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Abstract: This study numerically analyzes the fluid flow and solute transport in a solid tumor to
comprehensively examine the consequence of normalization induced by anti-angiogenic therapy
on drug delivery. The current study leads to a more accurate model in comparison to previous
research, as it incorporates a non-homogeneous real-human solid tumor including necrotic, semi-
necrotic, and well-vascularized regions. Additionally, the model considers the effects of concurrently
chemotherapeutic agents (three macromolecules of IgG, F(ab′)2, and F(ab′)) and different normaliza-
tion intensities in various tumor sizes. Examining the long-term influence of normalization on the
quality of drug uptake by necrotic area is another contribution of the present study. Results show
that normalization decreases the interstitial fluid pressure (IFP) and spreads the pressure gradient
and non-zero interstitial fluid velocity (IFV) into inner areas. Subsequently, wash-out of the drug
from the tumor periphery is decreased. It is also demonstrated that normalization can improve the
distribution of solute concentration in the interstitium. The efficiency of normalization is introduced
as a function of the time course of perfusion, which depends on the tumor size, drug type, as well
as normalization intensity, and consequently on the dominant mechanism of drug delivery. It is
suggested to accompany anti-angiogenic therapy by F(ab′) in large tumor size (Req = 2.79 cm) to
improve reservoir behavior benefit from normalization. However, IgG is proposed as the better
option in the small tumor (Req = 0.46 cm), in which normalization finds the opportunity of enhancing
uniformity of IgG average exposure by 22%. This study could provide a perspective for preclinical
and clinical trials on how to take advantage of normalization, as an adjuvant treatment, in improving
drug delivery into a non-homogeneous solid tumor.

Keywords: normalization; anti-angiogenic therapy; non-homogeneous solid tumor; necrotic area;
reservoir behavior

1. Introduction

Mathematical modeling has a significant role in the diagnosis and treatment of cancer [1–4].
Cancer has a multi-scale nature spanning from intracellular to tissue, in which mathematical
modeling is used in all scales [5]. There exist recent studies [5–13] that applied mathematical
modeling in different scales to simulate the various processes in the tumor microenviron-
ment and its diagnosis and treatment. Recently, Hadjicharalambous et al. [14] provided a
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review on in silico modeling of tumor perfusion, angiogenesis, drug delivery, and stud-
ies that took advantage of clinical data. The present research studies drug delivery in
cancer treatment.

Even though the most important treatment is surgery to remove the tumor [15],
chemotherapy is an extensively used tool in cancer treatment [16]. The quality of chemother-
apy depends on the efficient delivery of therapeutic agents into the cancerous zones [17].
Numerous studies have been performed to investigate drug delivery by mathematical
modeling. In fundamental studies [18–20], Baxter and Jain developed a macroscopic math-
ematical model by considering the tumor microenvironment as a porous medium. They
studied the effect of interstitial fluid properties, heterogeneous perfusion of the tumor,
presence of lymphatics in the tumor, binding, and metabolism on macromolecule distribu-
tion in the extracellular matrix (ECM). They found high IFP as the main barrier to drug
distribution uniformity. Moreover, it was concluded that the presence of lymphatics in the
tumor site reduced the concentration amount. In the third phase of the study of Baxter
and Jain, the important role of binding on macromolecule distribution was derived. Other
studies have been conducted from a macroscopic point of view, such as [21,22], in which
drug transport was considered by fluid flow. Two parameters, i.e., the critical radius of
tumor and necrotic area, were introduced as effective parameters of drug delivery. In the
next step of the previous research, the effect of tumor shape and size was studied by adding
solute transport equations to the mathematical model [23]. The results showed that drug
concentration in the prolate shape of the tumor had the highest value, which is due to the
non-uniform distribution of IFP in this shape, unlike other forms. Steuperaert et al. [24]
studied intraperitoneal chemotherapy by solving fluid flow and solute transport equations
in tissue scale, then expanded their model to consider the real shape of the tumor and
non-uniform interstitial properties [25]. Multi-scale research [8,9,11,12] has been developed
to study drug delivery by considering more details such as image-based microvascular
network, intravascular flow, and the relationship between the flow of capillary network and
interstitium. Drug delivery was studied in a comprehensive multi-scale model, in which
the tumor-induced capillary network was performed by a mathematical model [26]. In the
study of Moradi Kashkooli and Soltani [27], the importance of alternative chemotherapy
strategies—metronomic chemotherapy and chemo-switching—in consecutive treatments
were addressed compared to the conventional approach, which is based on maximum
tolerated dose, through a numerical model on a real image of solid tumor. They proposed
an appropriate computational framework to evaluate and improve the treatment efficacy
of solid tumors.

The characteristic of solid tumors such as high IFP and an abnormally tortuous cap-
illary network make the delivery and efficacy of therapeutic agents difficult [28]. The
methods to overcome it are a subject of interest amongst researchers [16]. One of these
methods is anti-angiogenic treatment [29], which, although it does not show much ability
alone, in combination with other treatments such as chemotherapy, causes long-term clin-
ical benefit or survival [30,31]. Clinical studies [32,33] have shown that the combination
of the anti-angiogenic drug with a chemotherapy drug has more positive effects than
using chemotherapy alone in reducing tumor size, mean vessel diameter, and irregular
morphology of vessels, and in improving survival effect. Anti-angiogenic drugs have
also been shown to improve drug delivery efficacy and deeper drug penetration [34–36].
In recent reviews [37–39], normalization induced by anti-angiogenesis in combination
with chemotherapy was introduced as a promising strategy in cancer treatment. Few
numerical studies have been performed on drug delivery under the influence of anti-
angiogenesis-induced vascular normalization. One of the most important and basic of
these studies is [40], which investigated the effect of normalization in a homogeneous
avascular tumor by simulating the interstitial fluid flow. The major finding of Jain and his
colleagues’ research is that IFP decreased after normalization. Mohammadi et al. [41] ex-
panded the mathematical framework of [40] to consider the solute transport equation. Their
results showed that drug delivery into the single homogeneous tumor nodule improved
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by normalization. Zhan [42] investigated the efficacy of cytotoxic drug delivery into the
tumor based on a real brain tumor under the anti-angiogenic effect of Bevacizumab. The
author used a diffusion–convection equation to describe Bevacizumab bioavailability in
tissue. The results showed enhancement of drug delivery by Bevacizumab administration.
Other studies [43,44] followed up the effect of anti-angiogenic therapy on therapeutic
agent transfer into the tumor site by developing governing partial differential equations.
Sweeney et al. [45] mimicked the vascular normalization by modifying the parameters
of interstitial and intravascular flow in a tumor with a real image-based capillary net-
work. Wu et al. [46] and Moath and Xiao [47] studied the normalization by pruning the
microvascular network produced by mathematical modeling. Stylianopoulos and Jain [48]
developed a mathematical framework to consider the normalization from another point of
view, in which decreasing the vessel diameter and pruning the microvasculature network
were considered as anti-angiogenic therapy consequences. They demonstrated that vessels
with more permeability and less compressibility were affected more by normalization.

