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Abstract: Retentive drug delivery systems (DDSs) are intended for prolonged residence and release
inside hollow muscular organs, to achieve either local or systemic therapeutic goals. Recently,
formulations based on shape memory polymers (SMPs) have gained attention in view of their
special ability to recover a shape with greater spatial encumbrance at the target organ (e.g., urinary
bladder or stomach), triggered by contact with biological fluids at body temperature. In this work,
poly(vinyl alcohol) (PVA), a pharmaceutical-grade SMP previously shown to be an interesting
4D printing candidate, was employed to fabricate expandable organ-retentive prototypes by hot
melt extrusion. With the aim of improving the mechanical resistance of the expandable DDS and
slowing down relevant drug release, the application of insoluble permeable coatings based on either
Eudragit® RS/RL or Eudragit® NE was evaluated using simple I-shaped specimens. The impact of
the composition and thickness of the coating on the shape memory, swelling, and release behavior
as well as on the mechanical properties of these specimens was thoroughly investigated and the
effectiveness of the proposed strategy was demonstrated by the results obtained.

Keywords: shape memory polymer; poly(vinyl alcohol) (PVA); hot melt extrusion; fused deposition
modeling; film-coating; retentive drug delivery system; expandable drug delivery system

1. Introduction

Drug delivery systems (DDSs) intended to be retained within hollow muscular organs
may represent an advantageous strategy to maintain effective drug concentrations at the
target site for a prolonged period of time, thus potentially improving local treatments
and/or bioavailability of different molecules [1–5]. In this respect, intravesical devices
have been proposed to reduce the risk of cancer relapse, to fight infections, and to treat
other widespread urinary tract diseases. On the other hand, gastro-retentive systems could
advantageously be used for treatment of gastric or duodenal ulcers, eradication of H. pylori,
increased absorption of a range of drugs, and improved efficacy of long-term therapies that
are severely impaired by compliance issues.

Depending on the organs involved and the administration mode, different retention
mechanisms have been described over the years, such as low-density floatation, high-
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density sinking, and bioadhesion [6–8]. However, when dealing with hollow organs having
challenging access through relatively small ducts for the inflow and outflow of biological
fluids and containing highly variable amounts of liquids, the strategy based on expansion
at the target site was proved especially effective [9]. It entails the use of shapes/sizes that
would ensure easy administration of the system, while the subsequent size increase, leading
to a bulkier configuration, would make its retention possible. In this respect, swelling
and unfolding phenomena have been exploited. The latter may rely on either mechani-
cal/elastic/superelastic deployment or on shape memory, which consists of untethered
shape modifications triggered by an external non-mechanical stimulus, such as a change
in temperature, moisture, or light [6,10–16]. Among shape memory polymers (SMPs),
pharmaceutical-grade poly(vinyl alcohol) (PVA) has recently been used for the manufac-
turing of prototypes able to be programmed into space-saving temporary shapes and,
upon contact with aqueous media at body temperature, recover the bulky original shapes
attained through the production process [17,18]. Due to its well-known safety profile and
swelling behavior followed by erosion/dissolution in aqueous media, PVA was selected
for the development of DDSs to be retained in the urinary bladder or in the stomach. The
ability of such systems to maintain the recovered original shape for a prolonged period
of time would depend on their geometry, micro-structure, and composition on one hand,
and on the motility of the target muscular organ on the other. Therefore, prototypes having
different original shapes were fabricated by hot melt extrusion (HME) and fused deposition
modeling (FDM). These techniques were chosen in view of the geometric versatility they
would ensure and the possibility of processing materials having diverse properties [19–27].
Moreover, 3D printing of a shape memory polymer of pharmaceutical-grade resulted in
one of the first applications of 4D printing in pharmaceutics [28–32]. Figure 1 summa-
rizes: (i) original shapes obtained by the manufacturing process, (ii) temporary shapes
programmed under appropriate thermo-mechanical protocols, and (iii) possible intravesical
as well as intragastric applications of these SMP-based expandable DDSs. The original
shapes given under fabrication (e.g., U-, I-, helical-, and S-shape) were designed with a
spatial encumbrance suitable for long-lasting residence in the target organ, specifically to
avoid early emptying of the DDS and the risk of occlusion of the urethra or the pylorus.
On the other hand, the temporary shapes (e.g., I and supercoiled) were conceived for
administration through the selected routes (i.e., insertion into the urinary bladder via a
catheter or oral intake inside a commercially available hard-gelatin capsule) and achieved
by manual deformation. A comprehensive pool of data was obtained from PVA-based
samples under various experimental conditions (e.g., volume and type of fluids, tempera-
ture, presence of external constraints) [33,34]. Such data were then used to calibrate and
validate a mathematical model intended to ease further development of the expandable
DDSs allowing for the screening of a broad range of possible compositions and geometries.

