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Abstract: Neurological diseases remain some of the major causes of death and disability in the world.
Few types of drugs and insufficient delivery across the blood–brain barrier limit the treatment of
neurological disorders. The past two decades have seen the rapid development of extracellular vesicle-
based therapeutics in many fields. As the physiological and pathophysiological roles of extracellular
vesicles are recognized in neurological diseases, they have become promising therapeutics and targets
for therapeutic interventions. Moreover, advanced nanomedicine technologies have explored the
potential of extracellular vesicles as drug delivery systems in neurological diseases. In this review,
we discussed the preclinical strategies for extracellular vesicle-based therapeutics in neurological
disorders and the struggles involved in their clinical application.

Keywords: extracellular vesicles; neurological disorders; mesenchymal stem cells; drug delivery;
therapeutics; neurodegenerative diseases

1. Introduction

Neurological diseases such as stroke, neurodegenerative diseases, and neuromuscu-
lar diseases, are some of the leading causes of death and disability worldwide [1]. The
therapeutics and drugs for treating neurological diseases are still limited. As the physiolog-
ical and pathophysiological roles of extracellular vesicles (EVs) are becoming recognized,
emerging evidence has demonstrated the therapeutic potential of EVs in treating neurolog-
ical diseases [2,3]. EVs are heterogeneous, membrane-bound particles that are naturally
released from most cells. They are generally classified into two types: endosome-origin
“exosomes” and plasma-membrane-derived “ectosomes” (microvesicles) [4–6]. It is chal-
lenging to exactly distinguish exosomes and ectosomes because of their overlapping sizes
and the similar markers between them [7]. Therefore, we used the generic term “EVs” to
refer to both exosomes and ectosomes in this review.

EVs contain various types of cargos, including nucleic acids, proteins, and metabolites.
Initial studies have focused on the regulatory and therapeutic effects of native EVs and their
cargos. In the nervous system, EVs, as important mediators of intercellular communication in
the brain, play a profound role in the maintenance and recovery of neural functions [8–10].
With the rapid development of nanotechnology, EVs have been modified for broader thera-
peutic capabilities, especially targeted drug delivery [11,12]. Some well-established synthetic
nanoparticles such as liposomes, the first nano drug delivery systems, have received clinical
approval and marketing authorization [13]. However, their therapeutic effects are limited
because of their rapid clearance from the blood and their activation of the innate immune
response [14]. Compared to synthetic drug delivery systems, EVs have emerged as a more
complex and biocompatible form of liposomes with lower immunogenicity. The functional
pharmacokinetic-related proteins of EVs contribute to their larger volume of biodistribution
and higher retention in the circulation [15–17]. Furthermore, different molecules on the surface
of EVs enable them to cross the blood–brain barrier (BBB), deliver their cargos, and evoke
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responses in the recipient cells [18–23]. These attributes of EVs exhibit their vast therapeutic
potential in the treatments of central nervous system (CNS) disorders.

The roles of EVs in the diagnosis, progression monitoring, and treatment of neurologi-
cal diseases have been gradually recognized [24,25]. Inspired by emerging studies, here, we
reviewed the preclinical evidence and strategies for EV-based therapeutics in the treatment
of neurological diseases (Figure 1). Finally, we discussed issues to be considered for the
future clinical applications of EVs.
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2. Strategies for EV-Based Therapeutics in Neurological Diseases
2.1. EVs in Regenerative Therapies

The pathophysiological processes underlying most neurological diseases remain to
be fully defined. Despite the delicate structures and functions of the nervous system, the
spontaneous recovery of neurological function is commonly found in neurological diseases.
Figuring out the underlying mechanisms and promoting the endogenous recovery process
are key strategies for the development of therapies. Initial attempts were cell-based thera-
pies such as the systematic administration of mesenchymal stromal cells (MSCs) in stroke
models [26,27]. The safety of intravenous stem cell therapies has been approved in many
clinical trials, but there are limited therapeutic effects in patients [28–30]. After different
administrations, most stem cells are trapped in capillaries or peripheral organs such as the
liver, spleen, and lungs [31]. The landmark paper by Gnecchi et al. proposed that paracrine
factors account for the protective effects of MSCs [32]. Subsequently, emerging evidence
has suggested that EVs secreted from MSCs contribute substantially to the beneficial effects
of cell-based therapies [33]. Marbán drew interesting analogies between EV production
and the process whereby bees manufacture honey [34]. He proposed that compared to
fragile cells (like flowers), EVs (like honey), which contain the active ingredients of their
sources, are more stable, efficacious, immune tolerant, and modifiable.