Due to the necessity of opening a horizon in how the quality of drug delivery into the
solid tumor is affected by anti-angiogenesis-induced normalization (AAIN), the present
study addresses this issue by developing a numerical framework to model fluid flow and
solute transport in the tumor interstitium. A more realistic physiological model of ECM
is provided in this research for the first time by considering the computational domain
based on the cross-sectional view of a real-human tumor, which contains the necrotic core,
semi-necrotic region, and well-vascularized area. Simultaneous study of different effective
parameters in the investigation of the AAIN in connection with the drug delivery is in
need as the resolution of the AAIN function is not accurate without considering all the
significant factors. Moreover, the behavior of therapeutic agent distribution in the necrotic
core over long periods under the influence of AAIN has not been studied before, to the best
of the authors’ knowledge. To fill these gaps, various efficacious aspects, i.e., tumor size,
therapeutic agent type, post-injection time, and normalization intensity, which control the
efficiency of AAIN on drug delivery, are studied in the present research. Additionally, the
reservoir behavior of the necrotic area is analyzed under the effect of AAIN.

2. Materials and Methods

In the current study, a real solid tumor is considered to investigate the drug delivery
under the influence of different intensities of AAIN. This section consists of the compu-
tational geometry, schematic view of AAIN function, governing equations, numerical
solution details, and baseline value of parameters.

2.1. Computational Geometry

Figure 1 shows the cross-sectional view of the real tumor studied in this research.
Different parts of the tumor are illustrated in this figure. Due to the availability of one
image of the tumor and the approximate symmetry of the cross-sectional view, half of this
view is drawn, and the computational domain is considered axisymmetric. Figure 2 shows
the computational geometry around which normal tissue is considered. Line 1, shown in
Figure 2, is used to draw IFP, IFV, and concentration profiles along it.

2.2. Schematic View of AAIN Function

Figure 3 provides a perspective of the performance of AAIN. As illustrated in this
figure and discussed in the following, anti-angiogenic therapy normalizes the tumor vascu-
lature, which results in (1) decreasing the IFP in the interstitium, (2) establishing the IFP gra-
dient and non-zero IFV in the areas far from the tumor periphery, (3) reducing the IFV at the
tumor margin, (4) decreasing therapeutic agents oozing from the boundary, (5) improving
the trans-vascular convection mechanism of solute transport, and (6) modifying the trans-
vascular diffusion mechanism of solute transport.
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2.3. Governing Equations

In this investigation, fluid flow and solute transport are simulated to study the drug
delivery into the solid tumor with a macroscopic model.

2.3.1. Fluid Flow Mathematical Model

From a macroscopic point of view, the microscopic variations are average [18]. The
simplified momentum equation governing the fluid flow in the interstitium, as a porous
medium, is expressed by Darcy’s equation as follows [21,22]:

→
V i = −k∇Pi (1)

in which
→
V i, k , and Pi are IFV, interstitium hydraulic conductivity, and IFP, respectively.

k is considered to be constant in this study.
The continuity equation for the incompressible fluid in the steady-state considering

the source and sink terms that exist in biological tissues is as follows:

∇.
→
V i = φB − φL (2)

φB and φL show the rate of fluid flow from the blood vessels to the interstitium and from the
interstitium to the lymphatic vessels, respectively [21]. φB and φL are reported in Table 1.
Due to the lack of an efficient lymphatic system in tumor tissue, φL is considered only in
normal tissue with a uniform distribution [26].

Table 1. Variables of Equations (1) and (2).

Variable Description Equation Zone(s) under the
Influence of Variable

φB
1,3 Source term of the fluid flow analysis

LpS
V (PB − Pi − σs(πB − πi)) Tumor and Normal tissues

φL
1 Sink term of the fluid flow analysis

LpLSL
V (Pi − PL) Normal tissue

ϕB
1,2,3 Source term of the solute transport analysis φB(1− σf )Cp +

PS
V (CP − Ci)

Pe
ePe−1 Tumor and Normal tissues

ϕL Sink term of the solute transport analysis φLCi Normal tissue
1 Descriptions of the parameters of variables are available in Section 2.5. 2 Pe is the Peclet number, and its equation

is
φB(1−σf )V

PS . CP shows the concentration of plasma solute. 3 Because the density of blood vessels in different
areas of tumor tissue is not the same, φB and ϕB have different values in various parts of the tumor. φB and ϕB are
considered to be zero in the necrotic area. According to the study of Lyu et al. [49], the value of φB and ϕB in the
semi-necrotic region is considered to be ~0.58 of that of φB and ϕB in the well-vascularized region.

Combining Equations (1) and (2) results in:

− k∇2Pi = φB − φL (3)

2.3.2. Solute Transport Mathematical Model

The governing equation of solute transport in the porous media involves two mecha-
nisms of diffusion and convection [50]. Mass conservation by using Fick’s second law is
determined as follows to define the behavior of solute transport [11,26]:

∂Ci
∂t

+∇·
→
J = 0 (4)

where Ci represents the concentration of solute in the interstitium.
→
J is the mass flux of

the solute.
The diffusion mechanism of the solute transport in the biological tissues is obtained

from Fick’s first law. The convection mechanism is calculated by multiplying the concentra-

tion by the IFV. Therefore,
→
J is as follows [11]:

→
J = −De f f∇Ci +

→
V iCi (5)
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The final equation governing the solute transport, taking into account the source
and sink terms of biological tissues with the constant diffusion coefficient (De f f ), can be
determined with the following equation [11,26]:

∂Ci
∂t

= De f f∇2Ci −∇·(
→
V iCi) + ϕB − ϕL (6)

ϕB and ϕL indicate the rate of solute transfer per unit volume from the blood vessels to
the interstitial space and from the interstitial space to the lymphatic vessels, respectively.
Patlak’s model is used to calculate the transition rate of the solute from the blood vessel
walls [51]. ϕL is defined by a function that has a uniform distribution only in normal
tissue [23]. ϕB and ϕL are reported in Table 1. It is assumed that solute transport does not
affect the interstitial fluid density and interstitial fluid flow. So, equations for fluid flow
analysis are calculated independent of that of solute transport analysis.

