,
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and the slope of fEPSPs was normalized by the calculated average slope of 20 fEPSPs. The
magnitude of LTP was the average slope of the last 20 fEPSPs recorded after high-frequency
stimulation for 30 to 40 min. Each fEPSP was collected and analyzed by Clampfit software.
Every mouse used 1~3 spinal cord slices for recording.

2.5.2. Hippocampal Slice

Coronal hippocampal slices (400 µm) were dissected as described previously with
modifications [20]. Mice were sacrificed with overdose isoflurane and decapitated immedi-
ately, then the brain was transferred to cold aCSF. After dissection, slices were equilibrated
at room temperature for two hours before recording.

The recorded fEPSPs were evoked on the Schaffer collateral fiber path and detected in
the apical dendritic field (the stratum radiatum) in the CA1 region in each hippocampal
slice. Basal stimulation was given at 0.03 Hz by constant current pulses (0.2 ms). LTP
was induced by theta-burst stimulation (TBS), which contained three trains of five bursts
separated by 300 ms, with each burst consisting of ten pulses at 100 Hz. The baseline of
fEPSP was obtained before TBS and maintained for at least 10 min. The magnitude of LTP
was calculated by the average slope of 20 fEPSPs recorded after TBS 30 to 40 min. Every
mouse used 1~3 brain slices for recording. Signal acquisition and analysis were similar to
spinal cord slices.

2.6. ROS Levels

The human neuroblastoma SH-SY5Y cells, and mouse SM826 microglia cell line, were
cultured in DMEM growth medium (Gibco) supplemented with 10% fetal bovine serum
(FBS, BI) and 0.1% penicillin/streptomycin (Gibco). Cells were incubated at 37°C in an
atmosphere containing 5% CO2.

An OxiSelect intracellular ROS assay kit (Cell Biolabs, San Diego, CA, USA) was
used to measure the ROS levels in the SH-SY5Y and SM826 cells, respectively. Cells
were seeded into 96-well plates (4 × 104 cells/well) and incubated for 16 h at 37°C. The
SH-SY5Y cells were incubated with 2,7-Dichlorodihydrofluorescein diacetate (DCFH-DA)
0.05 mM/serum-free medium for 60 min at 37°C. DCFH-DA medium was removed and
treated with USPIO-101 (10 or 30 µg/mL), H2O2 1 mM for 30 min, or H2O2 0.2 mM for
24 h stimulation. The SM826 cells were treated with USPIO-101 (10 or 30 µg/mL), or LPS
(1 µg/mL) for 24 h, and then incubated with DCFH-DA (0.05 mM, 60 min)/serum-free
medium. All cells had lysis buffer added 5 min before reading the fluorescence and were
analyzed by a fluorometric microplate reader (SpectraMax M2) at 480 nm/530 nm.

2.7. Assay of mRNA Expression

Total RNA was extracted via GENEzolTM TriRNA Pure Kit (Geneaid, New Taipei
City, Taiwan) following the manufacturer’s instructions. Total RNA (500 ng) was utilized
for the reverse-transcription polymerase chain reaction (RT-PCR) by Thermo ScientificTM

RevertAid RT Reverse Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA).
The RNA and cDNA products were stored at -80°C before the following experimental
procedure.

The mRNA expression levels were determined by real-time quantitative polymerase
chain reaction (RT-qPCR). The Applied BiosystemsTM StepOnePlus™ Real-Time PCR
System and StepOneTM Software v2.3 (Thermo Fisher Scientific, Taiwan) were used. The
reagent was Thermo ScientificTM Luminaris Color HiGreen qPCR Master Mix (2X) high
ROX and Yellow Sample Buffer (40X) (Thermo Fisher Scientific, Waltham, MA, US). The
RT-qPCR conditions were initial denaturation, 95 ◦C for 15 s; annealing, 60 ◦C for 30 s;
extension, 72 ◦C for 30 s; 40 cycles.