However, the relatively short timescale of release from expandable PVA-based DDSs
was found to be an issue, especially when dealing with chronic pathologies that would
benefit from long-lasting retention at the target site. Indeed, improvement of patient
compliance and of treatment efficacy, through reduced dosing frequency and fluctuations
in drug plasma concentrations, were indicated as key elements in the development of intra-
gastric DDSs intended to treat a range of diseases having great social interest and economic
impact, such as acquired immunodeficiency syndrome and hepatitis C [11,13,35–37]. For
this purpose, an at least 8-h prolonged-release performance would be required from gastro-
retentive DDSs [2,6,10]. Interestingly, preliminary attempts to coat the PVA prototypes with
low-permeable polymeric films led to promising results [18,34].

Based on these premises and in order to broaden the spectrum of applications of
the expandable DDS under development, the aim of the present work was to thoroughly
investigate the effects of different permeable insoluble coatings on the mechanical proper-
ties, shape memory behavior, and release performance of extruded PVA-based prototypes
intended for long-lasting retention within hollow organs. Simple items, having an original
I-shape and programmed to take on a temporary U-shape, were employed as screening
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tools and allopurinol (ALP) was selected as the tracer drug because of its stability even at
high temperatures [38].
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Figure 1. Design concept of expandable DDSs based on SMPs intended for retention in hollow
muscular organs (dimensions are in mm).

2. Materials and Methods
2.1. Materials

PVA (PVA48; Gohsenol™ EG 48P, Nippon Gohsei, Tokio, Japan; viscosity of 4% w/v
solution at 20 ◦C = 41.3–55.7 (48.5) mm2/s); glycerol (GLY; Pharmagel, Milan, Italy);
methacrylic acid copolymers, i.e., Eudragit® RL100 and Eudragit® RS100 (Evonik, Darmstadt,
Germany); triethyl citrate (TEC; Sigma Aldrich, Milan, Italy); ready-to-use dispersion of
methacrylic acid copolymer, i.e., Eudragit® NE (Evonik, Darmstadt, Germany); ethanol
(Sigma Aldrich, Milan, Italy); ALP (FarmaQuimica sur S.l., Málaga, Spain; boiling
point = 250.36 ◦C, melting point = 390 ◦C) [38]; nylon filament containing carbon fibers
(Carbonio, TreeD filaments, Milan, Italy).

2.2. Methods
2.2.1. Preparation of PVA-Based Formulations

All powders were dried in an oven at 40 ◦C for 24 h prior to use.
Plasticized polymeric formulation: PVA was placed in a mortar and GLY (15% w/w

calculated on the dry polymer) was added dropwise under continuous mixing.
ALP-containing formulation: ALP was added to the plasticized polymeric formulation

(1:9 mass ratio) by mixing in a mortar, immediately before hot-processing.

2.2.2. Hot Melt Extrusion

Prototypes were fabricated by HME using a twin-screw extruder (Haake™ MiniLab II,
Thermo Scientific, Milwaukee, WI, USA) equipped with counter-rotating screws and an
aluminum homemade die of 1.5 mm in diameter under the following conditions: tempera-
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ture = 230 ◦C, screw speed = 25 rpm, maximum torque registered = 250 N·cm. Extruded
rods were cut to attain I-shaped samples of 50 mm in length.

2.2.3. Film-Coating

I-shaped samples were coated on their lateral surface (i.e., leaving the two bases of
the cylinder uncoated) using an in-house assembled machinery as reported in [34]. Two
different coating formulations were employed: (i) an ethanolic solution (final concentration
30% w/v) containing a Eudragit® RS and Eudragit® RL mixture (3:1 mass ratio) and TEC
(15% w/w calculated on the dry polymeric blend) and (ii) a 30% ready-to-use aqueous
suspension of Eudragit® NE. The coating process was performed under the conditions
reported in Table 1. Coated samples were withdrawn after 4, 8, and 16 min of processing.
After the process, all the coated samples were maintained for 2 h in a ventilated oven at
40 ◦C.

Table 1. Coating process conditions.

Coating
Formulation

Spray Rate
(mL/min)

Nebulized Air
Pressure (bar)

Pattern
Pressure

(bar)

Drying Air
Temperature

(◦C)

Drying Air
Flow (m3/h)

Sample Rotation
Speed (rpm)

Eudragit® RS/RL
ethanolic solution

7 0.75 1 40 50 2.3

Eudragit® NE
aqueous suspension

2.1 0.5 0.75 60 65 1.5

2.2.4. Characterization

I-shaped samples were evaluated for: weight, coating thickness, thermo-mechanical
properties, structure changes upon immersion in aqueous fluids (i.e., swelling profiles),
release performance, and shape memory effect. Details on the characterization experiments
are reported in the following sections.

Weight Gain and Coating Thickness

Uncoated and coated prototypes were checked for mass (n = 6; Gibertini, Milan, Italy).
The mass applied per unit area was calculated based on the nominal length (L = 50 mm)
and diameter (ø = 1.5 mm) of uncoated cylindrical samples.

Coated samples (n = 6) were cut at 5 equally spaced positions (A–E) along their length,
starting 5 mm away from the ends of the specimen (Figure 2). For each cross-section, the
coating thickness was measured at 6 different points (d1–d6) along the circumference. Pho-
tographs of the cross-sections were acquired using a digital microscope (Digital Microscope
AM-413T, Dino-Lite, Milan, Italy; resolution = 1.3 Megapixel − 1280 × 1024) and processed
by an image-analysis software (ImageJ, Milan, Italy).