2.4. Numerical Solution Details

This section consists of the description of the mesh-independent solution, boundary
conditions, and numerical modeling procedure.

2.4.1. Mesh Independent Solution

For checking the independence of the solution from the mesh size, results of the fluid
flow and solute transport analyses (IFP, IFV, and Ci) with different grids are compared.
The final size of meshing of the computational domain is selected so that the percentage
of change in the results between the last two mesh sizes is negligible. The final mesh of
the original tumor size consists of 19,714 elements. This process is carried out for the other
studied sizes.

2.4.2. Boundary Conditions

Boundary conditions (BCs) of analyses of fluid flow and solute transport are reported
in Table 2. The different parts of the tumor in which the BCs are defined can be seen in
Figure 2. Due to the symmetry, the BC of the tumor center is no flux for both fluid flow
and solute transport analyses [15]. The BC of the inner boundary is such that the pressure
and velocity in fluid flow analysis and the concentration and concentration flux in solute
transport analysis are continuous [9,11]. At the outer boundary, the pressure is equal to
the surrounding pressure [15], which is considered to be 0 Pa in the present study. The
open BC is applied for solute transport analysis to model the mass transfer across the outer
boundary wherein each convective inflow and outflow can occur [52].

Table 2. BCs of fluid flow and solute transport analyses.

Zone Tumor Center Inner Boundary Outer Boundary

Fluid flow ∇Pi = 0
−kt∇Pi |R− = −kn∇Pi |R+

1

Pi |R− = Pi |R+
1 Pi = Psur

Solute transport De f f∇Ci +
→
V iCi = 0

(De f f
t∇Ci +

→
V iCi)

∣∣∣∣R− = (De f f
n∇Ci +

→
V iCi)

∣∣∣∣
R+

1

Ci |R− = Ci |R+
1

−n·∇Ci = 0 2

1 R− and R+ show the radius of the tumor and normal tissues at the inner boundary, respectively. kt and kn are
hydraulic conductivity of the interstitium in tumor and normal tissues [15]. 2 n depicts the normal vector.

2.4.3. Numerical Modeling Procedure

Steady fluid flow equation and transient solute transport equation are solved numeri-
cally with finite element method (FEM) using COMSOL Multi-physics ® Software Version
5.3a. The discretization method of fluid flow and solute transport models are quadratic
and linear, respectively. Newton’s method becomes implemented for solving equations.
The criteria for convergence are to decrease the residuals to be 10−6. The flowchart of the
simulation strategy is shown in Figure 4.
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2.5. Baseline Value of Parameters

The parameter values are described in this section in different types of tissue. Vascular
hydraulic permeability, LP, was calculated to be 3.6× 10−8 cm/s/mmHg in the skeletal
muscle of normal tissues of rats [53]. This value is chosen in the present study for normal
tissue. LP in tumor tissue is considered to be 7.8 times that of normal tissue, according to
the measurements by Gerlowski and Jain [18]. Jain et al. [40] mentioned that treatment
by anti-VEGFR2 antibody causes a 5-fold decrease in LP of the tumor tissue. This rate of
decrease is used in the present study for normalized tissue.
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The value of hydraulic conductivity of the interstitium, k , is assumed to be the same
in tumor and normal tissues in this study based on [40]. The effect of AAIN on k is not
known to the best of our knowledge. k in normalized tissue is assumed to be the same as
the tumor one.

The value of S
V , vessel surface density, has a large variability across different types

of tumor and even within the individual tumor. The value of S
V for different tissue types

ranges from 50 to 570 1/cm [40,54]. S
V is chosen to be 70 and 200 1/cm for normal and

tumor tissue, respectively, based on previous studies [22,23]. Some in vivo studies [55,56]
showed a decrease in the permeability surface area product after anti-angiogenic therapy
by Anti-VEGF antibody. Therefore, in the present modeling, S

V is considered to be 116 1/cm
after normalization.

PB fell in the range of 5.3–34 mmHg in different types of tissue [40]. PB was considered
equal to 15.6 mmHg for both normal and tumor tissue in the previous studies [18,22,23].
Measurement of microvascular pressure in MCaIV tumors by Jain’s group showed that the
change in PB before and after anti-VEGFR2 therapy is negligible [57]. PB is considered to
be 15.6 mmHg for all types of tissue in this study. πB and πi were also measured before
and after anti-VEGFR2 therapy [57]. The value of these parameters is considered the same
as the value reported in [40].

σs, the osmotic reflection factor, was measured for albumin in subcutaneous normal
tissue [58]. σs was not reported for tumors. For tumor tissue, σs can be approximated using

σs = [1− (1− λ)2]
2

where λ = Solute radius
Pore radius [59,60]. Albumin was considered as a sphere

with a 3.5 nm radius in Bovine serum [54,61]. The diameter of the vascular pore was chosen
to be 1.5µm. σs is calculated for normalized tissue with the same formula of tumor tissue
and a one-fifth reduction in pore size of vessels induced by anti-angiogenic therapy [40].

σf shows the osmotic reflection coefficient. Baxter and Jain [18] used the data of [62]
for defining the value of σf . Covell et al. [62] noted that the metabolism of the antibody
was specified by non-tumor tissue. The value of σf for different tissue types is estimated
based on the spherical solute–cylindrical pore model [59,60] and listed in Table 3.