The primers were synthesis from MISSION BIOTECH CO., LTD., Taiwan. The relative
mRNA expression was determined by the 2−∆∆Ct method using GAPDH (glyceraldehyde-
3-phosphate dehydrogenase) as a normalization control.
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Forward and reverse primer sets for each cDNA were used as follows: 5′-ATCTCATAC
CAGGAGAAAGTCAACCT-3′ and 5′-TGGGCTCATACCAGGGTTTG-3′ (for TNF-α); 5′-
GCTGCCAAAGAAGGACACGACA-3′ and 5′-GGCAGGCTATTGCTCATCACAG -3′ (for
NF-kB); 5′-GGCCATGGAGTGGACTTAAA-3′ and 5′-CACCTCTCCACCAATGACCT-3′

(for COX-2); 5′-TGTGTCCGTCGTGGATCTGA-3′ and 5′-GATGCCTGCTTCACCACCTT-3′

(for GAPDH).

2.8. Statistical Analysis

All results are expressed as the mean ± SEM (standard error of mean). Electrophys-
iological results, ROS level, or mRNA expression were analyzed by one-way analysis of
variance (ANOVA) followed by Newman–Keuls multiple comparisons test for post-hoc
analyses. Behavioral results were analyzed with repeated-measure two-way ANOVA fol-
lowed by Tukey tests for post-hoc analyses. The criterion for statistical significance was
p < 0.05 when compared with each group.

3. Results
3.1. The Particle Size, Zeta Potential, and Surface Group Analysis of USPIO-101

Before the following experiments, the commercialized USPIO-101 measured its par-
ticle size, zeta potential, and surface group (Figure 1). The hydrodynamic diameter of
USPIO-101 was 63.3 ± 2.3 nm; polydispersity index was 0.43 ± 0.58; zeta potential was
36.8 ± 0.6 mV (triple measurements, mean ± standard error, Figure S1). Next, we mea-
sured the surface group of USPIO-101 via FTIR. The spectra of FTIR represented that the
–NH2 group expressed in the surface of USPIO-101 at the wavelength of 3300~3500 cm−1

or 1560~1640 cm−1. In addition, we also measured the positive control of the surface
group –COOH at the wavelength of 1550~1610 cm−1 (Figure 1C). This result revealed that
USPIO-101 majorly expressed –NH2 surface group.
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Figure 1. The dynamic light scattering (DLS), zeta potential analysis, and Fourier transform infrared
spectroscopy (FTIR) spectra of ultrasmall magnetic iron oxide nanoparticles. (A) number distribution
of USPIO-101, as measured by DLS. The concentration of USPIO-101 was 1 mg/mL. (B) Zeta potential
analysis of USPIO-101. (C) Fourier transform infrared (FTIR) spectra are presented for USPIO-101
(black) and USPIO-102 (red), respectively. The -NH2 and -CH2 group signals are expressed in USPIO-
101 at the wavelength of 3300~3500 cm−1, 1560~1640 cm−1, or 1405~1465 cm−1 (arrow). The -COOH
group signal is expressed in USPIO-102 at the wavelength of 1550~1610 cm−1 (arrow).

3.2. USPIO-101 Alleviated the Allodynia Behavior via Intrathecal or Intraplantar Injection in Mice
with Chronic Inflammatory Pain

The analgesic effect of USPIO-101 was measured in mice with chronic inflammatory
pain via different administration routes, intrathecal or intraplantar injection. After paw
injection of CFA for four days, the mice showed decreased paw withdrawal thresholds.
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Both intrathecal (Figure 2A, PBS: 0.28 ± 0.02, USPIO-101: 2.1 ± 0.16 at 1.5 h, p < 0.05,
two-way ANOVA and Bonferroni’s multiple comparisons) and intraplantar (Figure 2B,
PBS: 0.29 ± 0.0, USPIO-101: 2.0 ± 0.15 at 1.5 h, p < 0.05, two-way ANOVA and Bonfer-
roni’s multiple comparisons) injection of USPIO-101 (10 mg/mL, 10 µL) attenuated paw
withdrawal thresholds.
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Mechanical pain sensitivity was measured using von Frey microfilaments. USPIO-101 attenuated the
analgesia behavior in both (A) intrathecal and (B) intraplantar injection (10 mg/mL, 10 µL) after CFA
paw injection for four days. The paw withdrawal thresholds were measured every 30 min until there
was no difference between the three groups. Data were analyzed by two-way ANOVA and post-hoc
with Tukey’s test. *: p < 0.05 vs. PBS sham group.

