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Abstract: The presence of the cap structure on the 5′-end of in vitro-transcribed (IVT) mRNA de-
termines its translation and stability, underpinning its use in therapeutics. Both enzymatic and
co-transcriptional capping may lead to incomplete positioning of the cap on newly synthesized
RNA molecules. IVT mRNAs are rapidly emerging as novel biologics, including recent vaccines
against COVID-19 and vaccine candidates against other infectious diseases, as well as for cancer
immunotherapies and protein replacement therapies. Quality control methods necessary for the
preclinical and clinical stages of development of these therapeutics are under ongoing development.
Here, we described a method to assess the presence of the cap structure of IVT mRNAs. We designed
a set of ribozyme assays to specifically cleave IVT mRNAs at a unique position and release 5′-end
capped or uncapped cleavage products up to 30 nt long. We purified these products using silica-
based columns and visualized/quantified them using denaturing polyacrylamide gel electrophoresis
(PAGE) or liquid chromatography and mass spectrometry (LC–MS). Using this technology, we deter-
mined the capping efficiencies of IVT mRNAs with different features, which include: Different cap
structures, diverse 5′ untranslated regions, different nucleoside modifications, and diverse lengths.
Taken together, the ribozyme cleavage assays we developed are fast and reliable for the analysis of
capping efficiency for research and development purposes, as well as a general quality control for
mRNA-based therapeutics.

Keywords: mRNA capping efficiency; ribozyme; in vitro-transcribed (IVT) mRNA; cap; quality control

1. Introduction

In vitro-transcribed (IVT) mRNA-based therapeutics are emerging as novel biologics
with a variety of applications, including recent vaccines against coronavirus disease 2019
(COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and
other infectious disease vaccine candidates, cancer immunotherapies, gene-editing treatments,
and protein replacement therapies [1–6]. Ongoing preclinical and clinical studies using IVT
mRNAs require innovative solutions for quality control of the IVT mRNA.

The presence of the cap structure at its 5’ terminus is one of the key features of
IVT mRNA that increases its stability and translatability. Capped mRNAs are generally
translated more efficiently compared to uncapped mRNAs [7–9]. After synthesis, enzymatic
and co-transcriptional capping of IVT mRNA may be incomplete, leading to the presence of
a variable number of uncapped molecules in the final IVT mRNA. Therefore, we developed
assays that allow for fast and simple quantitative measurements of the capping efficiency.
These assays can be used as a quality control for mRNA-based therapeutics.
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Current approaches for determining the capping efficiency of IVT mRNA have limited
applicability. In one method, IVT mRNA is transcribed from a short DNA template in
the presence of [α-32P]GTP and a cap analog. Digestion of this generated IVT mRNA
with RNase T2 has been shown to release a radioactive cap structure containing [32P]-
labeled 3′-phosphate using anion exchange chromatography and subsequent measure-
ments [10,11]. However, this approach is only applicable for RNAs < 50 nt long. Others
have determined the efficiency of enzymatic capping of long mRNA transcribed in the
presence of [γ-32P]GTP by measuring the reduction of mRNA radioactivity, as successful
capping eliminates the labeled Gamma phosphate [12]. The major disadvantage of these
methods is the use of radioactive material for mRNA production.

Another novel approach was developed whereby the capping efficiency of IVT mRNAs
of different lengths (>1000 nt) was measured without the use of radioactivity. In this procedure,
a complementary biotin-tagged oligonucleotide was annealed to the 5′-end of the IVT mRNA
which was then cleaved by RNase H [13]. The cleaved 5′-end was purified using streptavidin-
coated magnetic beads and then analyzed by liquid chromatography and mass spectrometry
(LC–MS). Although this method avoids radiolabeling of the mRNA, the RNase H cleavage site
was not unique since additional cleavage products of different lengths were also generated,
making the method not fully reliable. Furthermore, analysis of the cleaved fragments requires
LC–MS, which impacts the affordability of the assay. Recently, a biosensor detecting both the
capping level and integrity of mRNA was developed [14]. However, the biosensor method
only allows for the detection of variations in capping level in increments of at least 20%,
making this method difficult to use as a precise analytical tool.

In the method described here, ribozymes (Rz) were designed to specifically cleave
IVT mRNA at a unique position in close proximity to the 5′-end, releasing capped or
uncapped short 5′ cleavage products in a range of 10–30 nt. The well-defined 5′ cleavage
products cut off by the ribozyme from the capped mRNA differ by one nucleoside in
length, specifically the cap structure itself, compared to the cleavage products cut from
an uncapped RNA. RNAs from the cleavage reaction can be analyzed directly in denaturing
polyacrylamide gel electrophoresis (PAGE) or further purified using a silica-based column
and loading the resulting cleaned, short 5′ cleavage product RNAs onto the gel. The RNAs
are electrophoresed under conditions in which the difference of the 5′ cleavage products is
detectable. The stained and visualized 5′ cleavage products released from the capped or
uncapped mRNAs are quantified via their gel band intensity, and the capping efficiency is
assessed. In addition, the short purified 5′ cleavage products can be analyzed using LC–MS,
allowing for an additional characterization, such as determination of methylation status or
minor capped products.

2. Materials and Methods
2.1. Templates for In Vitro Transcription

Templates for in vitro transcription were generated by linearizing plasmids containing
different coding sequences, flanked by sequences corresponding to the 5′ untranslated
region (UTR) of human alpha globin (hAg) or 5′-leader of tobacco etch virus (TEV), a con-
stant 3′UTR, and 100 nt long poly(A) tail [15,16]. The linearization was performed with the
restriction enzymes EarI or BbsI (both from New England Biolabs, Ipswich, MA, USA).