Thermal Properties

Differential scanning calorimetry (DSC) analyses were performed by means of a DSC
Q100 calorimeter (TA Instruments, New Castle, DE, USA), using nitrogen as a purge gas
(50 mL/min). Samples of about 10 mg were cut from uncoated and coated specimens.
Eudragit® RS/RL and Eudragit® NE films prepared by casting (i.e., by pouring liquid
formulations into circular silicon molds and drying in a ventilated oven for 12 h at 40 ◦C)
were also analyzed. Samples were heated at 10 ◦C/min from −50 ◦C to 160–240 ◦C (the
heating ramp never exceeded 180 ◦C in the case of specimens coated with the Eudragit®

RS/RL formulation, because the coating was prone to degradation at higher temperatures).
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Figure 2. Outline of the A-E positions where I-shaped samples were cut and photographed, showing
a cross-section with details relevant to the d1-d6 coating thickness measurements.

Mechanical Properties

Mechanical properties were studied under tensile and compression conditions at room
temperature, by means of an electromechanical dynamometer (Instron 3366, Norwood,
MA, USA). The tests were carried out before and after immersion of the samples (n = 3) in
distilled water at 20 ◦C for increasing times (up to 24 h).

The mechanical properties in the specimen length direction (i.e., the longitudinal
properties) were evaluated through uniaxial tension tests performed with a crosshead
speed of 10 mm/min on I-shaped samples having a gauge length of 20 mm. Two different
load cells (i.e., 500 N and 50 N) were employed for dry and swollen prototypes, respectively,
according to their different stiffness.

The results were expressed in terms of nominal stress (σ) versus strain (ε) curves, with
σ and ε calculated as follows:

σ =
4P
πd2 (1)

ε =
u
lt

(2)

where P is the measured load, d is the mean diameter of the sample, u is the crosshead
displacement, and lt is the gauge length.

From σ versus ε curves, the tensile modulus (E), taken as the initial slope of the curves,
and the stress at 10% strain (σ10%) were evaluated.

The mechanical properties in the specimen radial direction (i.e., the transverse proper-
ties) were evaluated through compression tests. The experiment was performed by laying
the I-shaped sample on its long side between compression plates and applying the load
along the diameter with a crosshead speed of 0.5 mm/min. Two different load cells (i.e.,
10 kN and 500 N) were employed, depending on the specimen stiffness.

The results were expressed as normalized load (PN) versus normalized displacement
(uN) curves, with PN and uN calculated as follows:

PN =
P

lcd
(3)
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uN =
u
d

(4)

where P is the measured load, d is the mean diameter of the sample, lc is the mean length,
and u is the crosshead displacement.

From PN versus uN curves, the transverse stiffness parameter (S*) was calculated as
the ratio of normalized load and normalized displacement for uN = 0.1:

S∗ =
PN(uN = 0.1)

0.1
(5)

Swelling

Coated and uncoated samples (n ≥ 4) were immersed in unstirred distilled water
at room temperature and collected after different immersion times (timm) to evaluate the
relevant water uptake and physical as well as mechanical changes upon swelling. Based on
the peculiar hydration, swelling, and dissolution properties of the samples, different timm
were considered, ranging from 10 min to 24 h. In particular:

- timm for uncoated samples = 10 min, 30 min, 1 h, 2 h, 4 h, and 6 h;
- timm for samples coated with Eudragit® RS/RL = 10 min, 30 min, 1 h, 4 h, and 6 h;
- timm for samples coated with Eudragit® NE = 10 min, 30 min, 1 h, 4 h, 6 h, 10 h, and 24 h.

After withdrawal, each sample was gently blotted. Initial mass (mi) and mass after
immersion in water (mw) were measured (analytical balance, Gibertini, Milan, Italy) to
calculate the water uptake as mass variation percentage (∆m):

∆m (%) =
mw − mi

mi
× 100 (6)

Each sample was placed flat under a microscope (Leica MS5, Leica, Munich, Germany),
and the relevant diameter was measured by means of the microscope micrometer at the
B, C, and D positions as shown in Figure 2. The mean diameter was evaluated before and
after immersion in water (di and dw, respectively). The diameter percentage variation (∆d)
was calculated as follows:

∆d (%) =
dw − di

di
× 100 (7)

Hydrated/swollen samples were cut into 4 equal segments, so that their cross-sections
could be observed and photographed under the microscope (Leica DMS300, Leica, Munich,
Germany) at 5 equally spaced positions along their longitudinal axis, i.e., the two uncoated
surfaces (0 and L positions) and the 3 internal positions expressed as fractions of the total
length (L) of the specimen (0.25L, 0.5L, and 0.75L, respectively) (Figure 3). The typical
appearance of a cross-section is also reported in Figure 3, showing a clearly distinguished
swollen area (translucent part of the cross-section) and a non-swollen area (opaque), sepa-
rated by dashed lines. The circumference of the non-swollen area highlighted in Figure 3,
separating the rubbery region that has already interacted with water from the merely glassy
portion that has not yet hydrated, corresponds to the swelling front. The area of the swollen
and the non-swollen portions of the PVA matrix (excluding the coating layer in the coated
samples) was measured by means of the above-mentioned image analysis software. For
each timm considered, a different specimen was employed.