3.3. USPIO-101 Decreased the Spinal Cord LTP at Spinal Cord Superficial Dorsal Horn Synapses
in Mice with Chronic Inflammatory Pain and Naïve Mice

The potentiated spinal cord LTP at the spinal cord superficial dorsal horn synapses
could stand for hyperalgesia [21]. The mice with chronic inflammatory pain showed
the potentiated spinal cord LTP at the spinal cord superficial dorsal horn synapses was
significantly higher than the control group (p < 0.05, t-test vs. saline-treated ipsilateral)
(Figure 3A,C).

The concentration effect of USPIO-101 was tested on the LFS-evoked LTP at the su-
perficial spinal dorsal horn in the spinal cord slices of mice with chronic inflammatory
pain. USPIO-101 (10 or 30 µg/mL) was applied 7.5 min before LFS induction. The magni-
tude of LTP was significantly decreased in the treatments of 10 or 30 µg/mL (p < 0.01 or
p < 0.05, one-way ANOVA vs. control), as shown in Figure 3D~3F. However, there was
no concentration-dependent effect between 10 or 30 µg/mL (p > 0.05, t-test, 10 µg/mL vs.
30 µg/mL).

In the other part, we also tested the analgesic effect of USPIO-101 in naïve mice
with the basal transmission or LFS-evoked LTP at the superficial spinal dorsal horn slices.
No difference was observed in the basal transmission of naïve mice spinal cord slices
when 10 µg/mL USPIO-101 was applied for 15 min (Figure 4A,B). However, USPIO-101
significantly inhibited the LTP in naïve mice spinal cord slices (Figure 4C,E). For USPIO-101
(10 µg/mL) applied 7.5 min before LFS induction, the magnitude of LTP significantly
decreased in the treatment of USPIO-101 when compared with the control group (p < 0.05,
Figure 4E).
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Figure 3. The effect of USPIO-101 on spinal cord LTP in CFA paw-injected mice. (A) Time courses of
the slope of fEPSPs recorded before and after low-frequency stimulation (LFS, arrow) in spinal cord
slices from CFA- or saline-treated mice. (C) The bar graph represents the magnitudes of potentiation,
which averaged 20 fEPSPs recorded 30~40 min after LFS. **: p < 0.01 (unpaired t-tests) vs. CFA-treated
ipsilateral group. (D) Time courses of the slope of fEPSPs recorded before and after LFS (arrow) in
spinal cord slices from CFA-treated mice with USPIO-101 (10 or 30 µg/mL), respectively. USPIO-
101 (10 or 30 µg/mL) applied for 7.5 min before LFS stimulation, respectively. (F) The bar graph
represents the magnitudes of potentiation, which averaged 20 fEPSPs recorded 30~40 min after LFS
at a concentration of 10 or 30 µg/mL. * or **: p < 0.05 or p < 0.01 vs. control group (one-way ANOVA).
(B,E) Twenty recorded fEPSPs at time points a and b were averaged in each group. The slope of each
fEPSP was expressed as % of the baseline fEPSP slope, which was the average of 20 fEPSPs at the
beginning of 10 min recording. n indicates the number of slices recorded.

These results revealed that USPIO-101 had an analgesic effect on inflammatory pain
in the spinal cord through electrophysiological evidence.