De f f and Pe f f represent the effective interstitial diffusion coefficient and effective
microvascular network permeability coefficient, respectively. In this study, the value of
De f f and Pe f f is defined in normal and tumor tissue for IgG, F(ab′)2, and F(ab′) based on
the study of Gerlowski and Jain [63]. The effect of normalization induced by anti-angiogenic
therapy on De f f is not known, to the best of our knowledge. It is assumed that De f f in
tumor tissue does not change after vascular normalization. The diffusive microvessel
permeability coefficient, P, is considered to be 10% of Pe f f [23]. A decrease of 68% in
vascular permeability (P S

V [64]) was reported after treatment by Bevacizumab [65]. The
baseline values of interstitial fluid flow and solute transport properties are summarized
in Table 3. Transport properties of other normalization intensities are calculated between
baseline values.
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Table 3. Baseline value of fluid flow and solute transport properties.

Parameter Description Normal Tissue Normalized Tissue Tumor Tissue Reference(s)

Lp (
cm

s mmHg )
Hydraulic conductivity

of the microvascular wall 3.6× 10−8 5.6× 10−8 2.8× 10−7 [18,40,53]

k ( cm2

s mmHg )
Hydraulic conductivity

of the interstitium 2.5× 10−7 2.5× 10−7 2.5× 10−7 [40]

S
V ( cm2

cm3 )
Surface area of vessel wall
per unit volume of tissue 70 116 a 200 [22,23,55,56]

PB(mmHg) Vascular pressure 15.6 15.6 15.6 [22,23]

πB(mmHg) Osmotic pressure
of the plasma 20 19.2 19.8 [40]

πi(mmHg) Osmotic pressure
of the interstitial fluid 10 15.1 17.3 [40]

σs

Average osmotic
reflection coefficient
for plasma proteins

0.91 2.1× 10−3 8.7× 10−5 [58] and calculated
based on [59,60]

PL(mmHg) Hydrostatic pressure
of the lymphatics 0 - - [66]

LPLSL
V ( 1

s mmHg )

Product of hydraulic
conductivity of the

lymphatic wall and surface
area of lymphatic wall

per unit volume of tissue

1.33× 10−5 - - [66]

σf
Osmotic filtration

reflection coefficient

F(ab′)2 : 0.9 F(ab′)2 : 2.06× 10−3 F(ab′)2 : 8.41× 10−5

[62] and calculated
based on [59,60]

F(ab′) : 0.5 F(ab′) : 7.33× 10−4 F(ab′) : 2.96× 10−5

IgG : 0.95 IgG : 2.43443× 10−3 IgG : 9.9358× 10−5

De f f (
cm2

s )
Effective

diffusion coefficient

F(ab′)2 : 0.16× 10−8 F(ab′)2 : 2× 10−8 F(ab′)2 : 2× 10−8

[63]F(ab′) : 1.2× 10−8 F(ab′) : 4.4× 10−8 F(ab′) : 4.4× 10−8

IgG : 0.048× 10−8 IgG : 1.3× 10−8 IgG : 1.3× 10−8

P( cm
s

) Microvessel
permeability coefficient

F(ab′)2 : 2.2× 10−8 F(ab′)2 : 9.54× 10−8 F(ab′)2 : 17.3× 10−8

[23,63,65]F(ab′) : 19.1× 10−8 F(ab′) : 82.2× 10−8 F(ab′) : 149× 10−8

IgG : 0.73× 10−8 IgG : 3.16138× 10−8 IgG : 5.73× 10−8

τ(h) b Drug half-life in plasma

F(ab′)2 = 4.2 F(ab′)2 = 4.2 F(ab′)2 = 4.2

[18]F(ab′) = 2 F(ab′) = 2 F(ab′) = 2

IgG = 72 IgG = 72 IgG = 72

a S
V is assumed to decrease 42% after normalization in comparison to the pretreatment level (tumor tissue). This

value is considered as an average value of the decrease in permeability surface area product reported in studies
of [55,56]. b τ is the drug half-life and introduced in bolus injection.

3. Validation of Numerical Model

Different case studies of the literature [19,23,40] are duplicated numerically to verify
the present model. Figure 5 shows the fluid flow properties of a homogeneous solid
tumor embedded within normal tissue. Interstitial drug concentration in a homogeneous
solid tumor surrounded by normal tissue is seen for continuous and bolus injections in
Figure 6a,b. Figure 7a,b illustrates the distribution of the therapeutic agent in a tumor with
the necrotic core for continuous and bolus injections.

As seen in Figure 5, the IFP is uniformly high throughout the tumor in α = 50. There
is a pressure gradient and then non-zero IFV only in the boundary between tumor and

normal tissues. α with the equation of α = R
√

LpS
kV shows the rate of transport across the

vessel wall to the rate through the interstitium [40]. Changing α causes modification in
IFP and IFV behavior. Figure 6 shows that the procedure of F(ab′)2 distribution is the
same in bolus injection (8 h post-injection) and continuous injection (72 h post-injection),
but the drug exposure is greater in continuous injection. As shown in Figure 7, the solute
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concentration in tumor tissue has non-uniform distribution due to considering the necrotic
area, unlike Figure 6.
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Figure 6. Comparison between the result of the present model and literature [23]. A tumor (R = 1 cm)
surrounded by normal tissue is studied in this figure. (a) Interstitial F(ab′)2 concentration in 8 h
post-injection with bolus injection. (b) Interstitial F(ab′)2 concentration in 72 h post-injection with
continuous injection.

According to Figures 5–7, the agreement between the results of this study and those of
the literature is very good that shows the accuracy of the numerical method used in the
present study in predicting drug delivery into solid tumors.
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Figure 7. Comparison between the result of the present model and literature [19]. A tumor (R = 1 cm)
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4. Results and Discussion

In the present study, the behavior of fluid flow and drug distribution in a real-solid-
human-non-homogeneous tumor with normal tissue around it are studied to investigate
the effect of intensity of AAIN by solving the continuity, Darcy, and CDEs. IFP, IFV, and
solute concentration distribution at different normalization intensities are analyzed below.
The parameters of average solute concentration distribution (ASCD) and its deviation
(DASCD) are introduced and investigated to demonstrate the quality of drug delivery
into the tumor tissue and its distribution uniformity. ASCD and DASCD are defined by
Equations (S1) and (S2). Different tumor sizes and different drugs are considered for a
closer look and a more accurate deduction on the effect of normalization intensity.