Release

Coated and uncoated prototypes were tested for release using a USP38 dissolution
apparatus 2 (paddle speed = 50 rpm, 900 mL of HCl 0.1 N kept at 37 ± 0.5 ◦C; Distek, North
Brunswick Township, NJ, USA; n = 6), connected to a pump (IPC Ismatec™, Thermo Fisher
Scientific, Milan, Italy) for the automatic collection of fluid samples and to a spectropho-
tometer for assay (Lambda 35, Perkin Elmer, Milan, Italy; 1 mm cuvette path length, 251 nm
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λmax). The amount of ALP released at each time point was determined from a calibration
curve (y = 5.6258x + 0.0022, R2 = 0.9999).

Pharmaceutics 2022, 14, x FOR PEER REVIEW 7 of 25 
 

 

∆d (%) =  
dw
̅̅ ̅̅ − di̅

di̅

× 100 (7) 

Hydrated/swollen samples were cut into 4 equal segments, so that their cross-sec-

tions could be observed and photographed under the microscope (Leica DMS300, Leica, 

Munich, Germany) at 5 equally spaced positions along their longitudinal axis, i.e., the two 

uncoated surfaces (0 and L positions) and the 3 internal positions expressed as fractions 

of the total length (L) of the specimen (0.25L, 0.5L, and 0.75L, respectively) (Figure 3). The 

typical appearance of a cross-section is also reported in Figure 3, showing a clearly distin-

guished swollen area (translucent part of the cross-section) and a non-swollen area 

(opaque), separated by dashed lines. The circumference of the non-swollen area high-

lighted in Figure 3, separating the rubbery region that has already interacted with water 

from the merely glassy portion that has not yet hydrated, corresponds to the swelling 

front. The area of the swollen and the non-swollen portions of the PVA matrix (excluding 

the coating layer in the coated samples) was measured by means of the above-mentioned 

image analysis software. For each timm considered, a different specimen was employed. 

 

Figure 3. Outline of the different positions where the swollen I-shaped samples were cut and pho-

tograph of a cross-section with details relevant to the different areas measured. 

The swollen area was calculated as a percentage of the total matrix area as follows: 

Swollen PVA area (%) =  
Swollen PVA area

Swollen PVA area +  Non − swollen PVA area
× 100 (8) 

Release 

Coated and uncoated prototypes were tested for release using a USP38 dissolution 

apparatus 2 (paddle speed = 50 rpm, 900 mL of HCl 0.1 N kept at 37 ± 0.5 °C; Distek, North 

Brunswick Township, NJ, USA; n = 6), connected to a pump (IPC Ismatec™, Thermo 

Fisher Scientific, Milan, Italy) for the automatic collection of fluid samples and to a spec-

trophotometer for assay (Lambda 35, Perkin Elmer, Milan, Italy; 1 mm cuvette path length, 

Figure 3. Outline of the different positions where the swollen I-shaped samples were cut and
photograph of a cross-section with details relevant to the different areas measured.

The swollen area was calculated as a percentage of the total matrix area as follows:

Swollen PVA area (%) =
Swollen PVA area

Swollen PVA area + Non − swollen PVA area
× 100 (8)

Shape Memory Effect

Coated and uncoated prototypes were programmed to take on a temporary U-shape,
according to a previously developed method [17]. Special templates fabricated by FDM 3D
printing were employed for programming the desired temporary shape. Computer-aided
design (CAD) files were purposely created using Autodesk® Inventor® Professional 2019
software version 14.0 (Autodesk Inc., Milan, Italy). The files were saved in .stl format
and imported to the printer software (Simplify 3D, Milan, Italy). Next, 3D printing was
performed by a Kloner3D 240® Twin (Kloner3D, Florence, Italy) printer equipped with
0.5 mm nozzle (printing temperature = 230 ◦C, infill = 100%, layer height = 0.10 mm,
printing speed = 50 mm/s). A commercially available nylon filament containing carbon
fibers was used as received. Coated and uncoated prototypes were heated up to 55 ◦C
(i.e., above the glass transition region) and manually deformed with the aid of the specially
printed templates. The temporary shape was then fixed by cooling the specimens inside
the templates at −20 ◦C for at least 4 h before testing.