2.2. In Vitro Transcription and Capping of RNA

RNA ranging in size from 100 nt to 9.4 kb was synthesized using the MEGAscript
T7 transcription kit (Thermo Fisher Scientific, Invitrogen, Waltham, MA, USA). The re-
action included UTP for generating standard IVT mRNA or N1-methylpseudouridine
5′-triphosphate (m1ΨTP) (TriLink) for nucleoside modified mRNA, in which 100% of uri-
dine was substituted with m1Ψ. In a subset of RNAs, the sequences of the first three
transcribed nucleotides were GCG, GGA, AGC, AGG or AGA. Cap analog, ARCA-G
(TriLink, N-7003), beta-S-ARCA (D1, BioNTech SE) [17] or CleanCap® Reagent AG (3′ OMe)
(TriLink, N-7413) were added to the transcription reaction to generate mRNA with cap0
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(A0), cap0 (D1) or cap1 (CC1), respectively. Vaccinia virus capping enzymes (New England
Biolabs) were used according to the manufacturer’s instructions to enzymatically cap the
synthesized mRNA and generate RNA with cap0 (E0) or cap1 (E1). RNA quality was tested
using 1.4% agarose gel electrophoresis [18], and RNA concentration was measured using
a NanoDrop spectrophotometer (Thermo Fisher Scientific).

2.3. Design of Ribozymes and RNase H Probe

Five hammerhead ribozymes were designed for this study (Table 1).

Table 1. Characteristics of the designed ribozymes.

5′UTR Rz Rz Sequence (5′-3′)

hAg

Rz1 UGU GGG CUG AUG AGG CCG UGA GGC CGA AAC CAG AAG AAU

Rz2 GGG GAC CAG AAG AAC UGA UGA GGC CGU GAG GCC GAA ACUm
AmGmUm UmCmGm

Rz3 UGU GGG CUG AUG AGG CCG UGA GGC CGA AAC CAG AA

Rz4 AGU CUG UGG GCU GAU GAG GCC GUG AGG CCG AAA CCA GAA GAA

TEV Rz5 GUA UAC UGA UGA GGC CGU GAG GCC GAA IUmUm GmUmGm
UmUmGm AmGmAm CmUmAm GmUmUm UmAm

Hammerhead Rz catalytic core sequences are underlined; hAg: Human alpha globin; I: Inosine; m: 2′-O-Met; TEV:
Tobacco etch virus; Rz: Ribozyme; 5′UTR: 5′ untranslated region.

Rz1, Rz2, Rz3, and Rz4 cleave the hAg 5′UTR after GUC, GUA, GUC, and GUC
triplets, respectively [19,20]. Rz3 differs from Rz1 by exhibiting a 4 nt shorter 3′ arm, while
Rz4 was designed with a 4 nt longer 5′ arm and 1 nt shorter 3′ arm. Rz5 was engineered
to contain inosine (I) and cleave the TEV 5′UTR after an ACA triplet [21]. To increase
the stability of the annealed Rz:target complex, 2′-O-methylated nucleotides (Nm) were
incorporated into the last 7 or 19 nucleotide positions of Rz2 and Rz5, respectively. The
RNase H probe (5′-dGdAdC dCdAdG AmAmGm AmAmUm AmCmUm Am-3′), in which
deoxynucleotides (dNs) were incorporated, was designed according to Beverly et al. [13].
Ribozymes and RNase H probe were synthesized by Metabion and their quality was
confirmed by electrospray ionization time-of-flight mass spectrometry (ESI-TOF).

2.4. The mRNA Cleavage by Ribozyme

Ribozyme cleavage reactions contained 0.2 to 0.6 µM mRNA, and a 2.5-fold molar
excess of ribozyme over mRNA substrate, in 10 mM Tris and 10 mM MgCl2. Initially,
ribozyme was annealed to mRNA in the reaction mix without MgCl2 by incubating first
at 95 ◦C for 2 min and then at room temperature for 5 min. The cleavage reactions were
started by adding MgCl2 and performed at 37 ◦C for 1 h, then processed further or frozen
at −20 ◦C. A 2.5-fold molar excess of ribozyme over mRNA was found to be optimal after
testing a range from 1.0- to 10.0-fold molar excess of ribozyme over the mRNA substrate.

2.5. The mRNA Cleavage by RNase H

The RNase H cleavage assay was conducted by annealing 5-fold molar excess of RNase
H probe with mRNA substrate by incubating at 92 ◦C for 2 min, then stepwise cooling
down (65 ◦C for 2 min, 55 ◦C for 2 min, and 40 ◦C for 2 min) in a buffer containing 50 mM
Tris and 100 mM NaCl. After annealing, 125 µM RNase H (New England Biolabs) and
10 mM MgCl2 were added to the reaction mix, followed by incubation at 37 ◦C for 1 h. The
reactions were further processed or frozen at −20 ◦C.