3.4. Effects of USPIO-101 on Intracellular ROS Levels

The iron oxide nanoparticle penetrates the cell and produces ROS [22], and the ele-
vation of ROS induces neurotoxicity [23]. The ROS production ability of USPIO-101 was
measured in neuron-like or microglial cells (SH-SY5Y or SM826 cells). Hydrogen perox-
ide (H2O2) was used as a positive control in SH-SY5Y cells for short (1 mM, 30 min) or
long (0.2 mM, 24 h) stimulation, and compared to two USPIO-101 concentrations (10 or
30 µg/mL) as shown in Figure 5A,B. The intracellular ROS levels were only significantly
increased in the group of H2O2 (p < 0.05, one-way ANOVA, vs. control, Figure 5A,B). In
SM826 cells, USPIO-101 (10 or 30 µg/mL) did not induce significant elevation of ROS when
compared with the control (p < 0.05, one-way ANOVA, vs. control, Figure 5C). The ROS
level of co-treatment of LPS and USPIO-101 was close to the group of LPS alone (positive
control, p > 0.05, one-way ANOVA, vs. LPS, Figure 5C) and significantly higher than the
control (p < 0.05, one-way ANOVA, vs. control, Figure 5C).
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Figure 5. Intracellular reactive oxygen species level after treatment with USPIO-101 in SH-SY5Y or
SM826 cells. (A,B) Hydrogen peroxide (H2O2) as positive control and USPIO-101 (10 or 30 µg/mL)
were used in SH-SY5Y cells for 30 min (A, H2O2 1 mM) and 24 h (B, H2O2 0.2 mM), respectively. (C)
Lipopolysaccharide (LPS) 1 µg/mL as positive control and USPIO-101 (10 or 30 µg/mL) were used
in SM826 cells for 24 h, respectively. RFU means the relative fluorescence unit in 3 × 104 cells/well
in 96-well plates. Data shown are the mean ± SEM of three independent experiments performed in
triplicate. * or ***: p < 0.05 or p < 0.001 vs. control group. ###: p < 0.001 vs. the H2O2 group (one-way
ANOVA).
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These results suggested that USPIO-101 did not elicit ROS toxicity in neuron-like or
microglial cells.

3.5. Effects of USPIO-101 on mRNA Expression with LPS Stimulation

To examine the effect of USPIO-101 on the pro-inflammatory cytokines’ mRNA ex-
pression with LPS stimulation, the RT-qPCR was used for measuring mRNA extracted
from microglia cells. USPIO-101 (10 µg/mL) was pretreated for 1 h before LPS (1 µg/mL)
stimulation, and the cells were collected after LPS stimulation for 30, 60, or 120 min. LPS
treatment for 120 min significantly upregulated the levels of transcripts encoding the
pro-inflammatory cytokines TNF-α, NF-κB, and COX-2 (p < 0.05 vs. control, one-way
ANOVA, Figure 6B–D). USPIO-101 significantly enhanced the expression of NF-κB and
COX-2 after LPS stimulation for 120 min (p < 0.05 vs. LPS, one-way ANOVA, Figure 6C,D).
USPIO-101 significantly enhanced the mRNA expression of COX-2 in the group of LPS +
USPIO-101 after LPS 30-, 60-, or 120-min treatment (p < 0.05 vs. LPS, one-way ANOVA,
Figure 6D). USPIO-101 treatment alone, for 3 h, did not affect the mRNA expression of these
pro-inflammatory cytokines (Figure 6). These results suggest that USPIO-101 enhances the
mRNA expression of pro-inflammatory cytokines, especially COX-2, when co-treated with
LPS stimulation in the microglia cells.
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3.6. USPIO-101 Impaired the Hippocampal LTP at the Schaffer Collateral-CA1 Synapses

The effect of USPIO-101 on the hippocampal LTP is still unknown. Here, we investi-
gated whether the hippocampal LTP at the Schaffer collateral-CA1 synapses was affected
by USPIO-101 in naïve mice.