In this study, α is defined as α = Req

√
LpS
kV . Req is the radius of a spherical tumor with

the same volume of tumor of the present study [22]. Req is equal to approximately 1.86 cm.
The spatial characteristics of the different parts of the tumor on line 1 in Figure 2 are

as follows: 
0 ≤ r

Req
≤ 0.4192903124 Necrotic region

0.4192903124 ≤ r
Req
≤ 0.6572532333 Semi-necrotic region

0.6572532333 ≤ r
Req
≤ 1.0646712645 Well-vascularized region

4.1. Fluid Flow Analysis

According to Equations (1) and (2), IFP has a significant effect on different mechanisms
of drug delivery. High IFP in the tumor tissue and its sudden decrease at the tumor margin
are some main barriers to effective drug delivery [9,21,22]. As shown in Figure 8a, IFP in
the untreated tumor (α = 27.833) has its maximum value, and it decreases with the highest
amount of slope at the margin of tumor and normal tissues. IFP in the tumor tissue is
reduced by anti-angiogenesis therapy, a phenomenon that has been reported in clinical and
preclinical research [57,67–69]. The greater the intensity of normalization, the greater the
IFP drop.

The pressure gradient is established in semi-necrotic and well-vascularized regions
due to the normalization. IFP and Pe f f in most parts of the tumor tissue are almost equal in
high values of α, which causes a lack of net flow exchange and subsequently a high uniform
IFP. AAIN changes this behavior due to affecting the parameters of the blood source (φB in
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Equation (3)). Forasmuch as there is well-vessel density in the well-vascularized region, the
pressure gradient induced by anti-angiogenesis is considerable in this area. Normalization
cannot cause a pressure gradient in the tumor necrotic core because there are no effective
blood vessels in this area.
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In high values of α, IFV has a non-zero value only in the tumor tissue boundary,
which causes outward convection flux. The behavior of the IFV profile depends on the
pressure gradient according to Darcy’s law. IFV becomes non-zero within the tumor (in
semi-necrotic and well-vascularized regions) under the effect of vascular normalization,
as seen in Figure 8b. It is seen that the amount of IFV is reduced at the tumor boundary
after anti-angiogenic therapy. This is due to the fact that normalization causes a less steep
in IFP gradient.

Areas where there is a pressure gradient and subsequently non-zero IFV shift to the
inner parts of the tumor tissue by decreasing α from 27.833 to 9.4795. A further decrease
in α cannot cause convective flow in the more internal areas of the tumor. However, the
number of changes of IFP and IFV in the range of 5.9042 < α < 9.4795 is more severe. It
means that the effectiveness of normalization depends on the properties of the baseline
parameters. As shown in Figure 8b, the value of IFV is low in areas other than the boundary,
which indicates the small effect of convection in these zones.

4.2. Solute Transport Analysis

The effects of normalization intensity on the concentration distribution of IgG, F(ab′)2,
and F(ab′) are investigated. A single bolus injection is considered with a function that the
concentration of plasma solute decreases exponentially with time. The half-life of these
macromolecules is different from each other. Simulation for each drug is considered until
the ASCD in the necrotic core (ASCDNE) reaches one-tenth of its maximum value. This
time for different antibodies in different sizes of tumor is as follows:

Req = 0.46 cm


F(ab′) : 179, 640s (2.08 days)
F(ab′)2 : 488, 520s (5.65 days)
IgG : 1, 504, 800s (17.41 days)

Req ' 0.93 cm


F(ab′) : 403, 920s (4.675 days)
F(ab′)2 : 1, 297, 100s (15 days)
IgG : 3, 474, 000s (40.2 days)
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Req ' 1.86 cm (Original size)


F(ab′) : 761, 760s (8.8 days)
F(ab′)2 : 2, 791, 100s (32.3 days)
IgG : 7, 768, 800s (89.9 days)

Req = 2.79 cm


F(ab′) : 974, 160s (11.275 days)
F(ab′)2 : 3, 988, 100s (46.16 days)
IgG : 12, 017, 000s (139 days)

Figures 9–11, S1 and S2 show the concentration distribution of F(ab′), F(ab′)2, and IgG
along line 1 in Req = 1.86 cm at different post-injection times in various αs. As seen in these
figures, there is a non-uniform concentration distribution in all macromolecules because in
the present work, unlike previous studies [18,22,23,40,64], the tumor is not homogeneous
and different parts of the tumor are considered.
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There is no blood source in the necrotic region. Additionally, the IFV and the IFP gra-
dient are zero in this area. Therefore, the only mechanism of drug delivery into the necrotic
core is diffusion through the interstitium, which takes a long time for macromolecules [70].
Due to this reason, as shown in Figures 9a,b, 10a,b and 11a,b, the drug does not reach the
necrotic area in the early time after injection. The vessel density in the semi-necrotic region
is less than that of the well-vascularized part. Thus, depending on the transport properties
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of solutes and tumor size, the concentration in the well-vascularized region is higher than
the concentration in the semi-necrotic area in all different values of α at some times after
injection (Figures 9a, 10a,b and 11a–d).
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Despite higher vessel density in the well-vascularized region, the solute concentration
is higher in the semi-necrotic area in some αs after a certain amount of time. For example,
as shown in Figure 9b (8 h post-injection), the concentration of F(ab′) in the semi-necrotic
area is higher than that of the well-vascularized region in α = 27.833, 22.103, 16.122, 9.4795.
This phenomenon is due to two reasons. First, when trans-vascular diffusion plays a
significant role in the drug delivery mechanism. In this case, more solute transfers to
the well-vascularized region compared to the semi-necrotic area because of greater vessel
density in the well-vascularized region. After a while, which depends on the normalization
intensity, Ci becomes greater than Cp in the well-vascularized region so, the solute returns
to the plasma, and the amount of interstitial concentration starts to decrease. However, Ci is
still less than Cp in the semi-necrotic area at the same timespan frame, and solute diffusion
continues from vessels to the interstitium. So, the solute concentration in the semi-necrotic
area becomes higher than that of the well-vascularized region at a specified timespan, like
what happens in Figure 9b. This time span is dependent on the solute type and tumor
size. Second, in later times, the concentration in the semi-necrotic area becomes more than
that of the well-vascularized region due to the effect of diffusion through the interstitium
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to transfer the solute from the zones with high concentration into the necrotic part, such
as IgG in Req = 1.86 cm and α = 9.4795. It should be noted that once trans-vascular
convection becomes the predominant mechanism of solute transport under the influence of
reducing the tumor size, normalization, and solute type, the increase in concentration in
the semi-necrotic area in comparison to the well-vascularized region occurs only over long
periods when the drug is transferred to the necrotic area, such as IgG in Req = 0.46 cm and
all αs, while in situations that trans-vascular diffusion has a primary role, this phenomenon
occurs for both above-mentioned reasons.
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According to Table 3, the AAIN affects the parameters of fluid flow and solute trans-
port. These changes influence the various mechanisms of drug delivery, directly or indi-
rectly. Normalization causes the pressure gradient and subsequently non-zero IFV in the
inner areas of tumor tissue, as shown in Figure 8. The pressure gradient, or in other words,
the difference between IFP and Pe f f , has an effect on the blood vessel source (φB) and
consequently causes convection through the vessel wall (the third term on the right-hand
side of Equation (6)). Non-zero IFV activates the convection mechanism in the interstitium
in the drug delivery process (second term on the right-hand side of Equation (6)). Drug
delivery through the diffusion term from the blood vessel walls (the fourth term on the
right-hand side of Equation (6)) changes due to the change in P, S