2.6. Purification of Cleaved, Short RNA Fragments Using Silica-Based Columns

The cleaved, short RNA fragments—from a mixture of the cleaved or uncleaved long
RNA fragments present in the ribozyme or RNase H-mediated cleavage reaction—were
purified by adapting a procedure for RNA separation using the RNeasy Mini Kit (Qiagen,
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Hilden, Germany). First, 100 µL cleavage reaction mixture was mixed with 350 µL RLT
buffer (lysis buffer from the RNeasy Mini Kit) and 250 µL 100% ethanol and applied to the
column. The long RNAs, including the uncut, full-length mRNA and the long 3′ cleaved
fragments remained on the column, while the short 5′ cleavage products were collected in
the flow-through fraction. Next, 50 µL RLT buffer and 500 µL 100% ethanol were added
to the collected flow-through fraction (700 µL), and the mix was applied to the second
silica column sequentially in two aliquots of 625 µL with intervening centrifugation at
9600× g for 15 s on an Heraeus Fresco 17 Centrifuge (Thermo Fisher Scientific). Here, the
temperature remained at 22 to 23 ◦C throughout all of the centrifugation steps. Under
these conditions, the short 5′ cleavage products and ribozyme bound to the column were
washed with 500 µL RPE buffer (wash buffer from the RNeasy Mini Kit) and centrifuged at
9600× g for 15 s, followed by a wash step with 500 µL 100% ethanol and centrifugation at
9600× g for 2 min. To remove the remaining ethanol, the column was transferred to a clean
collection tube and centrifuged at 17,000× g for 1 min. Then, the column was transferred to
a clean 1.5 mL tube, and the short RNA fragments were eluted by adding 30 µL RNase-free
water to the column followed by centrifugation at 13,800× g for 1 min. Typically, 20 µg
RNA was purified per column for RNAs <5 kb long or 60 µg for RNAs >5 kb long.

2.7. Purification of Cleaved, Short Fragments by Elution from Polyacrylamide Gel

As a second option, purification of cleaved, short fragments was performed according
to a method modified from Nilsen 2013 [22], whereby separation was followed by elution
from a 21% polyacrylamide gel prepared with 8 M urea. Samples were separated in two
mini gels processed parallel on a Bio-Rad Mini-Protean Tetra Cell in Tris-borate-EDTA
(TBE) buffer. The first gel was stained with SYBR® Gold nucleic acid gel stain (S11494,
Thermo Fisher Scientific) diluted 1:10,000 in TBE buffer and used as a reference, while the
corresponding bands of interest were cut from the second, unstained gel run in parallel.
The excised gel fragments were transferred into 400 µL elution buffer (20 mM Tris-HCl, 3 M
sodium acetate, 1 mM EDTA, 0.25% SDS), frozen for 15 min on dry ice and stored overnight
at room temperature to allow for the release of RNA into the solution. After centrifugation
at 17,000× g for 10 min, the supernatant contained RNA, which was extracted with an equal
volume of acid–phenol/chloroform, followed by chloroform. The isopropanol precipitation
was conducted, and the recovered RNA was dissolved in 10 µL RNase-free water.

2.8. Visualization and Analysis of Cleaved, Short Fragments by PAGE

RNA fragments cleaved by ribozyme or RNase H were diluted 1:1 with gel loading
buffer II (Thermo Fisher Scientific): (1) Directly after cleavage, (2) after cleavage and silica-
column purification or (3) after purification from a gel as described above. For optimal
loading, the reaction volumes were constant between the samples and the concentrations
of purified short RNA fragments were between 10–70 ng/µL. RNA samples were dena-
tured at 65 ◦C for 10 min, then separated using 21% PAGE, 8 M urea, in TBE buffer for
2–2.5 h, stained with SYBR® Gold and visualized by ultraviolet light using a Gel Doc
EZ system (Bio-Rad Laboratories, Hercules, CA, USA). The image was analyzed using
Volume tools in Image Lab 5.0 software (Bio-Rad). The images of RNA bands were selected
which corresponded to: (1) The slower moving capped 5′ cleavage product RNA, (2) the
1 nucleotide-shorter, faster moving uncapped 5′ cleavage product RNA, and (3) background
of the same area. To quantify the capping efficiency, the relative intensities of bands cor-
responding to the capped and uncapped RNA were measured for each RNA sample and
the background values were subtracted. The total intensity of the two bands combined
was considered 100%. The calculated value for the band corresponding to the capped RNA
represents the capping efficiency.

2.9. LC–MS Analysis of Ribozyme-Cleaved Products

The LC–MS analysis was performed using an Acquity Ultra Performance Liquid Chro-
matography (UPLC) system (Waters, Milford, CT, USA) coupled to a Xevo TQ-S mass spec-
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trometer (Waters) equipped with an electrospray source operating in negative ionization
mode. MS spectra were acquired over a range from m/z 400 to 2000. All of the samples were
chromatographed on an ACQUITY UPLC®BEH C18 column (2.1 mm × 50 mm; 1.7 µm
particle size, Waters) at 60 ◦C column temperature. The analytes were separated in a gradient
of 16.6 mM triethylamine (TEA; VWR), 100 mM hexafluoroisopropanol (HFIP; Sigma-Aldrich,
St Louis, MO, USA), and 10% methanol, Ultra LC–MS grade (Carl Roth, Karlsruhe, Germany)
as buffer A and 16.6 mM TEA, 100 mM HFIP, and 95% methanol as buffer B, with a flow rate
of 0.3 mL/min. The gradients applied for oligonucleotides >20 nt length were: 0% for 1.5 min,
0 to 7% over 3.5 min, 7 to 15% over 6.25 min, 15 to 40% buffer B over 4.5 min.

3. Results
3.1. Ribozyme Assays to Quantify the Capping Efficiency of IVT mRNA

Human alpha globin (hAg) and TEV 5′ untranslated regions (5′UTRs) are among
the most widely used 5′UTRs for therapeutic IVT mRNAs [16,23,24]. Ribozymes, that
targeted the 5′UTR sequences of hAg or TEV, were designed (Table 2, see Section 2). All
five of the ribozymes designed here were expected to form the well-described hammerhead
structure and cleave the targeted RNA after defined nucleotide triplets [19,25]. Ribozymes
cleave most efficiently after the AUC or GUC triplets, while other triplets can be also
targeted but with the following declining cleavage efficiency: GUA, AUA, CUC > AUU,
UUC, UUA > GUU, CUA > UUU, CUU [21]. Rz1, Rz3, and Rz4 were designed to cleave
after GUC and Rz2 after GUA. Rz5 contained inosine (I) which allows for recognition and
cleavage after the ACA triplet in the TEV 5′UTR [21].