Recovery of the original shape was studied upon immersion of the deformed samples
into a crystallization vessel containing 250 mL of HCl 0.1 N, kept at 37 ± 0.5 ◦C by means of
a thermoregulated bath. Changes in shape were monitored using a digital camera (GoPro
Hero Session, San Mateo, CA, USA; n = 3) positioned 13 cm above the specimens. The
photographs acquired were processed using the previously mentioned image analysis
software, and the recovery index (RI) was calculated as follows:

RI (%) =
α− αp

π− αp
× 100 (9)

where α is the angle measured between the two arms of the U-shaped sample and αp is
the angle obtained in the programming phase (expressed in rad). RI was represented as a
function of time [17].
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3. Results

In order to prolong release from the expandable SMP-based retentive prototypes under
development, a strategy involving (i) HME of a PVA characterized by higher molecular
weight with respect to the previously tested ones, and (ii) coating of the extruded devices
with insoluble, low-permeable films was pursued. In this respect, the commercially-
available pharmaceutical-grade of PVA having the highest molecular weight (PVA48)
was selected as the main component of the matrix systems, and an ethanolic solution of
Eudragit® RS/RL (3:1 mass ratio) or a ready-to-use aqueous suspension of Eudragit® NE
was applied to the PVA-based samples to achieve coatings of different permeability and
thickness [39,40].

3.1. Coating of the Expandable Prototypes

An in-house assembled equipment was employed to coat I-shaped extruded pro-
totypes [34]. This was purposely conceived for specimens with an asymmetrical shape,
which represented unusual substrates with respect to solid cores traditionally undergoing
film-coating (e.g., tablets, capsules). The equipment consisted of a spray unit and a rotating
device carrying the samples, thus allowing them to be fully coated along their length while
both ends (i.e., the top and bottom bases of the cylindrical matrix) were left uncoated. The
coating process was performed for 4, 8, and 16 min. In Table 2, all coated samples are listed
along with the relevant manufacturing details and identification codes.

Table 2. Uncoated and coated samples with the relevant manufacturing details and
identification codes.

Coating Formulation Coating Process Time
(min) Code

PVA-based samples
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As expected, longer process times led to increasing coating thicknesses (Table 3).
Notably, the greatest variability in thickness (CV in the 12–16 range) was found for N4
samples having a < 50 µm thick Eudragit® NE coating. CV values relevant to all the other
coated prototypes were much lower, indicating that a reproducible process was set up.
The growth trend of thickness versus mass per unit area of the coating applied was quite
similar for the two formulations considered (Figure 4). However, the thickness achieved
in the same process time turned out lower when dealing with the Eudragit® NE aqueous
suspension. Indeed, as water required longer evaporation times, the spray rate of the
Eudragit® NE formulation needed to be decreased to avoid swelling/dissolution of the
underlying PVA matrix.

Table 3. Thickness of (a) Eudragit® RS/RL and (b) Eudragit® NE-based coatings applied to I-shaped
samples. The coefficient of variation (CV) is reported in brackets.

(a)
Code

Thickness, µm (CV)

Position

1 2 3 4 5

R4 107.8 (4.7) 110.1 (5.6) 113.6 (5.7) 117.2 (5.4) 116.7 (6.4)
R8 173.5 (2.1) 171.4 (2.1) 175.2 (1.3) 178.6 (4.3) 174.3 (4.9)
R16 443.3 (6.8) 455.8 (1.4) 449.0 (4.1) 450.8 (4.9) 428.5 (3.8)

(b)
Code

Thickness, µm (CV)

Position

1 2 3 4 5

N4 55.2 (16.3) 56.8 (12.3) 56.1 (12.0) 54.2 (15.6) 53.6 (14.8)
N8 75.6 (5.3) 86.5 (7.9) 86.1 (7.7) 83.9 (4.1) 88.1 (8.0)
N16 132.7 (4.6) 140.0 (1.6) 144.4 (3.7) 143.2 (2.9) 142.6 (3.2)
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3.2. Thermal Analysis

The glass transition region of the materials in use, which has a fundamental role
in the activation of the shape memory effect, was evaluated by DSC. In order to assess
any possible influence of the coating on the overall glass transition of PVA, tests were
performed on uncoated prototypes, on free Eudragit® RS/RL and Eudragit® NE films,
and on coated systems. In particular, the glass transition region was identified as an
inflection in the heating traces. Uncoated PVA-based samples and free Eudragit® films
displayed a broadly distributed glass transition region, approximately between 0 and 30 ◦C,
corresponding to the smooth inflections highlighted in the insert of Figure 5. In addition,
the trace of uncoated samples pointed out an endothermic peak starting at approximately
160 ◦C due to PVA melting, while that of the Eudragit® NE film showed a characteristic
endothermic signal slightly below 60 ◦C, which could be ascribed to the melting of the
emulsifier contained in the commercial coating suspension, i.e., nonoxynol [41].
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R8 and N8 thermograms were analogous to those of the relevant components, featuring
(i) a glass transition signal to be ascribed to moisture evaporation and (ii) the PVA melting
peak at higher temperatures. This result confirmed that the coating process did not bring
about alterations of the thermal behavior of the underlying formulation. Moreover, such
findings suggested that the presence of the coatings should have a minor impact on the
shape recovery process of the final systems. In fact, shape recovery was intended to occur
at body temperature, i.e., above the glass transition region of both components.