V , and also φB caused by
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normalization. Normalization affects the diffusion in the interstitium (the first term on the
right-hand side of Equation (6)) indirectly a long time after injection, which is explained in
more detail in the following sections.

As shown in Figures 9a, 10a and 11a, the drug concentration increases at the periphery
between tumor and normal tissue suddenly, due to the bump in the IFV profile (steep
pressure gradient) in this area. After the early hours, the location of this jump shifts to the
normal tissue slowly, which indicates the bulk transport of the drug due to the outflow
convection (Figures 9b–d, 10b–d and 11b–d). Normalization reduces the intensity of this
jump by modifying the IFV behavior. Additionally, the interval with concentration jump
shifts slowly to areas close to the tumor border by normalization because areas with non-
zero IFV in the tumor section become wider by normalization, but IFV of normal tissue
tends to zero in areas closer to the boundary (Figure 8b). In other words, normalization
reduces drug wash-out to the normal tissue. It also decreases the release of tumor growth
factors into the surrounding tissue. It is worth mentioning that normalization is considered
in the tumor tissue, and normal tissue has the same characteristics for all αs in this study.
However, the effect of normalization on the IFV is also evident in normal tissue (Figure 8b)
because IFV depends on the pressure gradient, which is affected by normalization even in
the normal part of the boundary area (Figure 8a).

It is found that trans-vascular diffusion has a significant role in transferring all three
macromolecules into the interstitium other than the areas near the inner boundary in the
original size of the tumor by computing the Pe number.

The interstitium concentration of F(ab′) reaches the plasma concentration faster due
to the higher P and lower τ, so F(ab′) returns to the blood vessels faster. Normalization
controls the diffusion rate from or to the blood vessels by decreasing P and S

V . F(ab′)
concentration has a better distribution under the vascular normalization after the initial
hours. For example, 8 h post-injection (Figure 9b), the distribution of antibody is improved
from the point of view of drug exposure amount and uniformity at α = 8.5863 and
α = 9.4795 in comparison to α = 27.833 (untreated tumor). After 24 h post-injection
(Figure 9c), α = 5.9042 and α = 6.7988 have better concentration distributions. In fact,
at different times, different intensities of normalization can improve drug delivery. This
is because there is a trade-off between P, S

V and Cp at a specific time so that, if P and
S
V have such values that allow trans-vascular diffusion to deliver F(ab′) into the tissue
and return it to the plasma, both in a controlled manner, the distribution of F(ab′) will
be improved. It means that by modifying P and S

V due to the normalization, the solute
enters the tissue slowly and the tissue is exposed to the solute for a longer time, unlike
rapid solute absorption in untreated tumors. This also causes the clearance behavior to be
different in untreated tumors and normalized ones. The solute returns to the plasma faster
in the untreated tumor. Additionally, the clearance rate of solute is higher in the untreated
tumor compared to the one undergoing anti-angiogenic therapy. Therefore, in general, at a
certain time, definite intensities of normalization improve the solute distribution in terms
of amount and uniformity.

Normalization causes a better distribution of F(ab′)2 in areas far from the periphery at
24 and 72 h post-injection. α = 22.103 and α = 16.122 improve F(ab′)2 distribution at 24 h
post-injection in comparison to the untreated tumor (α = 27.833) according to Figure 10c.
F(ab′)2 is distributed in a narrow area of the tumor tissue in the untreated tumor at 72 h
post-injection, and different normalization intensities can modify the behavior of F(ab′)2
distribution (Figure 10d). The improvement of F(ab′)2 distribution after normalization is
due to what is defined in Figure 9.

The concentration of IgG increases slowly due to its transport properties (lower P and
De f f and higher σf and τ in comparison to F(ab′) and F(ab′)2). Accordingly, normalization
does not have a significant effect on improving the IgG distribution up to 72 h post-injection
(Figure 11a–d). However, the influence of normalization is shown in longer times. For
example, Figure S1 shows the IgG concentration distribution 12.5 days post-injection. As
seen, the concentration distribution of IgG at α = 22.103, α = 16.122, α = 9.4795, and
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α = 8.5863 is better than that of the untreated tumor (α = 27.833). In fact, studies should
be performed in a convenient time frame to decide about the normalization efficacy and
desired normalization intensity, according to the specific characteristics of each drug and
tumor size. In addition to what is said about normalization performance in improving
F(ab′) distribution in Figure 9, trans-vascular convection is improved by normalization and
contributes to a better IgG distribution as the Pe number is non-zero for IgG, especially in
the well-vascularized region. Nevertheless, trans-vascular diffusion is dominant in IgG
distribution in the original size according to the Pe number in the interstitium far from
the boundary.