Table 2. Length of the designed ribozymes and example cleavage products.

5′UTR Rz Rz (nt) Example of Uncapped 5′CP
(Capped: +7MeG) 5′CP (nt)

−Cap +Cap

hAg

Rz1 39 pppGCGAACUAGUAUUCUUCUGGUC > CCCACAGACU . . . 22 23

Rz2 45 pppGCGAACUAGUA > UUCUUCUGGUCCCCACAGACU... 11 12

Rz3 35 pppGCGAACUAGUAUUCUUCUGGUC > CCCACAGACU . . . 22 23

Rz4 42 pppGCGAACUAGUAUUCUUCUGGUC > CCCACAGACU . . . 22 23

TEV Rz5 47 pppGGAAUAAACUAGUCUCAACACAACA > UAUACAAA... 25 26

Recognition sequences are underlined; cleavage positions are indicated as N >; CP: Cleavage product; hAg: Human
alpha globin; TEV: Tobacco etch virus; Rz: Ribozyme; 5′UTR: 5′ untranslated region.

Each of the ribozyme-mediated cleavage reactions produced short capped and un-
capped RNA 5′ cleavage products that differed from each other solely in their lengths—due
to the cap structure, the capped RNA was exactly one nucleotide longer. The ribozymes
were designed to cleave off 10–30 nt long products from the target RNA, while the ri-
bozymes were 35–47 nt, allowing for the separation and differentiation of the 5′ cleavage
products and the ribozyme (Table 2). The Rz2 and Rz5 sequences that are complementary
to the targeted RNA also contained 2′-O-methylated nucleotides to enhance the cleavage
by increasing the stabilities of the formed double-strand structures.

To quantify the capping efficiency, Rz was annealed to the mRNA substrate (Figure 1).
In the presence of Mg++ ions, the 5′-end of the IVT mRNA was cleaved, resulting in
a mixture of: Short capped and/or uncapped 5′ cleavage products, long 3′ cleavage
products, long uncleaved RNA, and the Rz. Optimized conditions were used to purify short
Rz-cleaved fragments using silica-based MinElute Qiagen columns, prior to visualization
using 21% PAGE, 8 M urea or LC–MS analysis (Figure 1). In this case, 5′ cleavage products
together with the ribozyme are purified and further visualized/quantified. Purification
of the 5′ cleavage products is necessary for LC–MS analysis and also improves RNA
visualization using 21% PAGE, 8 M urea.
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Figure 1. Ribozyme-mediated cleavage to quantify the capping efficiency of in vitro-transcribed
mRNA. Ribozyme (Rz) anneals to IVT mRNA and cleaves the 5′-end of the IVT mRNA at 37 ◦C in
the presence of Mg++. Substrate cleavage results in a mixture of RNAs: Short capped and uncapped
5′ cleavage products (5′CPs), long 3′ cleavage products (3′CPs), long uncleaved RNAs, and the Rz.
The mixture is purified using a process with two silica-based columns, whereby the long RNAs and
3′CPs are depleted on the first column membrane using specific salt and ethanol conditions. The
collected flow-through containing the short capped and uncapped 5′CPs is applied to the second
column, bound on its membrane, and eluted in water. The purified 5′CPs and Rz are visualized using
21% PAGE, 8 M urea or analyzed with liquid chromatography and mass spectrometry (LC–MS),
allowing for the quantification of capping efficiency of the IVT mRNA.

An alternative purification approach was implemented on the PAGE-separated sam-
ples, by extracting and eluting the 5′ cleavage products from the gel (see Section 2, data
not shown). This process results in the elimination of both the uncut and 3′-end cleaved
RNA products as well as the ribozyme from the mixture, which may be an advantage in the
case where the LC–MS analysis is planned using Rz and 5′ cleavage products that overlap.
However, this purification step is experimentally time consuming and not easily scalable.
Using this method, it is possible to purify 2–4 samples in parallel in 2 days, while using
silica-based columns allows for the purification of 12 samples in parallel in less than 1 day
with the option to scale up.

Here, we describe an assay to assess the capping efficiency. The method consists
of a ribozyme cleavage reaction, purification of cleaved fragments, and visualization of
capped and uncapped products using 21% PAGE, 8 M urea or LC–MS analysis.

3.2. Ribozyme Cleavage Assay Optimization

To identify the optimal molar ratio of the Rz to RNA substrate for the cleavage
reaction, a 112 nt long U-containing or m1Ψ-containing mRNA substrate was selected.
Using the aforementioned short substrates allowed for the detection and differentiation
of the uncleaved RNA, 5′ and 3′ cleavage products, and the Rz separated on the same gel.
Figure 2 shows the 112 nt long uncleaved RNA, the 22 and 90 nt long 5′ and 3′ cleavage
products, and the 39 nt long Rz1 that were detected using 21% PAGE, 8 M urea. Increasing
molarities of Rz over the RNA substrate were tested for both U- and m1Ψ-containing RNAs.
A 2.5-fold excess molarity of Rz over the RNA substrate was selected and used in all of the
subsequent experiments.
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Figure 2. Optimization of molar ratio of ribozyme to the IVT mRNA substrate. A fixed amount of
U-containing or m1Ψ-containing uncapped mRNA was cleaved using increasing amounts of Rz1,
and the resulting mixture was visualized using 21% PAGE, 8 M urea. The cleavage efficiency of
Rz1 was assessed for increasing Rz to IVT mRNA substrate molar ratios, based on ratios between
uncleaved RNA (112 nt long) and 3′ cleavage products (3′CP = 90 nt long). Molar ratios of Rz to RNA
substrate from 1 to 10 were tested, resulting in approximately 50 to 70% cleavage. Rz was used as
a control (ctrl). 5′CP: 5′ cleavage products; nt: Nucleotides.