Regenerative progress is particularly important in post-stroke brain recovery, and the
critical process is inducing neurogenesis and angiogenesis in lesions. Many studies have
proven that MSC-EVs promote these agents in vivo and enhance functional recovery in
stroke patients [35–37]. Although MSC-EVs promote neuronal survival and the process
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of neurogenesis in peri-infarct tissue, these studies have not shown significant effects
in terms of reductions in the infarct volume. The failure to reduce the infarct volume
was possibly attributed to the timing, because the time taken in MSC-EV delivery is
usually longer than the 3–6 h window required for tissue plasminogen activator (t-PA)
therapy, the only stroke treatment. Recent studies have indicated that neural-stem-cell
(NSC)-derived EVs administered both within and outside the t-PA therapeutic window
result in a significant reduction in infarct volume, exhibiting better therapeutic effects in
stroke compared to MSC-EVs [38]. Modified NSC-EVs loaded with triiodothyronine, a
critical factor for oligodendrocyte development, successfully target the demyelinated lesion
in the brain and present an effective remyelination effect in experimental autoimmune
encephalomyelitis (EAE), a classical multiple sclerosis (MS) animal model [39]. In addition,
an injectable hyaluronic acid hydrogel has been developed to deliver NSC-EVs into the
stroke brain, enhancing EV retention and sustaining the therapeutic effects [40]. However,
considering the ethical questions and problematic logistics of acquiring fetal tissues, NSC is
not an optimal choice as an EV producer. Induced NSCs from somatic-cells (iNSCs)-derived
EVs display comparable therapeutic effects to NSC-EVs in post-stroke functional recovery
without significant adverse effects [41]. The development of iNSCs can overcome some
ethical questions about NSC-derived EVs, but the mass production of iNSC-EVs for clinical
use is still a problem.

The function and proliferative capacity of stem cells decline over time. In regenera-
tive therapies, the anti-senescence effect is another tool to promote endogenous recovery.
For example, embryonic-stem-cell-derived EVs reverse hippocampal NSC senescence and
the corresponding reduction in neurogenesis and cognitive impairment [42,43]. In addi-
tion, cellular senescence and stem cell exhaustion are two biological hallmarks of aging,
which correlate with a susceptibility to neurodegenerative diseases and other aging-related
diseases [44]. Recent studies have provided evidence for the potential roles of EVs in treat-
ments for diseases related to aging and the hallmarks of aging. For instance, circulating EVs
from young mice present a pro-longevity function [45,46]; EVs from fibroblasts of young
human healthy donors ameliorate senescence in old recipient fibroblasts and mice, and
they especially ameliorate oxidative stress—one of the classical pathophysiology features
of senescence and aging [47]. Unfortunately, these therapeutical effects of EVs have not
been deeply explored in most age-related neurological diseases.