The concentration effect of USPIO-101 was elucidated in the hippocampal slice, and
USPIO-101 (10 or 30 µg/mL) was applied 7.5 min before TBS induction. The magnitude of
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LTP was not affected at 10 µg/mL, but significantly decreased in the treatment of 30 µg/mL
(p < 0.01, one-way ANOVA vs. control, Figure 7). These results revealed that USPIO-101
could impair hippocampal LTP at a higher concentration, and suggested the neurotoxicity
possibility of USPIO-101.
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101 (10 or 30 µg/mL) was applied for 7.5 min before TBS stimulation. (B) The traces shown in the
graph are the average of 20 recorded fEPSPs at times a and b in each group. (C) The bar graph
represents the magnitudes of potentiation, with the average of 20 fEPSPs recorded 30~40 min after
TBS at a concentration of 10 or 30 µg/mL. *: p < 0.05 vs. control group. #: p < 0.05 vs. USPIO-101
group (one-way ANOVA). n indicates the number of slices recorded. The expression and analysis of
the baseline fEPSP slope are the same as Figure 3.

4. Discussions

Our results showed the dual effect of USPIO-101: one effect was the alleviation of
inflammatory pain at the spinal cord; the other was the risk of neurotoxicity.

4.1. The Analgesic Effect of USPIO-101

Our results showed USPIO-101 (10 mg/mL, 10 µL) increased the mechanical paw
withdrawal thresholds through intrathecal or intraplantar injection. Comparing intrathecal
to intraplantar injection, intrathecal injection had the higher paw withdrawal thresholds
at time 0.5 h, which suggested intrathecal injection was more potent than intraplantar
injection at the onset time.

The in vitro electrophysiological study showed that USPIO-101 (10 or 30 µg/mL)
partially decreased the potentiated spinal LTP at the spinal superficial dorsal horn synapses
in mice with chronic inflammatory pain. The USPIO-101-treated spinal LTP level in CFA-
treated mice was almost back to the level of saline-treated spinal LTP (Figure 3D). However,
the LFS-induced potentiated spinal LTP in naïve mice could be entirely abolished by USPIO-
101 (10 µg/mL) (Figure 4C). In the disease (inflammatory pain) model, the potentiated
spinal LTP was more complicated than the naïve state. Even at higher concentrations, the
potentiated spinal LTP would be no further decreased by USPIO-101 (30 µg/mL). The
reasons why USPIO-101 only partially reduced the LFS-induced LTP in mice with chronic
inflammatory pain are still unknown. However, this maintained spinal LTP in CFA-treated
mice was probably why USPIO-101 only attenuated the inflammatory pain for a short
duration (less than 3.5 h, Figure 2) in the behavioral tests.

The activity-dependent effect was another character of USPIO-101 revealed from our
data. USPIO-101 did not affect the basal transmission but inhibited the LFS-evoked spinal
LTP (Figure 4). The LFS-evoked LTP was associated with the injury or inflammatory
situation at the spinal cord superficial dorsal horn synapses [24]. These results demonstrate
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the analgesic effect of USPIO-101 on inflammatory pain, which has been reported in our
previous study [5,25] and our present study (Figure 2).

4.2. Cell Toxicity of USPIO-101

The iron oxide nanoparticles were less toxic than other ion nanoparticles, especially
USPIO [26]. However, more evidence revealed that USPIO could induce cytotoxicity due
to the size, shape, surface charge, or coating of the nanoparticles [27]. The physicochemical
character of USPIO-101 showed that USPIO-101 probably had some aggregation with the
self or other ions, but kept normal stability. Meanwhile, although USPIO-101 has proven
analgesia ability, the cytotoxicity of USPIO-101 is less known.

Our data showed that USPIO-101 (10 or 30 µg/mL) did not induce the significant
elevation of ROS in SH-SY5Y or SM826 cells for 30 min or 24 h, compared with the positive
control (Figure 5). However, after the treatment of USPIO-101 for 24 h, the production of
ROS was still high at the concentration of 10 µg/mL in a trend (SH-SY5Y or SM 826 cell:
p = 0.07 or p = 0.014, control vs. USPIO-101 10 µg/mL 24 h, unpaired t-test). This suggested
that USPIO-101 could induce ROS production with a chronic but not acute effect in neuron-
like or microglial cells.