For further optimization, various temperature settings during the cleavage reaction
were tested. The reaction was performed with Rz1, Rz3, and Rz4 at 25, 37, and 50 ◦C, as
detailed in Section 2.4.

The temperature did not have any notable effect on Rz cleavage in this experiment,
and the same capping efficiency results were obtained using different temperature settings.
However, the reactions performed at 50 ◦C led to more prominent degradation (data not
shown). Takagi et al. and Sawata et al. found that below 25 ◦C the product dissociation
step has become the rate-determining step. In addition, at the temperature of 37 ◦C no
burst kinetics were detected and ribozyme chemical cleavage was the rate-determining
step [26,27]. Taking their and our findings into consideration, cleavage reactions at 37 ◦C
were used in subsequent experiments.

3.3. Capping Efficiency Quantification after Visualizing 5′ Cleavage Products Using 21% PAGE,
8 M Urea

To measure the capping efficiency, short capped and uncapped 5′ cleavage products
were visualized using 21% PAGE, 8 M urea. As a proof-of-principle experiment, cleavage
reactions were conducted using erythropoietin (EPO)-encoding mRNA. GCG transcription
start site (TSS) and hAg 5′UTR-containing IVT mRNAs were cleaved using Rz1 and Rz2.
EPO-encoding GGA TSS and TEV 5′UTR-containing IVT mRNAs were cleaved using Rz5.
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The following U- and m1Ψ-containing RNAs were tested: Uncapped (-), enzymatically
capped without 2′-O-methylation (E0), enzymatically capped and 2′-O-methylated (E1) or
ARCA co-transcriptionally capped (A0). Using 21% PAGE, 8 M urea, the bands representing
ribozyme (Rz) and short capped and uncapped 5′ cleavage products were detected at the
expected sizes (Figure 3).
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Figure 3. Ribozyme-mediated cleavage effectively assesses capping efficiencies of IVT mRNAs by
visualization and quantification using denaturing polyacrylamide gel electrophoresis. Ribozyme- (Rz)
mediated cleavage (using Rz1, Rz2, and Rz5) of U-containing or m1Ψ-containing RNAs: Uncapped
(-), enzymatic cap0 (E0), enzymatic cap1 (E1), and ARCA (A0) were purified on silica-based columns
and then visualized using 21% PAGE, 8 M urea (purified, upper panel) or visualized using 21% PAGE,
8 M urea without silica-based column purification (unpurified, lower panel). Rz was used as a control
on both the upper and lower panels, while uncleaved mRNA was in addition used as a control (ctrl)
on the lower panels. 5′CP: 5′ cleavage products (upper: Capped, lower: Uncapped); nt: Nucleotides.

The 3′-end cleavage products or uncleaved long RNAs were observed in 21% PAGE,
8 M urea gels after ribozyme-mediated cleavage reactions without a silica-based column
purification step. Depletion of long RNA fragments and an increase in signals representing
the short capped and uncapped 5′ cleavage products were observed after purification
using silica-based columns. As expected, visualization using 21% PAGE, 8 M urea showed
the presence of bands at the bottom of the gel in all of the uncapped control (-) RNA
samples. Furthermore, in all of the enzymatically capped (E0 and E1) samples, a capped
high-intensity band was observed in the majority of cases, while uncapped bands were not
observed or had lower intensities, indicating the high capping efficiency of enzymatically
capped RNAs. In contrast, both capped and uncapped bands were detected in comparable
intensities in ARCA (A0) samples, irrespective of the RNA or Rz used.

Approximately 84–100% capping efficiencies were detected for all of the 12 enzymat-
ically capped (E0 and E1) samples independent of the 5′-end and ribozyme used, while
ARCA (A0) samples showed 34–53% capping efficiencies for hAg 5′UTR and 67–77% for
TEV 5′UTR-containing RNAs (Table 3). When the % capping efficiencies of purified E0
RNA and corresponding 2′-O-methylated E1 RNA were compared, in five of six cases
+/−1% differences were seen, showing the high reproducibility of the assay.
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Table 3. Capping efficiencies of IVT mRNAs quantified after ribozyme-mediated cleavage assays
and visualized using 21% PAGE, 8 M urea on Figure 3.

5′UTR hAg TEV
Purification Unpurified Purified Unpurified Purified

Assay Rz1 Rz2 Rz1 Rz2 Rz5
Cap Modification Capping Efficiency (%)

E0 U 100 86 90 95 93 89
m1Ψ 88 100 95 96 100 99

E1 U 100 84 91 95 95 90
m1Ψ 92 100 95 96 98 95

A0 U 52 51 52 52 75 67
m1Ψ 40 48 53 34 77 69

Enzymatically capped without 2′-O-methylation (E0); enzymatically capped and 2′-O-methylated (E1); ARCA
co-transcriptionally capped (A0); unmodified/uridine-containing (U); m1Ψ-containing (m1Ψ); hAg: Human
alpha globin; TEV: Tobacco etch virus.