3.3. Release Tests

According to the soluble swellable nature of the PVA matrix, drug release from
uncoated prototypes was prolonged over 6 h. Regardless of the formulation employed and
of the coating thickness, all coated prototypes showed longer release profiles than uncoated
ones (Figure 6), even exceeding 48 h in some cases. Indeed, the insoluble films applied to
the lateral surface of the cylindrical PVA core would reduce the rate of radial penetration of
fluid and that of outward diffusion of the drug, possibly preceded by a lag phase. However,
the coated samples were also characterized by a very limited uncoated surface area (about
1.5% of the total) immediately available for interaction with the aqueous medium—that
relevant to the film-free cylinder bases. Dissolution of drug particles from these uncoated
surfaces, occurring before the formation of a gel barrier, could thus counteract the lag phase.
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As the uncoated prototypes were shown to swell during the release test, the coated
specimens were carefully observed to highlight any modifications in shape and/or di-
mensions of the PVA core and possible impact on the coating integrity. Penetration of the
aqueous medium was expected to start from the uncoated surfaces proceeding lengthwise,
and to also occur through the coated lateral surface moving towards the center of the
matrix. In this regard, the rate of radial penetration should be affected by the formulation
and thickness of the coating. In the Eudragit® RS/RL-coated samples, the applied film
was apparently able to adapt to the expansion of the PVA matrix in the radial direction
until a breaking point was reached. This impacted on drug release, which was faster from
R4 samples having ~115 µm thick coating. Considering R8 prototypes with a ~175 µm
coating thickness, a remarkable slowdown in release was observed. Conversely, a further
increase in the coating thickness up to ~450 µm (i.e., R16 samples) resulted in a much
smaller reduction in the release rate.
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Eudragit® NE films were shown more efficient in reducing the release rate, in accor-
dance with their known poor permeability [42,43]. Moreover, the Eudragit® NE coating
acted as a stronger physical constraint to the PVA core swelling and maintained its integrity
over time. Such a behavior, which is well described in the literature as the swelling-
restriction mechanism, affected the release kinetics while promoting the longitudinal
squeeze-out of the swollen polymeric matrix from the uncoated bases of the I-shaped
samples [44–46]. This was also highlighted by a change in the slope of the release curves.
Specimens coated with the lowest amount of Eudragit® NE (i.e., N4) already exhibited a
reduction in the release rate, while increasing the film thickness from ~80 µm to ~140 µm
led to a non-proportional decrease in such a parameter. Indeed, the overall release profiles
from N8 and N16 coated samples turned out to be comparable. This could indicate the
presence of a threshold value in the coating thickness, beyond which penetration of water
through the film and outward release of the tracer drug would in any case be effectively
slowed down. Therefore, at this stage, the main release mechanism would be the diffusion
of the drug through the swollen uncoated bases of the cylindrical core, which is in fact
independent of the lateral coating layer. Based on the results obtained, the following
characterizations were performed on the N4 and N8 samples only.

3.4. Swelling Behavior

The study of mass variation (∆m) and diameter increase (∆d) of samples as a function
of the relevant immersion time in water, under room temperature and unstirred conditions,
provided further insight into the swelling behavior of uncoated and coated specimens
(Figure 7a and Figure 7b, respectively). This experimental setup was chosen as it allowed
a slower interaction with aqueous fluids, thus highlighting possible differences in the
behavior of the samples.

As expected, all prototypes showed an increase in water uptake for longer timm,
with the uncoated samples swelling relatively faster than the coated ones. The results
obtained were generally consistent with the overall release data previously discussed
and the morphological changes observed. The coating, regardless of its composition,
led to a decrease in the rate of aqueous fluid penetration, both by acting as a barrier to
fluid diffusion and/or by mechanically hindering the expansion of the PVA matrix core
(i.e., swelling restriction mechanism) [46]. After 1h immersion, a 130% water uptake was
reached by the uncoated specimens, whereas for the coated ones ∆m was approximately in
the 10–30% range, depending on the type and thickness of the coating. As timm increased,
the influence exerted by the coating layer became more evident.

Given the relatively slow mass variation pointed out by samples coated with Eudragit®

NE, the experiments lasted up to 24 h, which proved sufficient to achieve weight gains
similar to those attained with the other specimens under investigation.

A consistent behavior was observed in terms of mean diameter increase, as highlighted
in Figure 7b. Indeed, as a consequence of water uptake, the sample diameter tended to
increase, with greater ∆d values for longer immersion times, thinner coatings, and more
permeable coating formulations.

Notably, ∆d was especially small for specimens coated with Eudragit® NE, even in
the case of N4 samples, probably due to the relatively low permeability of the coating films
and the mechanical constraint they exerted on the PVA swelling. This was particularly
evident for long immersion times.

Due to the peculiar configuration of the samples (i.e., presence of uncoated ends),
aqueous fluid penetration was supposed to proceed at different rates along their longitudi-
nal and radial axes, which might impact on the overall swelling behavior of the PVA-based
core. Therefore, it was interesting to observe different cross-sections of uncoated and
coated prototypes (i.e., surfaces cut at diverse positions along the specimen length) at
increasing timm. The selected positions were the uncoated ends and 3 equally spaced inner
points (i.e., 0 and L versus 0.25L, 0.5L, 0.75L, as indicated in Figure 3). By way of example,
Figure 8 shows photographs of the cross-sections of an uncoated specimen and a coated
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N8 one at increasing timm, together with profiles describing the swollen PVA area along the
longitudinal axis of the samples.