2.2. EVs in Immune-Modulatory Therapies

Immune-cell-derived EVs have been favored as promising therapeutic agents for their
immune-modulatory capabilities [48–52]. Microglia, the macrophage-like immune cells of
the CNS, are involved in homeostasis and in the pathophysiology of CNS diseases [53].
EVs isolated from IL-4-treated microglia could inhibit glial scar formation, reduce brain
atrophy volume, and promote white matter repair and functional recovery after ischemic
stroke [54–57]. Increasing studies have shown that stem-cell-derived EVs present immune-
modulatory capabilities. Embryonic-stem-cell-derived EVs significantly alleviate pathology
and the long-term neurological deficits after ischemic stroke in a regulatory T-cell-dependent
way [58]. The intrinsic anti-inflammatory activity of NSC-EVs also contributes to an improve-
ment in pathology and behavioral outcomes in stroke [38,59]. The inhibition of leukocytes,
especially polymorphonuclear neutrophil infiltration, may be the underlying mechanism
of MSC-EV-induced ischemic neuroprotection [60]. MSC-EVs conjugated with LJM-3064
aptamer, a myelin-specific DNA aptamer demonstrating remyelination induction, on their
surface produce immune-modulatory properties and promote remyelination in EAE [61].
Since MS is a typical autoimmune disorder in the CNS, researchers have also proposed using
the programmed cell death protein-1/programmed death ligand-1 (PD-1/PD-L1) pathway
to inhibit pathological immune responses and maintain self-tolerance in MS and EAE [62].
PD-L1-expressing dendritic cells demonstrate therapeutic effects in EAE, but there is still
insufficient data for the immune-modulatory functions of PD-1/PD-L1-pathway-related
EVs in MS [63]. Recently developed PD-L1-overexpressed MSC-EVs significantly suppress
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pathogenic immune responses via the PD1/PD-L1 pathway in two different autoimmune dis-
eases: ulcerative colitis and psoriasis [64]. The application of these PD-L1-overexpressed EVs
in MS may exhibit therapeutic effects and provide insights into EV-based immune-modulatory
therapies in the treatment of autoimmune neurological disorders.

Naïve macrophage (Mφ) EVs inherit the integrin lymphocyte-function-associated
antigen 1 (LFA-1) from their parental cells and interact with the intercellular adhesion
molecule 1 (ICAM-1) of BBB endothelial cells. In inflammation, the upregulation of ICAM-1
promotes the uptake of Mφ EVs to the brain parenchyma [65]. Moreover, the brain-derived
neurotrophic factor (BDNF), an important neuroprotective factor, loaded in these Mφ EVs
is stable and exhibits higher brain accumulation compared to BDNF alone [65]. Considering
the common inflammatory response in neurological diseases and the properties of naïve
Mφ EVs, these EVs could be simple and efficient delivery vehicles of anti-inflammatory
and neuroprotective drugs to brain lesions. However, similar to the distributions of other
naïve EVs in a previous study, most naïve Mφ EVs accumulate in peripheral organs such
as the liver, spleen, gastrointestinal tract, and lungs, and less than 1% of administrated EVs
successfully enter the brain [66]. We still need other methods to increase the brain-targeting
efficiency of EVs and their cargos. In the next part, we focused on strategies for EV-based
drug delivery to the brain, including advanced techniques for the efficient delivery of
anti-inflammation drugs.

2.3. EVs for Targeted Drug Delivery

Most therapeutic agents are unable to reach lesions in effective concentrations by
systemic administration because of biological barriers, especially the BBB, a major hindrance
to drug treatments of CNS diseases. An alternative drug administration route is intranasal
administration. The intranasal delivery route help drugs bypass the BBB and delivers them
directly to the brain [67,68]. It has been proven to be an effective route for the delivery
of drug-loaded EVs to the brain. For example, curcumin is a natural anti-inflammatory
and antioxidant nutraceutical that has been widely investigated. Tumor-derived EVs with
encapsulated curcumin are taken up by microglia via intranasal administration and have
shown therapeutic effects in three independent inflammation-mediated disease models [69].
The intranasal administration of embryonic stem cell EVs loaded with curcumin not only
reduces inflammation but also restores the neurovascular unit in ischemia-reperfusion-
injured mice [70]. However, the nasal mucosa barrier limits the efficiency of intranasal
therapy, as less than 1% of administrated drugs reach the brain [71].