Capping efficiencies of silica-column purified RNAs were consistently less variable when
compared to ribozyme-cleaved RNAs that were not silica-column purified. In 10 of 12 cases
using different batches of purified RNAs, both E0 and E1 showed capping efficiencies between
90 and 96%, while for the same RNAs that were not silica-column purified, the observed
capping efficiency range was 88 to 100% (Table 3). Therefore, purification using silica columns
is recommended as a standard part of the procedure, not only for LC–MS analysis but also for
visualization using 21% PAGE, 8 M urea and capping efficiency quantification.

3.4. Capping Assay by Ribozyme-Mediated Cleavage Effectively Assesses Capping Efficiencies of
Diversely Capped IVT mRNAs of Different Lengths

To test whether the ribozyme-mediated cleavage can detect capping of IVT mRNA with
different lengths, a Rz5 cleavage reaction was performed (without modifying the method
described above) on five IVT mRNAs ranging from 1.1 to 9.4 kb in length. The 1.1 kb long
beta-S-ARCA (D1) capped TEV 5′UTR, m1Ψ-containing RNA showed 61% capping efficiency,
while the 2.3–9.4 kb long CleanCap® Reagent AG (3′ OMe), cap1 (CC1) RNAs showed 81–92%
capping efficiency (Figure 4). There was no correlation observed between the % capping and
RNA length. The method described here successfully assessed the capping efficiencies of IVT
mRNAs of different lengths capped using diverse cap structures.

3.5. Ribozyme-Mediated Cleavage Assay Detects an Increase in Capping Efficiency after Additional
Enzymatic Capping of Co-Transcriptionally Capped RNA

To further test the ribozyme-mediated cleavage assay performance, the co-transcriptionally
capped D1 U-containing GCG TSS hAg 5′UTR IVT mRNA was subsequently subjected to
enzymatic capping (E1). While co-transcriptionally D1 capped IVT mRNA initially showed
67% capping efficiency, after subsequent E1 capping, the capping efficiency increased to
94% (Figure 5). This finding confirms that a significant portion of 5′ cleavage products in
D1 are indeed uncapped and do not represent the T7 RNA polymerase potentially skipping
the first G at the start of transcription, which might result in the same RNA fragment that
is 1 nt shorter than the capped fragment and equal to the size of the uncapped fragment.
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Figure 4. Ribozyme-mediated cleavage effectively assesses capping efficiencies of IVT mRNAs of
different lengths. The image shows 21% PAGE, 8 M urea visualization of Rz5-cleaved and silica-
column purified TEV, m1Ψ-containing, beta-S-ARCA (D1) or CleanCap® Reagent AG (3′ OMe), cap1
(CC1) capped IVT mRNAs. The IVT mRNAs ranged from 1.1 to 9.4 kb in length. Rz: Ribozyme; 5′CP:
5′ cleavage product.
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Figure 5. Ribozyme-mediated cleavage assay detects an increase in capping efficiency after enzy-
matic capping of co-transcriptionally capped IVT mRNA. GCG transcription start site (TSS), hAg,
U-containing IVT mRNAs, which were co-transcriptionally D1 capped or D1 + enzymatically capped
(D1 + E1), were Rz1 cleaved, silica-column purified, and visualized using 21% PAGE, 8 M urea. Rz:
Ribozyme; 5′CP: 5′ cleavage product.
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3.6. Ribozyme-Mediated Cleavage Assay Performance Superior to RNase H Cleavage Assay

To compare the ribozyme-mediated and RNase H-mediated cleavage assays, we devel-
oped six RNase H probes that could anneal to the hAg 5′UTR sequence. RNase H cleavage
reactions were performed (as described in the Section 2) and the probes were screened
(data not shown). A probe (P1) containing a stretch of six DNA nucleotides (dNs) and ten
2′-O-methylated RNA nucleotides was selected due to the superior performance (Table 4).

Table 4. RNase H cleavage assay probe and products.

5′UTR Probe
Name

Probe
Sequence (5′-3′)

Probe
Size (nt) (1) 5′CP Sequence w/o Cap 5′CP Size (nt)

(2) Minor Cleavage
Product −Cap +Cap

hAg Probe
1(P1) GACCAGAmAmGmAmAmUmAmCmUmAm 16

(1) GCGAACUAGUA UU-
CUUCUGG 20 21

(2) GCGAACUAGUA UU-
CUUCUGGU 21 22

DNA nucleotides in bold: dN; m: 2′-O-Met; hAg: Human alpha globin.

The 5′-end of the hAg GCG-starting enzymatically capped (E0 or E1) or co-transcriptionally
ARCA capped (A0) U- and m1Ψ-containing RNAs was RNase H cleaved (Figure 6). RNase
H cleavage confirmed high capping efficiencies for enzymatic RNAs previously detected
by ribozyme-mediated cleavage (purified hAg GCG: 75–85%). For ARCA samples, rather
low capping efficiencies of 37–47% were obtained (Figure 6, Table 5), which is in accordance
with the data shown in Section 3.3.
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Figure 6. Ribozyme-mediated cleavage assay is superior to the RNase H cleavage assay. RNase H
probe (P1) was hybridized, and RNase H cleaved a set of U-containing or m1Ψ-containing RNAs:
Uncapped (-), enzymatic cap0 (E0), enzymatic cap1 (E1), and ARCA (A0). Cleaved RNA fragment
mixtures were applied to silica-based columns for purification and visualized using 21% PAGE, 8 M
urea (purified) or visualized using 21% PAGE, 8 M urea without silica-based column purification
(unpurified). White arrows: Additional +1 nt band, dashed square: RNA degradation caused by
RNase H. RNase H probe P1 or uncleaved RNA (ctrl) were used as controls. 5′CP: 5′ cleavage
products; nt: Nucleotides.
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Table 5. Quantification of capping efficiencies of IVT mRNAs after the RNase H cleavage assay and
visualization using 21% PAGE, 8 M urea.

