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Abstract: Recently, research on and the application of nanomaterials such as graphene, carbon nan-
otubes, and metal–organic frameworks has become increasingly popular in tissue engineering. In
2014, a two-dimensional sheet of black phosphorus (BP) was isolated from massive BP crystals. Since
then, BP has attracted significant attention as an emerging nanomaterial. BP possesses many advan-
tages such as light responsiveness, electrical conductivity, degradability, and good biocompatibility.
Thus, it has broad prospects in biomedical applications. Moreover, BP is composed of phosphorus,
which is a key bone tissue component with good biocompatibility and osteogenic repair ability.
Thereby, BP exhibits excellent advantages for application in bone tissue engineering. In this review,
the structure and the physical and chemical properties of BP are described. In addition, the current
applications of BP in bone tissue engineering are reviewed to aid the future research and application
of BP.

Keywords: black phosphorus; bone; 2D nanomaterials; bone regeneration; bone tissue engineering

1. Introduction

Phosphorus is a highly abundant element in the human body and accounts for approx-
imately 1% of the total body weight [1]. Phosphorus plays various important physiological
roles in the body. For example, it participates in the composition of nucleic acids, ATP, and
other substances, and it maintains homeostasis in the body’s internal environment [2,3].
Most of the phosphorus in the human body exists in bone tissue in the form of hydroxya-
patite, which is used to maintain the mechanical strength of bone tissue [4]. Phosphorus
plays an essential role in promoting osteogenic repair during bone repair owing to its
significant proportion in bone tissue [5].

Black phosphorus (BP) is a novel nanomaterial composed of phosphorus monomers.
It has attracted the attention of researchers since the first report of two-dimensional (2D)
BP nanosheets (BPNs) in 2014 [6]. BPNs consist of a unique layered structure of stacked
phosphorus elements connected by van der Waals forces. This weak interaction enables
BP to conveniently peel off the surface of the bulk BP crystal through different peeling
modes [7]. BP is more stable than other phosphorus monomers (red and white phosphorus)
that are non-flammable at room temperature and insoluble in most solvents [8]. The unique
structure and physicochemical properties of BP are conducive to its application in bone
tissue engineering [9]. BP can be degraded to phosphate in the presence of oxygen and
water. Phosphate promotes local mineralization by capturing free Ca2+ [10]. BP’s electrical
conductivity and biomineralization capability can improve the bone repair microenviron-
ment [11,12]. The near-infrared (NIR) light responsiveness of BP renders it effective for
photothermal/photodynamic antibacterial and antitumor applications [13]. In addition,
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the unique layered structure of BPNs provides them with a high specific surface area. This
is advantageous for drug loading and delivery [14].

BP has been used to treat bone defects, bone infections, arthritis, osteosarcoma, and
other diseases, and remarkable results have been achieved [15–18]. However, the large-
scale application of BP in bone tissue engineering still faces challenges, such as the rapid
degradation of BP, which may affect its therapeutic effect [19]. In addition, the immune
response induced by BP should be fully understood. It has been reported that BP has
a pro-inflammatory effect and that macrophages exposed to BP express higher levels of
interferon-γ [20,21]. Currently, the application of BP in the field of biomedicine is in its
infancy. Given the excellent characteristics of BP, we believe that it will provide new
methods and opportunities for biomedical and orthopedic clinical treatment through the
efforts of researchers. Herein, we describe the characteristics of BP and summarize the
current research and possible challenges with regard to BP in bone tissue engineering.
The objective is to motivate researchers (Figure 1). We used the following keywords to
search the Web of Science and PubMed databases: black phosphorus AND bone OR bone
regeneration OR bone tissue engineering OR arthritis OR osteomyelitis OR osteosarcoma.
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Figure 1. Properties of black phosphorus (BP) and its current application in bone tissue engineering.
BP has good biocompatibility, degradability, antioxidant, photoresponsivity, and electrical conductiv-
ity. It has been studied in bone regeneration, infectious bone defect repair, tumor bone defect repair,
and rheumatoid arthritis treatment. Developed with BioRender.com.