Remarkable advancements in nanotechnology have yielded many brain delivery
technologies that have achieved a sufficient delivery of drugs for neurological diseases [72].
Although the mechanisms by which EVs traverse the BBB and target lesions are still
opaque, it is becoming increasingly difficult to ignore the role of EVs as drug delivery
vehicles in the treatment of CNS diseases. However, as mentioned before, most naïve EVs
tend to accumulate in peripheral organs. Surface modifications of EVs have been applied
to increase their brain-targeting efficiency. For instance, cyclo(Arg-Gly-Asp-D-Tyr-Lys)-
peptide (c(RGDyK))-conjugated EVs exhibit a high affinity to lesions of the ischemic brain
after intravenous administration [73]. Curcumin loaded in these EVs exhibits a strong
suppression of the inflammatory response in the lesion region of the ischemic brain [73].
In addition, the conjugation of rabies virus glycoprotein (RVG) to EVs displays a twofold
greater accumulation in the brain [66]. As shown in the seminal work by Alvarez-Erviti
et al., the conjugation of RVG to the EV surface significantly increased their brain-targeting
efficiency [74]. Furthermore, exogeneous short interfering (si) RNA loaded in RVG-targeted
dendritic cell EVs has been successfully delivered to the brain, resulting in a specific gene
knockdown [74]. This landmark study not only demonstrated that EVs can be engineered
into an efficient brain delivery system but also established an siRNA RVG-EV strategy for
inhibiting the production of pathological proteins in neurodegenerative diseases.

Neurodegeneration is defined as the progress of loss or dysfunction of neurons, which
impairs the properties of the CNS and previously established CNS functions such as mobility,
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coordination, memory, and learning [75]. One of the pathological hallmarks of neurodegen-
erative diseases is the aggregation of characteristic proteins. Representative instances are
β-amyloid (Aβ) extracellular plaques and tau neurofibrillary tangles in Alzheimer’s disease
(AD). Transactive response DNA-binding protein 43 (TDP-43) is a misfolded protein typical
in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Alpha-synuclein
aggregates are the representative pathology in Parkinson’s disease (PD), dementia with Lewy
bodies (DLB), and multiple system atrophy (MSA). Disease-specific pathological proteins and
rare mutations of their encoding genes raise an interlinked hypothesis that a causal association
exists between these proteins and neurodegenerative diseases [76].

One of the therapeutic strategies for neurodegenerative diseases is reducing the patho-
logical protein burden in the brain. Alvarez-Erviti and colleagues first employed RVG-EVs
loaded with exogenous BACE1 siRNA to inhibit the expression of BACE1 and Aβ in the
cortex by systemic injection [74]. Subsequently, systemic siRNA RVG-EV treatment success-
fully reduced the expression of alpha-synuclein throughout the brain of S129D transgenic
mice [77]. Likewise, RVG-EVs loaded with anti-alpha-synuclein short hairpin RNA (shRNA)
minicircles decreased the aggregation of alpha-synuclein, rescued dopaminergic neurons,
and improved clinical symptoms in a progressive mouse model of PD [78]. Indeed, some
naïve EVs exhibited a capacity for reducing the pathological protein level. EVs secreted from
adipose-derived MSC effectively ameliorated neurodegeneration and rescued cognitive impair-
ment in APP/PS1 transgenic mice, a classic AD mice model [79]. Similarly, aFGF-stimulated
astrocyte-derived EVs alleviated the brain Aβ burden and cognitive deficits in the APP/PS1
mice [80]. Adipose-derived EVs also reduce the aggregation of mutant superoxide dismutase 1
(SOD1), a pathologic hallmark of familial ALS [81]. Future studies may consider a combina-
tion of these naïve EVs and pathological-protein-targeted siRNA or shRNA to increase their
therapeutic effects.

Due to the complicated aeotiology and pathogenesis of neurodegenerative diseases, apart
from pathological-protein-targeted therapeutics, other EV-based therapeutic strategies have
been developed. To start with, neurodegenerative diseases are commonly linked to neurotoxic
substances such as reactive oxygen species (ROS), and hence the delivery of antioxidant
drugs to the brain can be instrumental. EVs loaded with catalase effectively protected the
substantia nigra pars compacta neurons from 6-OHDA-induced oxidative stress in a typical
PD mouse model [82]. In addition, compared to free dopamine, EV-based dopamine delivery
in PD models displays a more than fifteen-fold increase in brain distribution and a lower
systemic toxicity [83]. Additionally, in a recent review, the authors summarized a therapeutic
potential of EVs and small heat-shock proteins in neurodegenerative diseases [84]. They also
hypothesized that a combination of them would be an effective therapeutic in the future by
targeting the autophagy and apoptosis pathways, two major pathophysiological processes in
neurogenerative diseases [84].