Overall, the images suggested the presence of a swelling front in the PVA matrix
moving in the radial direction as a function of timm. Notably, for both uncoated and coated
specimens, the ends were rapidly fully swollen. Conversely, at the 0.25 L, 0.5 L, and 0.75 L
positions, the polymer was only partially swollen, with the swollen area increasing at
different rates for uncoated and coated samples. To better highlight the effect of the various
coatings, the percentage swollen area in the cross-section corresponding to the center of the
specimens (i.e., 0.5 L) was considered (Figure 9). This representation was helpful to confirm
that the time required for water to penetrate through the entire cross-section depended
on the type and thickness of the applied coating. Indeed, by comparing samples coated
with the same formulation, it was evident that a thicker coating would result in a reduced
swelling rate.
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3.5. Mechanical Tests

During release tests, the samples showed macroscopic changes and increased flexibility
upon interaction with aqueous fluids. Thus, their mechanical properties seemed worthy
of further study, especially because the above-mentioned modifications might impact the
retentive performance of the expandable system under development and its safe use.

Mechanical tests were performed at room temperature, under tensile and compression
conditions, and the results obtained were expressed as a function of timm. While tensile
tests were carried out along the sample axis, compression tests involved applying a force
perpendicularly to the longitudinal axis of the samples. In this respect, the combination
of tensile (i.e., axial) and compression (i.e., transverse) experiments could provide com-
prehensive information in light of the intrinsically anisotropic structure of the specimens
under investigation.

Tensile test results relevant to uncoated, R8, and N8 samples are shown in Figure 10a as
stress versus strain curves. Two different parameters were calculated: the tensile modulus
(E) and the stress corresponding to a strain equal to 10% (σ10%), which are reported in
Figure 10b and c, respectively. While E represented the stiffness of the specimens in the
longitudinal direction, σ10% was used to compare the stress level at a given strain for
different samples, as it was not possible to measure the ultimate tensile strength. Indeed,
the load drops highlighted in Figure 10a did not correspond to specimen failure, which
was never observed, but to its slippage from the clamps. However, in Figure 10c, σ10% data
for R4, R8, and R16 were not reported because, since coating failure (i.e., localized cracking
along the circumference) was observed at strain lower than 10%, they were not considered
useful for comparison with intact samples.
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The uncoated samples underwent a drastic drop in the stress values within 1 h of
immersion in water. For this reason, stress versus strain curves of specimens with timm ≥ 1 h
are barely visible in Figure 10a, while both E and σ10% decreased by 5–6 orders of magnitude
in 6 h. Indeed, the former parameter moved from hundred MPa to approximately 1 kPa,
while the latter dropped from just over 10 MPa to fractions of kPa. By contrast, coated
specimens immersed in aqueous fluid for similar times exhibited a less marked reduction
in these properties. Both Eudragit® RS/RL and Eudragit® NE coatings, as long as their
integrity was maintained, limited the decrease in mechanical properties (about 1–2 orders
of magnitude in 6 h, with a retention of about 10 MPa in E and about 1 MPa in σ10%). This
happened because the coating layer generally hindered the swelling of the PVA matrix
underneath and maintained its stiffness, while supporting most of the longitudinal load.
This latter aspect may also explain why varying the coating thickness had only minor
consequences on tensile properties, although the Eudragit® NE coating limited swelling of
the PVA core much more than the Eudragit® RS/RL one did.

For comparison purposes, the compression behavior of the same samples previously
described is presented in Figure 11a, in which normalized load versus normalized dis-
placement curves are shown. Notably, the compression configuration could not be exactly
associated with a simple deformation state. Indeed, while in tensile condition, both the PVA
core and the external coating were subjected to the same elongation; in the compression
experiments, the strain and the applied stress changed from point to point along the load
direction due to the cylindrical shape of the specimen. The curves displayed a slope that
gradually increased as the upper compression plate came in contact with progressively
wider sections of the specimen during descent. The qualitative evolution of the response
for increasing timm was similar to that of tensile stress versus strain curves. In fact, 1 h
in water was enough to cause a drastic drop in normalized load values for the uncoated
samples, while the coated ones sustained higher stresses, especially when dealing with
those coated with Eudragit® NE. This could only be attributed to the different amount of
water absorbed.