Figure S2 shows the concentration distribution of the different macromolecules at final
times. According to Figure S2, antibodies reach the necrotic area at longer times, which
is called the reservoir phenomenon [18,19]. This phenomenon occurs when, over a long
period, the solute reaches the necrotic area through diffusion in the interstitium. At these
times, the solute is cleared from the tissue far from the margin by diffusion from the vessels
and washed out by convection outflow in the boundary zone. According to Figure S2, it is
seen that different macromolecules have different efficient functions. For example, F(ab′)
reaches the necrotic area faster. IgG reaches longer times but has a higher amount.

As mentioned earlier, the solute transfers to the necrotic core only through diffusion
in the interstitium. As shown in Figure S2, the amount of solute present in the necrotic
area increases by normalization in comparison to the untreated tumor. The normalization
intensities that enhance the reservoir effect are different for various solutes. Actually, the
intensity of normalization in which the amount of characteristics such as P and S

V is so large
that the plasma solute is absorbed into the tissue in the early stages and so small that the
material is returned to the blood vessels slower in long times has the better reservoir effect.
This phenomenon shows the indirect effect of normalization induced by anti-angiogenic
therapy on the diffusion transfer mechanism through the interstitium.

ASCD and DASCD of different macromolecules in different sizes of tumor and various
normalization intensities are found. ASCDNE and DASCDNE in the duration of the
final third are examined to study the average reservoir behavior distribution (ARBD) and
its deviation (DARBD). The following figures show the best normalization intensities in
improving the average behavior of macromolecule delivery in different tumor sizes.

Figure 12 shows the ARBD and DARBD of F(ab′) in the untreated tumor and the
normalized one with an intensity that causes the highest antibody exposure amount and
lowest non-uniformity, i.e., the sixth of seven normalization intensities in different sizes.
The smaller the tumor size, the greater the increase in ARBD and the greater the decrease
in DARBD. The percentage of changes is illustrated in Figure 12. It is found that trans-
vascular diffusion has a significant effect on the F(ab′) transport mechanism in all sizes
by calculating the Pe number. Modifying the diffusion from or into the blood vessels
due to the normalization improves ARBD and DARBD. Intensifying normalization causes
amelioration in reservoir behavior. However, normalization does not have a positive effect
if the interstitium properties are similar to the normal tissue.

Figures 13 and 14 demonstrate the improvements induced by normalization in F(ab′)2
delivery in different tumor sizes. The percentage of changes induced by normalization is
shown in Figures 13 and 14. Minor improvements are achieved in reservoir behavior and
solute distribution average behavior once the tumor size decreases to Req = 0.93 cm. In fact,
this size of the tumor in F(ab′)2 acts as a turning point so that a greater decrease in tumor
size to Req = 0.46 cm causes amelioration in therapeutic antibody distribution average
behavior, as seen in Figure 14, because convection becomes the dominant mechanism
in Req = 0.46 cm according to the Pe number. Decreasing the tumor size causes the
establishment of pressure gradient and subsequently non-zero IFV in more inner areas
far from the boundary. This provides the facility for convection improvement induced by
normalization to modify the solute delivery, as shown in Figure S3.

Figure S3 illustrates the trans-vascular convection/Cp and IFV of F(ab′)2 in Req = 0.46 cm
for different normalization intensities in semi-necrotic and well-vascularized regions to
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show the effect of normalization on convection as the dominant transfer mechanism in
this size. There are two intensities with better behavior than others, i.e., α = 4.0305 and
α = 2.3699. The uniformity increase in α = 4.0305 and α = 2.3699 is 7% and 16%,
respectively; however, the ASCD is almost equal to that of the untreated tumor for both
αs. Therefore, the best intensity of normalization, in this case, is α = 2.3699. Less gradient
of trans-vascular convection and IFV in α = 2.3699 is responsible for more uniformity of
drug distribution.
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The reservoir behavior of IgG is improved in Req = 2.79 cm and Req = 1.86 cm, as
seen in Figure 15. Decrease in tumor size to Req = 0.93 cm and Req = 0.46 cm, which causes
an enhancement in convection effect, results in better IgG distribution average behavior
(Figure 16). This is because of what is explained in the previous paragraph. The Pe number
of IgG is more than F(ab′) and F(ab′)2 under the same conditions, which indicates more
dependence of transport mechanism to convection.
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Assuming that the tumor is well-vascularized and homogeneous, the DASCD of IgG
is reduced by about 25% in Req = 0.93 cm. More uniformity in the homogeneous tumor
compared to that of this research’s tumor is due to the fact that different parts of real
tumors are considered in the present study. In the tumor considered in this research, IFP
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is uniformly high in the necrotic core, while in the equivalent homogeneous tumor, the
pressure gradient and so non-zero IFV are established in whole tumor tissue. This results
in convective drug delivery even in the tumor center.
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The reservoir effect does not improve in IgG (Req = 0.93 cm and Req = 0.46 cm)
and F(ab′)2 (Req = 0.46 cm) at long times. This is dependent on the ASCDNE behavior.
As an example, Figure S4 shows the ASCDNE of IgG in Req = 0.46 cm for untreated
tumors and normalized one with α = 4.0305. As discussed before, convection is the
dominant mechanism of IgG transfer in this size. AAIN establishes the pressure gradient
and subsequently causes non-zero IFV in the inner areas close to the necrotic core. Then,
more therapeutic agent enters the necrotic core by diffusion through the interstitium in
early times in comparison to the untreated tumor. The difference between the solute
concentration amount in the necrotic core and viable regions in the normalized tumor
becomes more than that of the untreated tumor over time as the solute concentration
decreases in the interstitium. Therefore, the antibody diffusion from the necrotic core to the
viable regions in the normalized tumor is more intense compared to the untreated tumor.
As seen in Figure S4, the ASCDNE is decreased in the normalized tumor with a steeper slop
so that it is less than that of the untreated tumor in longer times. Note that in this study, the
reservoir behavior is considered in the duration of the final third, in which the ASCDNE of
normalized tumor is less than the ASCDNE of the untreated tumor. This is the reason for
the lack of improvement in reservoir behavior by normalization when convection is the
dominant drug transfer mechanism.