Engineered EVs fused with RVG have also been researched to carry many other com-
pounds such as low-molecular-weight proteins, mRNA, and miRNA. For instance, the sys-
temic administration of RVG-EVs loaded with nerve growth factor (NGF) protein along with
NGF mRNA significantly increases the expression of NGF in the infarcted cortex, reduces
inflammation, and promotes cell survival in stroke [85]. Considering that some proteins need
post-translational modification or act in a paracrine way, the delivery of mRNA can promote
the production of intracellular bioactive proteins in the targeted region [86]. EV-mediated pro-
tein and mRNA delivery provide a stable and efficient strategy to overcome obstacles such as
the rapid extracellular degradation of naked proteins and mRNA. EV-based therapeutics may
promote the development of mRNA therapeutics. Similarly, modified EVs with RVG fused to
the exosomal protein lysosome-associated membrane glycoprotein 2b (Lamp2b) can deliver
miR-124 to the infarct site and promote neurogenesis in stroke [87]. Among the various RNA
delivery systems, EVs have been proven to be more efficient than other clinically approved
synthetic systems [88]. As potential therapeutic targets or drugs in neurological diseases, the
role of exosomal miRNAs has been comprehensively discussed in other reviews [89].
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With recent advances in therapeutic nucleic acids, EV-based delivery has demonstrated
great promise in nucleic acid therapies for genetic disorders [90]. Huntington’s disease
(HD) and Duchenne muscular dystrophy (DMD) are two neurogenetic disorders that have
been widely researched in this field.

The expansion of CAG repeats in the Huntingtin (HTT) gene leads to HD. The delivery
of oligonucleotide directly targeting HTT mRNA and silencing the expression of pathological
proteins is a promising strategy for HD treatment. EVs loaded with hydrophobically modified
siRNAs display a significant bilateral distribution and silencing of Huntingtin mRNA in
mice [91]. Recently, Zhang et al. designed an interesting genetic circuit that could reprogram
hepatocytes to produce RVG-EVs loaded with mutant HTT siRNA [92]. These EVs reduced
the levels of mutant HTT in the cortex and striatum and ameliorated behavioral deficits in
three different mouse models of HD [92].

DMD is an X-linked recessive, progressive neuromuscular disease caused by the loss
of dystrophin [93]. One of the most promising therapies for DMD is exon skipping, using
antisense oligonucleotides (ASOs) to restore the function of dystrophin. Some ASOs have
been tested in clinical trials, such as eteplirsen and drisapersen, based on phosphorodiamidate
morpholino oligomer (PMO) and a 2′-O-methyl phosphorothioate (2OMePS), respectively [94].
Due to the unsatisfied functional benefits in large clinical trials, improving the delivery of
ASOs by EVs may be an approach to promote the efficiency of exon-skipping therapy. The com-
bination of PMO and peptide-modified EVs demonstrates an 18-fold increase in dystrophin
expression in the muscle cells of mice compared to other non-exosomal components [95].
Similarly, anchoring myostatin propeptide, a natural inhibitor of myostatin, to the surface of
EVs increased their stability and delivery efficiency and thus significantly promoted muscle
regeneration and functional rescue in a DMD mouse model [96]. The systemic administration
of EVs from different origins can rescue muscle function by stabilizing muscle membranes [97].
In addition, EVs secreted from muscle cells have been discovered for several years, and several
studies have shown their effects in maintaining muscle homeostasis [98,99]. These muscle
EVs may exhibit protective effects on muscle cells and slow the progress of neuromuscular
diseases. However, far too little attention has been paid to these muscle EVs. Future studies
are needed to explore the therapeutic effects of naïve or modified muscle EVs in treatments
for neuromuscular disorders.