Our mRNA data showed that COX-2 was significantly up-regulated after LFS stimu-
lation for 30~120 min in microglial cells (Figure 6D). COX-2 was an enzyme involved in
synthesizing prostaglandins (PGs), and the induction of COX-2 enhanced nociception via
increasing PG release [28]. This was controversial to our analgesic results. However, the
spinal cord and brain microglia had a different response to inflammatory stimulation for
unknown reasons [29]. The SM826 cell was derived from the brains of mice [30], which
probably could not represent the actual situation in the spinal cord. Our data suggested
that USPIO-101 could likely induce the elevation of COX-2 in brain microglial cells, but not
the spinal cord.

The cytotoxicity of USPIO has been reported [9–12], but less is known about COX-2.
Only one study has revealed that COX-2 is elevated after SPIO treatment in the liver [11].
We still do not know why USPIO-101 induces COX-2 so quickly during LPS stimulation in
the microglial cells, because phagocytic cells, such as microglia cells, are not as sensitive to
positive surface charge nanoparticles as they are to negative surface charges [31].

4.3. Hippocampal LTP Was Impaired by USPIO-101 at a Higher Concentration

We measured the effect of USPIO-101 on the hippocampal LTP to predict if USPIO-
101 has neurotoxicity in the hippocampus. Our data demonstrated USPIO-101 could
impair hippocampal LTP at a higher concentration (Figure 7). Another study revealed
that USPIO could induce neurotoxicity in the hippocampus via in vivo study. A direct
single injection of USPIO (1 µg/µL, size: 30 nm) into the mouse hippocampus for 7 or
14 days could impair the animals’ spatial memory in the Morris water maze test [32]. Other
controversial data showed no toxicity response to intranasally instilled Fe3O4 (1 mg/mL,
size: 30 nm) nanoparticles in the brain [33]. One possible explanation of neurotoxicity in
the hippocampus was that hippocampal neurons were more sensitive to SH-SY5Y cells
when applied with exogenous iron, showing higher cell death [34].

Our data showed USPIO-101 could impair hippocampal LTP, which suggests that
USPIO-101 probably has toxicity in hippocampal neurons or can antagonize some ionic
receptors which are essential for early LTP induction, such as the N-methyl-D-aspartate
(NMDA) receptor [35], the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptor [36], or other targets. More evidence is needed to elucidate this.

4.4. The Effect of Surface Group

Our used TANBead® USPIO-101 was a conventional product designed to conju-
gate with target-specific molecules through the amide-bond formation with carbodiimide-
activated carboxylic acid groups. We investigated another carboxyl group product from the
same company, TANBead® USPIO-102, on the analgesic effect of hippocampal neurotoxicity.
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However, we observed that USPIO-102 had a less analgesic response and no neurotoxicity
in the hippocampal slice, compared with USPIO-101 (Figures S2 and S3). The properties
of USPIO-101 and USPIO-102 are almost the same, including size (6~10 nm), solvent (wa-
ter), and stock concentration (10 mg/mL). The only different parts are the surface, amine
group (USPIO-101), or carboxyl group (USPIO-102), as shown in Figure 1C. The surface
group for Fe3O4 nanoparticles is critical, because naked Fe3O4 has a high surface energy,
leading to aggregation and oxidation [37]. In addition, both amine and carboxyl groups are
hydrophilic groups, which strongly attract water solubility, good biological compatibility,
and biodegradability [38]. However, the physiological function of the different surfaces is
still unclear.

5. Conclusions

Our results revealed the dual effect of USPIO-101: it could relieve inflammatory pain
at the spinal cord, but also induce neurotoxicity in the central brain. These localized
administration routes (e.g., intrathecal or intraplantar administration) of USPIO-101 did
not elicit a toxicity response during our experiments; however, if the USPIO-101 leaks to
the brain, it would probably impair hippocampal LTP at higher concentrations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14020366/s1, Figure S1: the dynamic light scattering
(DLS) and zeta potential analysis of USPIO-101. Figure S2: USPIO-101 and USPIO-102 attenuate
chronic inflammatory pain via intrathecal or intraplantar injection. Figure S3: The effect of USPIO-101
or USPIO-102 on hippocampal LTP, respectively.
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