2. Materials and Method

We used the following search terms in the Web of Science and PubMed databases for a
comprehensive search of the literature published till November 2022: black phosphorus
AND (bone OR bone regeneration OR bone tissue engineering OR arthritis OR osteomyelitis
OR osteosarcoma). The literature related to the theme of this review was collected through
literature screening.
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3. Structure and Properties of Black Phosphorus
3.1. Structure of Black Phosphorus

BPNs are composed of a unique layered phosphorus structure. The layers are con-
nected by van der Waals forces. This weak interaction force allows BP to easily peel off the
surface of bulk BP crystals through different peels to yield single-layer 2D nanosheets [7,22].
Currently, the most commonly used peeling methods are liquid-phase and mechanical peel-
ing. Other methods, such as electrochemical peeling and plasma etching, are less frequently
used [23]. In BPNs, each phosphorus atom is connected to three other phosphorus atoms
by covalent bonds. Furthermore, they do not exist in the same plane but in a wall-like
folded lattice structure. This structure gives BP a high specific surface area and a higher
drug-loading capacity than other sheet-like structured materials (which provides significant
advantages for BPNs as drug transport nanocarriers) [24,25]. In 2015, Zhang et al., prepared
zero-dimensional BP quantum dots (BPQDs) using liquid-phase ultrasound technology [26].
BPQDs have a higher specific surface area, smaller size, and higher bandgap. These are
conducive to surface modification and functionalization [27]. In addition, BP is negatively
charged because of the presence of lone pair electrons on its surface, and positively charged
drugs can be loaded with BP through electrostatic interactions [28]. The modification of BP
with various functional molecules or polymers can control its degradability and biocompat-
ibility. For example, modifying BP with positively charged polyethylene glycol (PEG) can
effectively improve its stability. As a result, the material has a better cancer-killing ability
when the chemotherapeutic drug doxorubicin is loaded with PEG [29].

3.2. Biocompatibility of Black Phosphorus

Good biocompatibility is a fundamental requirement of biomedical materials. Gen-
erally, the biocompatibility of 2D nanomaterials is related to their type, size, and dosage.
BP is composed of phosphorus, an essential element in the human body [1]. The degra-
dation product of BP is phosphate, a basic component of the human body. Excessive
phosphate can be excreted through the urinary system without causing any severe ad-
verse effects. These characteristics make BP more biocompatible [30,31]. It has been
reported that BPNs can exhibit cytotoxicity at concentrations greater than 50 µg mL−1.
In contrast, BPQDs with smaller sizes (<10 nm) did not show significant cytotoxicity
at concentrations up to 1000 µg mL−1 [32]. The cytotoxicity of BPNs is related to the
size of the nanosheets, with larger BPNs (lateral dimension 884.0 ± 102.2 nm, thickness
91.9 ± 32.0 nm) being more cytotoxic than smaller ones (lateral dimension 208.5 ± 46.9 nm,
thickness 17.4 ± 9.1 nm) [33]. Overall, BP is safe and biocompatible and meets the require-
ments of biomedical applications.

3.3. Degradability of Black Phosphorus

Compared with other 2D nanomaterials, the degradable properties of BPNs make
them safer and give them broader prospects for biomedical applications [34]. The lone
pair of electrons on the surface of BP reacts with phosphate, phosphite, and other PxOy
molecules in the presence of oxygen. The moisture in the environment can remove the
reacted PxOy. This exposes unreacted BP in the lower layer to form a cycle until BP is
completely degraded [35–37]. The instability caused by degradability is one of the problems
that limit the practical application of BP. In complex physiological environments, the
degradation rate of BP is accelerated, and BP may be partially degraded before implantation.
These problems may weaken the therapeutic effects of BP [38]. Various methods have
been developed to improve the stability of BP. These include the addition of protective
layers, surface chemical modification, and doping with other elements [39–41]. Zeng et al.
modified BP using polydopamine (PDA). The encapsulation of PDA blocked oxygen
and moisture from BP improves the stability of BP to a certain extent and enables it to
exhibit robust photothermal properties [42]. Wang et al. used the tripeptide Fmoc-Lys-
Lys-Phe (Fmoc-KKF) to modify the surface of BPNs and construct a BP@FKK complex.
The modification of Fmoc-KKF improved the stability of BP, and BP@FKK exhibited better
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biocompatibility and cellular uptake ability [43]. Liang et al. prepared red-blood-cell-
membrane-coated BPQD. The coating of the cell membrane reduces the contact of BPQD
with the surrounding environment, effectively slows down the degradation of BPQD, and
helps maintain the photothermal properties [44]. Deng et al. constructed BPNs that were
covalently modified with superparamagnetic ferrous selenide. Ferrous selenide occupies
the lone pair electrons on the surface of BP. Thereby, it reduces the exposure of lone pair
electrons in the environment and enhances the stability of BP [45].