2.4. Inhibition of the Production of Pathological EVs

Other than their therapeutic roles, EVs are vital factors in the progression of neurological
diseases [2,100,101]. For instance, EVs from B cells, rather than immunoglobulins or comple-
ment, cause apoptosis in neurons and oligodendrocytes in MS [102–104]. The contribution of
EVs to the progression of neurodegenerative diseases has been well summarized [105–109].
The inhibition of EV release has emerged as a novel therapeutic strategy. There are two basic
approaches currently adopted to develop pharmacological inhibitors of EVs: the inhibition
of EV trafficking (e.g., calpeptin, manumycin A, and Y27632) and the inhibition of the lipid
metabolism (e.g., pantethine, imipramine, and GW4869) [110]. For a comprehensive review of
these inhibitors and their proposed mechanisms of action, readers may refer to the outstanding
review written by Catalano and O’Driscoll [110]. In addition, some enzymes participating in EV
secretion, such as peptidyl arginine deiminases, are preserved from microbes to mammals [111].
Thus, compounds that effectively inhibit the production of bacterial EVs may be potential
inhibitors of EV release in mammals [111].

However, as pivotal agents of intercellular communication, some EVs transfer infor-
mation and mediate physiological functions. Interference with the biogenesis of all EVs
brings undesired side effects, and effective methods to inhibit specific pathological EVs are
still lacking. The maturation of recombinant adeno-associated viruses (AAVs) provides cell-
type-specific gene-delivery vehicles for neuroscience research [112]. Moreover, the silencing
of genes such as GTPase, Rab27a, and Rab27b has been shown to significantly reduce the
biogenesis and release of EVs [113]. Using cell-type-specific AAVs to silence EV genes in the
parental cells of pathological EVs may increase the specificity of this therapeutic strategy.
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3. Issues to Be Considered for Clinical Applications of EV-Based Therapeutics

EV-based therapeutics have attracted attention from the academic community and sev-
eral pharmaceutical companies [114,115]. Clinical trials for EV-based therapeutics in humans
have been approved, and the number of them is rapidly increasing [116–119]. We sum-
marized all the registered clinical trials of EV-based therapeutics in Table 1. Among these
registered trials, there are currently three registered clinical trials related to neurological prob-
lems: NCT04388982 (Alzheimer’s disease), NCT03384433 (cerebrovascular disorders), and
NCT05490173 (neurodevelopmental disorders). MSCs were the source of EVs in all three
trials, but the tissue sources of MSCs were different. Allogenic adipose MSCs were applied
in NCT04388982 (Alzheimer’s disease), while allogenic bone marrow MSCs were applied in
NCT03384433 (cerebrovascular disorders). Notably, NCT03384433 (cerebrovascular disorders)
used allogenic MSCs transfected with miR-124, which may provide evidence for the effects of
EV-based gene therapies in humans. In particular, the NCT05490173 (neurodevelopmental
disorders) and NCT04388982 (Alzheimer’s disease) studies adopted intranasal administration,
while the intravenous administration of EVs was applied in NCT03384433 (cerebrovascu-
lar disorders). We hope these representative clinical trials will provide exciting results for
EV-based therapeutics in neurological diseases in humans.

Table 1. EVs as therapeutics in registered trials.

Strategy Study Identifier Condition or Disease Phase Source of EVs Native/Engineered Status

Regenerative

NCT04388982 Alzheimer’s disease I/II MSC * Native Unknown

NCT05490173

Premature birth
Extreme prematurity

Preterm intraventricular hemorrhage
Hypoxia-ischemia, cerebral

Neurodevelopmental disorders

NA * MSC Native Not yet
recruiting

NCT04602104 Acute respiratory distress syndrome I/II MSC Native Recruiting
NCT05402748 Fistula perianal I/II MSC Native Recruiting
NCT04213248 Dry eye I/II MSC Native Recruiting

NCT03437759 Macular holes I MSC Native Active, not
recruiting

NCT05060107 Osteoarthritis, knee I MSC Native Not yet
recruiting

NCT04270006 Periodontitis I Adipose stem cell Native Unknown

NCT05475418 Wounds and injuries NA Adipose tissue Native Not yet
recruiting

Regenerative and
immune-modulatory

NCT04356300 Multiple organ failure NA MSC Native Not yet
recruiting

NCT04202770
Refractory depression

Anxiety disorders
Neurodegenerative diseases

NA MSC Native Suspended

Immune-modulatory

NCT01159288 Non-small-cell lung cancer II dendritic cell Native Completed

NCT04389385 Coronavirus infection
Pneumonia I COVID-19 Specific

T Cell Native Unknown

NCT05191381

COVID-19
Critical illness

Hypercytokinemia
Lung fibrosis

NA MSC Native Recruiting

NCT04276987 COVID-19 I MSC Native Completed
[120]