5’UTR hAg
Purification Unpurified Purified

Cap Modification Capping Efficiency (%)

E0 U 75 82
m1Ψ 89 85

E1 U 82 78
m1Ψ 82 83

A0
U 56 47

m1Ψ 40 37
Enzymatically capped without 2′-O-methylation (E0); enzymatically capped and 2′-O-methylated (E1); ARCA
co-transcriptionally capped (A0); unmodified/uridine-containing (U); m1Ψ-containing (m1Ψ); hAg: Human
alpha globin.

In contrast to the ribozyme-mediated cleavage, the RNase H cleavage resulted in
an additional band. The band was 1 nt longer (21 or 22 nt long) and appeared in all of the
U-containing samples, including uncapped RNA, next to or overlapping the expected short
RNA fragments of 20 and 21 nt, corresponding to the uncapped and capped enzymatic 5′

cleavage products, respectively (Figure 6). This finding indicates that RNase H cleaved at
two positions: At the expected position after the fourth DNA nucleotide and with lower
efficiency at the position after the fifth DNA nucleotide, thereby complicating the capping
efficiency analysis in U-containing samples (Figure 6). In addition, in all of the RNase
H-cleaved samples, a large spread of nonspecific long RNA fragments not present in the no-
enzyme control was observed (Figure 6). These nonspecific long RNA fragments of various
sizes could not be depleted by silica-based column purification. Their presence made the
capping efficiency quantification from the 21% PAGE, 8 M urea gels less reproducible, and
this may lead to the complex LC–MS analysis.

Accordingly, RNase H cleavage using specific probes can be used to quantify the
capping efficiency using 21% PAGE, 8 M urea. However, the ribozyme-mediated cleavage
in contrast to the RNase H cleavage leads to a single-position cleavage and does not result
in a smear of nonspecific long fragments, allowing for the reliable quantification using 21%
PAGE, 8 M urea or LC–MS analysis.

3.7. LC–MS Analysis of Capping Efficiency Using the Ribozyme-Mediated Cleavage Assay

As a proof-of-principle, the LC–MS analysis was conducted on ribozyme-cleaved and
silica-based column purified short 5′ cleavage products from enzymatically capped and
2′-O-methylated (E1) or CleanCap® Reagent AG (3′ OMe) (CC1) AGG TSS, hAg 5′UTR, m1Ψ-
containing IVT mRNAs. UPLC and MS profiles of E1 capped IVT mRNA (Figure 7) showed:

• 68% of the expected major product
(7MeGpppA(OMe)GGCGAACU*AGU*AU*U*CU*U*CU*GGU*C > p);

• 20% unmethylated product
(7MeGpppAGGCGAACU*AGU*AU*U*CU*U*CU*GGU*C > p);

• and 1% additional product (+G).

The detection of 89% of the E1 capped product (for AGG TSS IVT mRNA) is in
agreement with the detected 95–96% for E1 capped RNAs using 21% PAGE, 8 M urea.
Furthermore, a different batch and GCG TSS RNA were used for PAGE.
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EPO mRNA (Figure 8) showed >99% capping, which is also in agreement with >90% cap-
ping efficiency obtained by screening of >100 CC1-capped IVT mRNAs using 21% PAGE, 
8 M urea (Figure 4 and data not shown). Therefore, the ribozyme-mediated cleavage assay 
combined with silica-based column purification are highly compatible with the LC–MS 
analysis. As shown here, the application to LC–MS analysis creates additional possibilities 
for characterizing 5′ cleavage products, such as determining the methylation status or dis-
tinguishing minor capped products. 

Figure 7. LC–MS analysis of ribozyme-mediated cleavage products for quantification and character-
ization of capped products from Rz1 cleaved and silica-column purified enzymatically capped
and 2′-O-methylated (E1), human alpha globin (hAg), m1Ψ-containing erythropoietin (EPO)
mRNA. The enzymatical capping procedure provides 7MeGpppA(OMe)GGCGAACU*AGU*AU*U*-
CU*U*CU*GGU*Cp (MW = 8334) and 7MeGpppAGGCGAACU*AGU*AU*U*CU*U*CU*GGU*Cp
(MW = 8319) in a 7:2 ratio, resulting from an incomplete 2′O-methyl transfer. (A) UPLC and (B) MS
profiles. Rz: Ribozyme; Cap: Capped product; Capm: Capped methylated product; Capu: Capped
unmethylated product; Cap+G: Minor product; AU: Arbitrary units.

UPLC and MS profiles of CleanCap® Reagent AG (3′ OMe), N-7413 TriLink (CC1) EPO
mRNA (Figure 8) showed >99% capping, which is also in agreement with >90% capping
efficiency obtained by screening of >100 CC1-capped IVT mRNAs using 21% PAGE, 8 M
urea (Figure 4 and data not shown). Therefore, the ribozyme-mediated cleavage assay
combined with silica-based column purification are highly compatible with the LC–MS
analysis. As shown here, the application to LC–MS analysis creates additional possibilities
for characterizing 5′ cleavage products, such as determining the methylation status or
distinguishing minor capped products.
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bozyme; Cap: Capped product; AU: Arbitrary units. 
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process of mRNA production, capping of the mRNA can be performed enzymatically or 
co-transcriptionally. Both strategies result in a mixture of capped and uncapped mRNA 
molecules. In this study, we developed an assay to detect the capping efficiency based on 
a ribozyme-mediated cleavage reaction. After this reaction, the next steps are silica-col-
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number of mRNA samples in parallel without the need for specific equipment. In addi-
tion, the method described here is compatible with LC–MS analysis, allowing for in-depth 

Figure 8. LC–MS analysis of ribozyme-mediated cleavage products for quantification and charac-
terization of capped products from Rz1 cleaved and silica-column purified CleanCap® Reagent AG
(3′ OMe) = cap1 (CC1), human alpha globin (hAg), m1Ψ-containing erythropoietin (EPO) mRNA.
Expected capped product (MW = 8347) is detected in >99%. (A) UPLC and (B) MS profiles. Rz:
Ribozyme; Cap: Capped product; AU: Arbitrary units.