3.4. Photoresponsivity of Black Phosphorus

The wide tunable range of the BP bandgap enables BP to have a wide light absorption
range, resulting in better optical properties than other 2D materials [46,47]. The photore-
sponsivity of BP has important applications in biomedicine. It enables BP to be effective
in biosensing, photoacoustic imaging, photodynamic therapy, and photothermal ther-
apy [16,48,49]. BP exhibits excellent photothermal ability under NIR light irradiation, with
a photothermal conversion efficiency of 28.4% [50]. BP also exhibits a photodynamic effect
and can generate a large amount of singlet oxygen under NIR light irradiation, with a quan-
tum yield of 9.1 [51]. In recent years, researchers have widely used the photothermal and
photodynamic effects of BP in antitumor and anti-infective treatments, such as combining
BPQD with PLGA and loading docetaxel for a controllable chemo-photothermal antitumor
therapy to achieve the synergistic induction of cancer cell apoptosis [52]. Sutrisno et al.
prepared a composite scaffold of BPNs and gelatin. The concentration of BPNs determined
the photothermal ability of the scaffold. A composite scaffold containing a large amount
of BPNS can completely kill cancer cells in vitro and in vivo under laser irradiation [53].
Zhao et al. prepared cancer-cell-membrane-coated biomimetic BPQDs for tumor-targeted
photothermal therapy combined with anti-PD-L1 immunotherapy to achieve effective
anticancer therapy [54]. Huang et al. encapsulated BPQD in hydrogels as a light-responsive
antibacterial platform for drug-resistant bacteria. The temperature of the platform can be
elevated to 55 ◦C and generate reactive oxygen species (ROS) under NIR irradiation to
achieve synergistic antidrug bacterial treatment [55].

3.5. The Oxidative Stress Regulation Ability of Black Phosphorus

ROS are important signaling molecules in cells. Maintaining a normal level of ROS is
necessary for normal physiological functions [56]. However, in the presence of imbalanced
ROS regulation, oxidative stress caused by high levels of ROS exerts detrimental effects
on tissue repair [57]. Elevated intracellular levels of transition metal ions, such as copper
ions, can cause cellular oxidative stress [58]. BP can regulate the level of copper ions
in tissues by combining them with the copper ions. Thereby, it reduces ROS to playing
a role in regulating oxidative stress [59]. In addition, BP exerts antioxidant effects by
directly consuming ROS. Hou et al., used BP for ROS-induced acute kidney injury. The
BP accumulated in the kidney effectively addressed AKI by consuming ROS [60]. Wang
et al. used urokinase-loaded BPNs to treat ischemic strokes. BPNs play a neuroprotective
role by reducing ROS and attenuating oxidative stress-induced reperfusion injury [61].
However, the cellular ingestion of BP can also induce oxidative stress. Mu et al. reported
that BPQD can induce a large amount of intracellular ROS by inducing lipid peroxidation
and reducing catalase activity [62]. When the concentration of BPQD reached 200 µg mL−1,
the cell viability decreased significantly. Given the two-sided nature of the antioxidant
effect of BP, regulating the local dose and release of BP may be one way to control its
antioxidant capacity.

3.6. Conductivity of Black Phosphorus

Bioelectrical activity is an inherent property of human tissues. Various tissues in the
human body exhibit bioelectrical conductivity or electrical sensitivity [63]. Improving the
local bioelectrical activity of tissues using biomaterials is important for tissue repair [64,65].
BP has excellent electrical conductivity as a semiconductor material with an electron
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mobility of 1000 cm2 V−1 s−1 at room temperature [66]. BP can be used to improve the
electrical conductivity of materials and restore local tissue electrical activity and thereby
repair tissues. Qian et al. constructed BP-loaded nanoscaffolds with excellent electrical
conductivity to induce angiogenesis and neurogenesis and promote myelination under
mild oxidative stress conditions [12].