NCT04491240 COVID-19
SARS-CoV-2 pneumonia I/II MSC Native Completed

Drug delivery

NCT03384433 Cerebrovascular disorders I/II MSC
Engineered

(loaded with
miRNA-124)

Recruiting

NCT04879810 Irritable bowel disease NA Ginger
Engineered

(loaded with
curcumin)

Recruiting

NCT05043181 Familial hypercholesterolemia I MSC

Engineered
(loaded with
low-density
lipoprotein

receptor
mRNA)

Not yet
recruiting

NCT03608631

KRAS NP_004976.2:p.G12D
Metastatic pancreatic adenocarcinoma

Pancreatic ductal adenocarcinoma
Stage IV pancreatic cancer AJCC v8

I MSC

Engineered
(loaded with
KRAS G12D

siRNA)

Recruiting

* MSC, mesenchymal stem cell; NA, not applicable.
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As shown in Table 1, MSC-derived EVs are the most frequently used therapeutic
EVs [121–125]. In the current bibliometric analysis of MSC-EV publications, 1595 articles
and reviews about MSC-EV were published between 2009 and 2021; the annual publication
reached as high as 555 publications in 2021 [126]. These data display a steep growth trend
in MSC-EV studies in recent years. Given the rapid growth of preclinical and clinical
MSC-EV publications, a systematic review has comprehensively analyzed the outcomes,
methodologies, dosing, and possible mechanistic pathways of 206 animal studies using
MSC-EVs as an intervention until 2020 [127]. Notably, a recent study has reported some
interesting approaches that could enhance the therapeutic effects of MSC-EVs. For instance,
appropriate preconditioning has been proven to enhance the therapeutic potential of MSC-
EVs [128–130]. EVs of embryonic stem cells have an antisenescence activity on MSCs,
which can be applied to maintain the EV production capacity of MSCs [131]. In addition,
the pathology-specific homing of MSC-EVs is highly correlated with neuroinflammatory
signals, suggesting that the distinct distribution pattern may be inflammatory-driven [132].

Indeed, as indicated in the explorations of MSC-EVs in laboratory and clinical studies,
MSC-EV-based therapeutics have numerous problems. A major problem is their unstable
therapeutic effects. For instance, studies offer contradictory findings about the effects
of MSC-EVs on the angiogenesis process. MSC-EVs under hypoxic conditions promote
angiogenesis, while MSC-EVs display anti-angiogenic effects in a pro-inflammatory mi-
croenvironment [133–135]. The unstable effects of native MSCs may be attributed to lots
of reasons, ranging from isolation techniques, the cell source of MSCs, and distinct pre-
conditioning. Though Gorgun and colleagues report that MSC-EVs display relatively
minor changes in the microRNA landscape, they are less sensitive than soluble proteins in
different microenvironments [136]. These results highlight the importance of standardized
protocols in the preconditioning and elimination of soluble proteins.

The heterogeneity of EVs is another possible reason for their unstable therapeutic
effects. Researchers have raised concerns about the different neuroprotective efficacy of
MSC-EVs between individual preparations [60]. The latest review provides a definition of
MSV-EVs and a general optimization strategy of the MSC manufacturing process for better
and more homogeneous MSC-EVs [137,138]. On the other side, apart from avoiding the
heterogeneity of EVs, understanding and taking advantage of the heterogeneity of EVs
presents more opportunities for obtaining optimal therapeutic outcomes. For example,
MSC-EVs consist of at least three types with different proteomes [139]. Recently, more
exosome subpopulations have been found by asymmetric flow field-flow fractionation
and high-speed ultracentrifugation [140,141]. These subpopulations within the classical
subtypes of EVs mean that their therapeutic activities come from a collective effect of
heterogeneous EV groups [142]. Although the biological significance and functions of these
subpopulations have not been illustrated so far, some subpopulations may exhibit better
therapeutic effects than other subpopulations. Thus, selecting the optimal subpopulations
for treating different diseases will increase the consistency of their therapeutic effects and
the accuracy of EV-based therapeutics.