According to the results, it is found that clarification about the efficiency of AAIN is
possible by considering the mechanisms affecting solute transfer, which is a parameter that
depends on the size of the tumor and the type of drug. F(ab′) delivery relies heavily on
diffusion due to its transport properties. F(ab′) penetrates the necrotic core better than
the two others, and normalization improves this attitude. F(ab′) administration along
with the anti-angiogenic therapy could be used to target the cells of the necrotic area,
which have a significant effect on tumor growth. IgG has the potential of exploiting the
modification of interstitial fluid flow induced by normalization to improve its delivery
because the Pe number is non-zero even in Req = 2.79 cm. Decreasing the tumor size
causes enhancement in convection function in IgG transfer. Subsequently, improvement
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of interstitial fluid flow behavior induced by normalization increases the quality of IgG
distribution in the tumor tissue.

Figure S5 shows the ASCD and DASCD in the untreated tumor and the tumor with
characteristics of normal tissue, as aggressive normalization intensity, in different tumor
sizes and solute types. Aggressive normalization does not have a constructive effect on drug
delivery. This is because the tumor capillary network is like a double-edged sword, which
on one hand disrupts efficient drug delivery due to properties such as high complexity and
permeability, and on the other hand utilizes characteristics such as high permeability and
surface area per unit volume to transfer the therapeutic agents. This reason for the present
study’s result has been supported by experimental research [71,72] and was addressed in
the literature [17,73]. Moreover, aggressive normalization cannot improve bulk mechanisms
of drug delivery, according to Figures 8b and S3.

4.3. Limitations and Future Works

In the present study, the effect of normalization induced by anti-angiogenic therapy
on drug delivery into the solid tumor was discussed numerically. However, there exist
some assumptions and limitations in the current research. The model was performed
with a macroscopic point of view, and variations over the microscopic scale were average.
Accordingly, for analyzing the function of normalization, the effect of anti-angiogenic
therapy on transport properties of the interstitium was considered instead of including the
tumor microvascular network by mathematical simulation [26] or image processing [27,74]
under the influence of anti-angiogenesis. Another assumption is that the model was
assumed to be 2D axisymmetric because there is one image of the tumor. It should be
noted that due to the limitations of available laboratory facilities, the present study was not
validated experimentally. Then, the predictions derived from the results of this research
can be more qualitative than quantitative.

Future plans for the present investigation will be to study the effects of the anti-
angiogenic drug in the resolution of the blood vessels and develop a multi-scale model to
predict anti-angiogenic therapy in combination with chemotherapy.

5. Conclusions

In this research, a numerical approach that couples the mathematical models of in-
terstitial flow and solute transport is developed to provide a detailed study on the role
of AAIN in drug delivery into a non-homogeneous solid tumor based on a real tumor
image with normal tissue around it. IgG and fragments (F(ab′)2 and F(ab′)) are considered
to evaluate the effect of drug type, and various αs are defined to figure out the influence
of normalization intensity. In addition to the original size of the tumor, three other sizes
are also considered in analyzing the ASCD and DASCD. The following conclusions are
redrawn based on the results:

Normalization causes the reduction in IFP and establishment of the pressure gradient
and consequently non-zero IFV in the inner areas of the tumor. The decrease in IFP drop
increases by normalization intensification.

The spread of non-zero IFV to the tumor tissue far from the boundary continues as
normalization intensifies until a certain extent, after which only the IFV decreases at the
tumor margin.

In all tumor sizes, normalization reduces the drug wash-out to the normal tissue by
controlling the sudden concentration increase at the periphery between tumor and normal
tissue and shifting the areas with concentration jump closer to the tumor.

Normalization can improve the solute concentration distribution in a time-dependent
manner. In order to figure out the efficacy of normalization in improving the distribution of
therapeutic agents, not only normalization intensity, but also the time after administration
must be considered. Thus, the results of this study could be used to exploit AAIN for
improving drug distribution regarding its drug-dependent temporal behavior.
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According to the ASCD and DASCD bar charts, aggressive normalization may not
be efficient. Compared to the untreated tumors, the same degree of normalization of
characteristics of the tumor as that of normal tissue results in less solute reaching the tumor.

For exploiting normalization in drug delivery improvement, it is necessary to pay
attention to which drug should be used in different tumor sizes. In large sizes, therapeutic
agents that rely the most on the trans-vascular diffusion, such as F(ab′), have a better
operation in combination with the anti-angiogenic therapy because of two reasons: (1) these
drugs distribute more uniformly in tumor tissue compared to the drugs whose dominant
transport mechanism is convection. This is due to that delivery of drugs that depends
on convection in large tumor sizes could utilize the improvement of fluid flow behavior
induced by normalization only in areas close to the boundary. However, the modification
of blood vessel properties under the influence of normalization occurs wherever there
is a source. (2) These drugs reach the necrotic area faster, and normalization enhances
the reservoir behavior. It is worth mentioning that F(ab′) returns to the plasma faster
due to rapid clearance. The tumor can be more exposed to F(ab′) by repeated injections.
In small sizes, the convective-dependent therapeutic agents such as IgG in combination
with anti-angiogenic therapy have more efficiency because the improvement of fluid flow
behavior caused by normalization is not limited to the periphery.

There is a relationship between the efficient normalization intensity and the dominant
mechanism of drug delivery. The reservoir effect of F(ab′) benefits from more intense nor-
malization compared to F(ab′)2 and IgG. Once the convection effect becomes comparable
to diffusion, such intensity of normalization improves the ASCD that has the better IFP
and IFV distribution.

The results of this research can be used as a guideline for preclinical and clinical
studies, which desire to use anti-angiogenic therapy in combination with chemotherapy in
solid tumors treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article
/10.3390/pharmaceutics14020363/s1; Figure S1: Distribution of IgG concentration along line 1,
12.5 days post-injection; Figure S2: Distribution of therapeutic antibodies concentration along line
1. (a) F(ab′), 8.8 days post-injection. (b) F(ab′)2, 32.3 days post-injection. (c) IgG, 89.9 days post-
injection; Figure S3: (a) Trans-vascular convection/ of F(ab′)2 in Req = 0.46 cm. (b) IFV in Req =

0.46 cm; Figure S4: ASCDNE of IgG in Req = 0.46 cm for untreated tumor and normalized one with
α = 4.0305; Figure S5: ASCD and DASCD in the untreated tumor and the tumor with aggressive
normalization. (a) Req = 2.79 cm and Req = 1.86 cm. (b) Req = 0.93 cm and Req = 0.46 cm.
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