4. The Advantages of Black Phosphorus in Bone Tissue Engineering

BP is a form of phosphorus that has a significant presence in bone tissue. Therefore, it is
advantageous to apply BP in bone tissue engineering [67]. The degradability of BP prevents
the potential toxicity of local accumulation [68]. Phosphate formed after BP degradation
can combine with free calcium ions in the surrounding environment to form local deposits
and mineralization. This promotes in situ bone tissue repair (Figure 2) [10]. Huang et al.
cocultured human dental pulp stem cells with BP-loaded hydrogels. They found that BP
promoted the expression of the osteogenic differentiation-related proteins Col-1, BMP4,
and RUNX2 in dental pulp stem cells. This indicates that BP can promote the induction of
osteogenic differentiation [10]. NIR light can accelerate the degradation rate of BP. Thereby,
it regulates its degradation and the reaction between phosphate and calcium ions to acceler-
ate the formation of local mineralization. Changing the NIR irradiation in the dimensions of
time and space can play an active and controllable role in in situ mineralization, mechanical
property regulation, and bone induction promotion. This is conducive to the control of the
mechanical properties and osteogenic activity of biomaterials and provides a new concept
for the biomedical application of BP [18,69]. Elevated phosphate concentrations in the
local microenvironment directly affect osteogenic mineralization. Tang et al. studied the
effects of intracellular calcium ions and phosphates on biomineralization [70]. Endoplasmic
reticulum phosphate levels are elevated after exogenous phosphate is phagocytosed by the
cells. Calcium ions and phosphates in the ER form calcium and phosphorus colonies and
are transported to the mitochondria to form nanoscale bioluminescent precursors. These are
then transported outside the cell to initiate cell-mediated bioluminescence. The size of the
BPN also influences osteogenic induction. Xu et al. studied the osteogenic induction ability
of BPNs of different sizes. They found that the composite hydrogel with smaller BPNs
had the best osteogenic induction ability [71]. The authors proposed that this phenomenon
may be because smaller BPNs have a higher specific surface area, which increases their
exposure to the surrounding environment and thereby accelerates the degradation of BP
and produces phosphate faster.
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5. Research Progress of Black Phosphorus in Bone Tissue Engineering

The excellent physical and chemical properties of black phosphorus lay a good foun-
dation for its application in bone tissue engineering. Here, we briefly summarized the
application of black phosphorus in bone tissue (Table 1).

Table 1. Summary of the application of black phosphorus in bone tissue engineering.

Target Material Design Main Results Reference

Biomineralization BPNs-GelMA
Promoted the expression of

osteogenesis-related genes and
accelerated bone repair.

[10]

BPNs-OPF

Exhibited a controllable degradation
rate and phosphate release capacity.

Enhanced the adhesion, proliferation,
and osteogenic differentiation of

pre-osteogenic cells.

[73]

PDA@BPNs-PLLA
Improved the stability of the BPN

and promoted osteogenic
differentiation.

[74]

L-NH-BP-PLCL
Promoted the proliferation and

osteogenic differentiation of
mesenchymal.

[72]

GO@BP-PPF Promoted cell adhesion and
osteogenic differentiation. [75]

Vascularized
Osteogenesis

Deferoxamine/BP-
GelMA

Promoted local expression of CD31
and positively affected a vascular

repair.
[76]

VEGF@BPNs-DNA
hydrogel

Continuous release of VEGF.
Accelerated vascular regeneration

and bone regeneration.
[77]

BP@Mg double-layer
scaffold

Promoted early nerve regeneration
and angiogenesis in the process of

bone regeneration.
[78]

Photothermal
Osteogenesis BP/IBU@SA-PLLA

Significantly high photothermal
conversion efficiency and

photothermal-responsive intelligent
drug release performance.

[79]

SrCl2/BPNs-PLGA
Remarkable cell compatibility and

degradation capability. Remarkably
controlled release of strontium ions.

[18]

BP@HA/SiO2-PLLA
The photothermal effect promoted

the release of elements, thereby
achieving accelerated osteogenesis.

[80]

Antibacterial BPNs-GelMA
The hydrogel could be heated up to

55.3 °C and showed efficient
antibacterial and antitumor effects.

[81]

BPNs/HA coating
Remarkable photothermal

conversion capability and good
anti-biofilm properties.

[82]

BP@Mg-GelMA
Remarkable antibacterial capability

and induced innerved bone
regeneration.

[83]

Antitumor BPNs -BG scaffold
Remarkable photothermal antitumor

activity and osteogenic induction
ability.

[84]

BP/doxorubicin
hydrochloride/PDA

coating

NIR/pH dual controlled antitumor
drug release and high antibacterial

activity.
[85]
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5.1. Bone Regeneration Materials Based on the Biomineralization Function of Black Phosphorus