A stiffness parameter (S*), evaluated at a normalized displacement equal to 0.1, was
introduced to better describe the mechanical properties in the transverse direction of
compressed specimens (Figure 11b). The effect of timm and of the type and thickness of
the coating on S* was comparable to that observed for E during tensile tests, although
differences between the various coatings became more evident. For instance, after 6 h in
water, the decrease in stiffness was around 5 orders of magnitude for uncoated specimens,
around 3 for specimens coated with Eudragit® RS/RL, and less than 2 for Eudragit®

NE-coated ones. In the latter case, the decrement did not exceed 2 orders of magnitude,
even after 24 h of immersion. Focusing on the same coating composition, S* were higher
with increasing thicknesses. These results suggested that the mechanical properties in the
transverse direction would more closely be related to the degree of swelling of the PVA core,
which—for a given immersion time—was higher in prototypes having more permeable or
less thick coatings. Indeed, the compliance of the swollen core played a major role in the
overall compliance of the specimen, whereas the contribution of the coating stiffness was
limited, in contrast to what observed in the longitudinal direction.
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3.6. Shape Memory Effect

Shape memory tests were carried out to verify whether the presence of the coating,
shown to play a key role in defining the swelling, release, and mechanical performance
of the prototypes, could impact the retention mechanism of the expandable device un-
der development. In detail, the experiments were carried out by evaluating the ability
of coated samples to recover their original I-shape after deformation and fixing into a
temporary U-shape.

Recovery index (RI) versus time curves relevant to both uncoated and coated speci-
mens are reported in Figure 12. The focus was on the first 15 min of testing, during which
most of the recovery process occurred. All the prototypes were able to recover their original
I-shape within 1 h of immersion, reaching RI values greater than 70% in the first 5 min
of testing.
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The overall shape memory behavior was similar for uncoated and coated samples: all
of them recovered more than 50% of their original shape in the first 30 s, even exceeding
70% in the case of Eudragit® NE-coated ones. As the coating was expected to reduce the
rate of water penetration into the PVA matrix underneath, such a result suggested that the
recovery process would mainly be thermally driven, being particularly fast as the working
temperature was well above the material glass transition region [33].

For R8 and R16 samples, the recovery process was slightly slower (RI between 65%
and 80% after 5 min). Indeed, R16 specimens never recovered as much as the others in the
initial 15 min of testing, which was ascribed to a hindering effect exerted by the Eudragit®

RS/RL coating that, at the investigated thickness values, would limit the expansion of the
PVA matrix. By contrast, recovery of the original shape in the case of Eudragit® NE-coated
samples seemed faster, and the relevant rate increased from 55 to 85 µm coating thicknesses.
It could be hypothesized that the flexibility of the film, which turned out to be much
higher than that of the Eudragit® RS/RL one, might have a positive impact during these
experiments, making the film act as a sort of rubbery envelope, helping the shape recovery
process. In support of Eudragit® NE flexibility, it is useful to be reminded of the following:
it is a neutral ester polymer with no hydrogen bonds or other intermolecular forces; its
glass transition temperature is approximately 5 ◦C, whereas that of Eudragit® RS/RL is of
about 17 ◦C; it has a large strain at break (static strain > 600%) at room temperature, so that
its dispersion has a low minimum film formation temperature and does not require the use
of plasticizers in traditional coating [47,48].

4. Conclusions

Expandable DDSs manufactured by HME and FDM based on shape memory PVA
of pharmaceutical-grade were proposed as a viable platform for targeting the delivery
of active ingredients into hollow muscular organs. Among SMPs already employed in
4D printing of DDSs, this is the first pharmaceutical-grade polymer used as such and not
chemically modified, which would require a costly and time-consuming safety evaluation
for implementing it within drug product manufacturing. In this work, the application of
coatings having different permeability was demonstrated to be an effective strategy to limit
the interaction with aqueous fluids of the underlying PVA matrix and to reduce the outward
diffusion of the drug conveyed, thus extending drug release. This would in principle
broaden the spectrum of therapeutic applications of the expandable DDSs proposed.

Hot melt extruded prototypes of simple shape were employed, which were deemed
suitable for setting up cost-effective screening protocols for a preliminary study of me-
chanical properties and swelling behavior. They were manufactured starting from a high-
molecular weight PVA, loaded with a tracer, and film-coated with different amounts of
Eudragit® RS/RL or Eudragit® NE. All the swelling experiments, regardless of whether wa-
ter uptake, dimensional change, or local progression of the swelling front was considered,
highlighted the possibility of modulating the interaction of PVA prototypes with aqueous
fluids by acting on the thickness and composition of the applied coating. The presence of
different coatings was also shown to affect the evolution of the mechanical properties of
samples after the relevant immersion in aqueous medium for increasing periods of time. In
detail, Eudragit® NE coatings exhibited a greater ability to modulate water penetration and
to limit the dimensional changes of the PVA core, prolonging drug release far beyond 24 h.
Although characterized by lower thicknesses with respect to Eudragit® RS/RL coated sam-
ples, they were also proved particularly effective in promoting the ability of the prototype
to maintain adequate mechanical strength upon immersion in aqueous media. Interestingly,
the efficiency of Eudragit® NE coatings would allow a high degree of release control to be
attained, even at relatively low thicknesses.

The drug release profiles and the mechanical behavior observed, coupled with the
ability of the coated samples to maintain the desired shape memory effect responsible for
their retention in hollow organs, were considered as particularly promising results. In this
respect, the feasibility of different manufacturing techniques, ranging from HME to 3D
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printing and coating, to fine-tune the performance of the DDS intended for organ retention
resulted a proof of concept for further research towards application of 4D printing in the
pharmaceutical field.
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