4. Discussion

The quality control of mRNA vaccines and therapeutics is necessary at every stage
of development, from preclinical studies to clinical applications, as well as to support
marketing authorizations. The cap structure on the mRNA molecule determines the mRNA
translation, and thus correlates with the therapeutic efficacy of the mRNA [7–9]. In the
process of mRNA production, capping of the mRNA can be performed enzymatically or
co-transcriptionally. Both strategies result in a mixture of capped and uncapped mRNA
molecules. In this study, we developed an assay to detect the capping efficiency based
on a ribozyme-mediated cleavage reaction. After this reaction, the next steps are silica-
column purification and visualization, and quantification using 21% PAGE, 8 M urea or
LC–MS analysis. Visualization using 21% PAGE, 8 M urea allows for the analysis of a large
number of mRNA samples in parallel without the need for specific equipment. In addition,
the method described here is compatible with LC–MS analysis, allowing for in-depth
characterization, where not only the percentage of capping, but the methylation status and
potential minor capped byproducts can be detected from the same sample.
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As previously discussed, the current approaches to assess the capping efficiency have
limitations, such as the necessity for radioactive labeling [10–12] or a rather insensitive
detection of capping levels [14]. Beverly et al. developed an assay to assess the capping
efficiency based on the RNase H cleavage of specific biotin-tagged probes followed by
purification using streptavidin-coated magnetic beads and LC–MS analysis [13]. Here, we
directly compared our developed ribozyme-mediated cleavage assay, which is targeted to
the hAg 5′UTR with the RNase H cleavage assay that we designed for the same 5′UTR. As
expected, ribozyme cleaved only at one position in the IVT mRNA, and after silica-based
purification only three short RNA fragments (the ribozyme as well as the capped and
uncapped 5′ cleavage products) were observed on the gel, allowing for precise quantifica-
tion. In contrast, RNase H cleaved at two positions, resulting in capped and uncapped 5′

cleavage products and an additional unexpected band 1 nt longer that also appeared in the
uncapped RNA control sample. Therefore, quantification using the RNase H assay was
cumbersome. These results are in accordance with the observations of Beverly et al., who
also reported two cleavage sites after RNase H cleavage and biotin-tagged analysis [13].
Moreover, we observed that the RNase H cleavage also yields a large number of nonspecific
long cleaved RNA fragments, which are expected to negatively influence quantification.
We conclude that the assay based on the ribozyme cleavage developed in this study shows
major benefits compared to the other assays for capping detection.

The ribozyme design for use in these assays depends on the 5′-terminal sequence of the
target mRNA, in order to quantify the capping efficiency. Therefore, a ribozyme cleavage
site is required in a structurally accessible region between position 10 and 30 nt from the 5′-
end of the mRNA. In this study, hammerhead ribozymes were designed to cleave after GUC
(Rz1, Rz3, Rz4), GUA (Rz2) or ACA (Rz5) triplets. In addition to these triplets, other NUH
triplets (H represents A, C or U) which can be targeted by hammerhead ribozymes can be
also employed (NUH cleavage efficiency in decreasing order is: AUC > AUA, CUC > AUU,
UUC, UUA > GUU, CUA > UUU, CUU [21]). Incorporation of inosine in the ribozyme
recognition sequence (as in Rz5) allows for additional targeting at NCH triplets (e.g., ACA).
The possibility of targeting both canonical NUH triplets and non-canonical NCH sites
significantly improves the versatility of this assay by allowing for the selection of the
most accessible cleavage site within the 5′UTR [21]. The assays developed and optimized
here could be used to reproducibly quantify the capping efficiencies of U-containing
or m1Ψ-containing IVT mRNAs with diverse caps, containing different 5′UTRs, and of
different lengths. The 89 to 100% capping efficiencies observed after using a vaccinia virus
capping enzyme system confirm the previous findings of 88 to 98% capping, as reported
by Beverly et al. [13]. Moreover, we show that diverse cap structures can lead to diverse
capping efficiencies that are relatively consistent between different IVT mRNA batches
produced using the same cap structure. For example, while enzymatic capping and co-
transcriptionally capped CleanCap® Reagent AG (3′ OMe) (TriLink) typically yielded >90%
capping efficiencies, co-transcriptional capping using ARCA-G (TriLink) or beta-S-ARCA
(D1) led to lower capping efficiencies ranging from 34 to 77%.

Taken together, the ribozyme-mediated cleavage assays developed in this study are
useful assays for facile, fast, and reliable analysis of capping efficiency for research and
development purposes or as a quality control for hAg and TEV 5′UTR-containing mRNA-
based therapeutics. The same methods for ribozyme assay design, short fragment purifi-
cation, and visualization or quantification by gel electrophoresis or LC–MS analysis may
be used to develop ribozyme assays targeted against other 5′UTRs, allowing for a wider
applicability in the mRNA therapeutics field.
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