The application of BP in bone tissue engineering is increasing, and many related
studies have been conducted [86]. The phosphate released from the degradation of BP
can undergo local biomineralization. This has a positive effect on bone regeneration.
Huang et al. loaded BPNs into gelatin methacryloyl (GelMA) hydrogels for the stable
release of phosphoric acid to accelerate local biomineralization [10]. BPNs improved the
mechanical properties of hydrogels and released phosphoric acid in response to light to
facilitate localized mineralization. The hydrogel promoted the expression of osteogenesis-
related proteins and accelerated repair in a rabbit bone defect model. Xu et al. loaded BPNs
into oligo[poly(ethylene glycol) fumarate] (OPF) hydrogels to prepare polymer scaffolds
for bone tissue repair [73]. The composite scaffold exhibited a controllable degradation rate
and phosphate release capacity. The loading of BP enhanced the adhesion, proliferation,
and osteogenic differentiation of preosteogenic cells on the hydrogel surface. Jeon et al.
investigated the effect of BP-coated topographical microenvironments on the cellular
behavior of osteogenic precursor cells [87]. The authors prepared a BP coating on a
glass substrate, which provided good supportive matrices for osteogenic precursor cells,
was suitable for the survival and growth of osteogenic precursor cells and promoted the
expression of osteogenesis-related genes. We believe that modifying bioinert surfaces with
BP coatings can improve the biocompatibility and osteogenic activity of materials.

On the one hand, the degradability of BP can promote osteogenesis. On the other
hand, excessive degradation may affect its bone repair effect [88]. By modifying BP, its
stability can be improved to a certain extent, and additional functions can be added [9].
Wang et al. loaded PDA-modified BPNs into poly l-lactic acid (PLLA) scaffolds to im-
prove their mechanical properties and induce in situ biomineralization [74]. PDA exhibits
good biocompatibility and stability. In a weakly alkaline environment, dopamine spon-
taneously formed a PDA layer on the surface of a substrate through rearrangement and
crosslinking to wrap the substrate [89,90]. The stability of the BPN improved because
of the coating of the PDA layer, and the addition of PDA@BP to the PLLA scaffold im-
proved the mechanical properties of the scaffold. After the PLLA/BP@PDA scaffolds were
immersed in a simulated body fluid (SBF) solution for 14 d, a large number of calcium
phosphate crystals were formed on the surface of the scaffolds. Compared with PLLA
scaffolds, the in situ mineralization ability of PLLA scaffolds was significantly improved.
This has a positive effect on osteogenic differentiation [91]. In another report, researchers
loaded lysine-modified BP onto L-lactate (L-NH-BP) and caprolactone poly-(lactide-coε-
caprolactone) (PLCL) electrospun scaffolds to construct biodegradable scaffolds with good
biocompatibility (Figure 3) [72]. The scaffolds promoted the proliferation and osteogenic
differentiation of mesenchymal in vitro.
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An important strategy for promoting bone repair is to adjust the mechanical properties,
chemical composition, and biological signals of hydrogels to simulate the extracellular
matrix (ECM) microenvironment of bone regeneration [92]. Wang et al. constructed a dual-
network hydrogel loaded with BPNs to simulate the ECM microenvironment during bone
repair [93]. The authors added methacrylate-modified gelatin, polysaccharide, and BPNs
with mineralized CaP crystal carriers to the hydrogels to simulate collagen, polysaccharide,
and the mineralized crystallization of the natural bone ECM. The addition of BP induced
rapid biological mineralization in the hydrogels and promoted osteogenic activity in the
cells. Mesenchymal stem cell spheroids have attracted attention because of their advantages
in cell–cell and cell–extracellular matrix interactions [94]. Li et al. constructed mesenchymal
stem cell spheroids containing collagen and BPNs. These showed excellent cytocompatibil-
ity and osteogenic ability after 14 days of culture in osteogenic medium [95]. The authors
loaded spheres containing 6 µg mL−1 collagen and 4 µg mL−1 BP in the OPF hydrogel that
had better osteogenic capacity than the control group. Liu et al. used graphene oxide (GO)
and BPNs to construct dual 2D nanomaterial GO@BP co-functionalized polypropylene
fumarate (PPF) three-dimensional (3D) scaffolds (Figure 4) [75]. GO has a large surface
area and strong protein adsorption capacity. These are conducive to cell adhesion and pro-
liferation [96,97]. The loading of GO@BP in 3D-printed scaffolds enhanced the adsorption
capacity of scaffold proteins to promote cell adhesion. Subsequently, phosphate released
by BP degradation played an osteogenic-promoting role. In another report, the authors fab-
ricated an injectable bone repair material containing carbon nanotubes and BP loaded into
an OPF hydrogel [98]. In addition to promoting osteogenic repair through the phosphate
degradation of BP, electrical stimulation based on hydrogel application positively affected
bone repair. The hydrogel accelerated bone defect repair in a rabbit model of femoral defect
and vertebral fusion. Tan et al. loaded chitosan/collagen-based hydrogels with BP coated
with mesenchymal stem cell membranes to simulate phosphate ions enriched in the bone
ECM [99]. Membrane-coated BPNs can generate mild heat and activate heat shock proteins
to recruit osteoblasts. Phosphate released by BP degradation can capture calcium ions and
form hydroxyapatite in the ECM. This is conducive to the migration and differentiation
of osteoblasts.