Another major hindrance to clinical EV-based therapy is the production of sufficient
EVs. Mendt et al. reported bioreactor-based progress in the large-scale generation of good-
manufacturing-practice-grade (GMP-grade) MSC-EVs [143]. Plasma- and adipose-tissue-
derived EVs have been proposed to be a cost-efficient alternative source of EVs compared
to cell-culture-derived EVs [144]. Recently, a set of genetically encoded devices in EV-
producer cells has been developed to enhance EV production and to specify the packaging
and delivery of therapeutic mRNA in PD models [145]. In this study, the researchers
designed an EV production booster, namely a tricistronic plasmid vector with a combined
expression of STEAP3, syndecan-4 (SDC4), and a fragment of l-aspartate oxidase (NadB) at
a fixed ratio, which produced a 15-fold to 40-fold increase in EV production in different
cells. Co-transfecting the EV production booster, a potential RNA packaging device, a
cytosolic delivery helper, mRNA, and RVG-Lamp2b into the EV-producer cells significantly
increased the delivery of therapeutic mRNA into the target cells. Moreover, the engineered
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EV-producer cells implanted in living mice constitutively produced and delivered EVs
loaded with therapeutic mRNAs, attenuating 6-OHDA-induced neuroinflammation in the
PD mouse model. Thus, these genetically encoded devices can serve as efficient tools to
produce a great deal of designer EVs and to enable the delivery of therapeutic mRNA in
situ in vivo [145]. Grangier et al. critically compared the technological advances toward the
mass production of EVs and clinical production platforms in detail [146]. The upscaling,
isolation, storage, production, and standardization of them have been well discussed in
other outstanding reviews [12,147–151].

The difficulty in the large-scale production of EVs for clinical application prompts the
development of fully synthetic EV mimetic particles by bionanotechnology. EV mimetic
vesicles can be a cheaper and more scalable nanosystem for encapsulating and delivering
drugs. According to García-Manrique et al., the preparation of artificial EVs consists of two
types: bioengineering cells as membrane fragment precursors (top-down methodologies)
and mimicking the plasma membrane with artificial bilayers (bottom-up techniques) [152].
The mass production of EV mimetics with natural immunotolerance can be obtained
by the top-down methodologies, but the encapsulation of cargo is passive and lacks
selectivity. On the contrary, the bottom-up techniques provide specific cargo loading and
high encapsulation efficiencies, while the production of EVs is still small. Therefore, the
artificial EV field is still premature. Polyethylene-glycol (PEG)-induced membrane fusion
between liposomes and EVs provides another strategy for this purpose [153]. The analysis
of the characterization of EVs provides insights into the targeting and efficient delivery of
therapeutic cargo, while the methodologies and advanced techniques in the liposome field
may help to manufacture therapeutic EVs for specific clinical uses. Given the involvement
of EV-associated lipids in the pathological process of neurological diseases, the modulation
of EV lipidome represents a possible therapeutic strategy [107].

Off-target activity and dilution effects block the development and progress of EV-
based therapy to some extent. The precisely controlled release of drugs is another challenge
in EV-based therapeutics. Intelligent EVs engineered with responsive modules can react to
specific internal and/or external stimulation to release cargo. These intelligent EVs have
been systematically reviewed recently [154].

4. Conclusions

Despite ongoing challenges, extracellular vesicles have emerged as promising ther-
apeutics and drug delivery systems in recent years. Emerging EV-based therapeutics in
preclinical studies of neurological diseases have set the stage for their clinical use. In
addition, the combination of EV-based therapeutics and some therapeutics that are in
rapid development, such as mRNA therapeutics, may provide insight into treatments for
neurological diseases. However, unstable therapeutic effects, difficulties in the large-scale
production of EVs, and off-target activities still limit the clinical applications of EV-based
therapeutics. Although many issues remain to be addressed, as a consequence of emerging
standardized protocols and guidelines for EV isolation and storage, EV-based therapeutics
are not far away from clinical application in neurological diseases.
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