5.2. Vascularized Bone Regeneration Material Based on Black Phosphorus

Angiogenesis is an important process for bone tissue repair. Neovascularization can
provide nutrients and oxygen to bone defects and secrete bioactive factors during new
bone formation [100,101]. The co-delivery of BP and vasculogenic substances is a feasible
strategy for achieving efficient vascular regeneration in bone defects. Deferoxamine is
an angiogenesis promoter that stimulates the hypoxia-inducible factor 1-α pathway to
promote angiogenesis by mimicking the local hypoxic environment [102,103]. Xu et al.
developed a GelMA hydrogel co-doped with deferoxamine and BP to repair ischemic bone
defects [76]. The hydrogel promoted the local expression of CD31 and positively affected
vascular repair. The co-delivery of BP and deferoxamine exerted a synergistic effect on
osteogenic repair. Miao et al. applied vascular endothelial growth factor (VEGF)-modified
BPNs to DNA hydrogels to promote vascularized bone repair (Figure 5a) [77]. BP enhances
the mechanical strength of the hydrogel. The continuous release of VEGF bound to BPNs
through noncovalent interactions in the hydrogel accelerates vascular regeneration. In vivo
experiments showed that the hydrogel exhibited synergistic angiogenic and osteogenic
effects. Nerves play a leading role in bone defect repair as they are the first to grow into
bone defect sites and promote vascular regeneration [104]. The electrical conductivity of BP
promotes nerve repair. Furthermore, it has been previously reported that BP contributes
to peripheral nerve repair and vascular regeneration [12]. Xu et al. modified BP with
magnesium ions and loaded it into a double-layer scaffold to promote neurovascularized
bone regeneration [78]. The upper hydrogel was used to simulate the periosteum structure,
in which the loaded magnesium-modified BPN could release magnesium ions to play a
role in vascular regeneration and nerve repair. The results of in vivo experiments showed
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that the hydrogel scaffold promoted early nerve regeneration and angiogenesis. This
was beneficial for the rapid repair of bone tissue. Wang et al. developed a microfluidic
scaffold based on BP with reversible heat-responsive contraction and expansion behaviors
(Figure 5b) [105]. Under the photothermal effect generated by BP, N-isopropylacrylamide in
the scaffold underwent a temperature-induced volumetric phase transition. This triggered
reversible contraction and expansion behaviors to promote the entry of the suspension
cells into the scaffold. The vascular regeneration ability of the scaffolds was investigated.
The photothermal response behavior of the scaffold promoted the growth of vascular
endothelial cells in the scaffold. This was conducive to vascularized bone regeneration.
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Figure 4. (a) Constructing dual two−dimensional nanomaterial (GO@BP) co−functionalized
polypropylene fumarate (PPF) three−dimensional (3D) scaffold by using graphene oxide (GO) and
black phosphorus nanosheets (BPNs). (b) The loading of GO enhanced the ability of cells to adhere
to the scaffold surface. (c) The degradation of BPNs released phosphate to promote cell proliferation.
(d) The calcium phosphate formed locally by phosphate and calcium ions improved the biomineral-
ization function of the scaffold. (e) The repair process of GO@BP co−functionalized 3D scaffold for
bone defects. Reproduced with permission from [75], Chemical Engineering Journal, 2022.
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Figure 5. (a) DNA−PCL scaffolds loaded with vascular endothelial growth factor (VEGF)−modified
black phosphorus (BP) nanosheets (BPNs) achieve vascularized bone regeneration by releasing VEGF;
reproduced with permission from [77], Bioactive Materials, 2023. (b) Microfluidic three−dimensional
printed scaffolds containing BPNs can achieve reversible contraction and expansion of the scaffold
under the irradiation of near−infrared light. Thereby, these promote the penetration of vascular
endothelial cells into the scaffold and induce vascularized bone regeneration. Reproduced with
permission from [105], Advanced Functional Materials, 2021.
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5.3. Bone Regeneration Material Based on Photothermal Responsiveness of Black Phosphorus

Mild thermal stimulation can promote the repair of bone defects [106]. The heat
generated by NIR light can be regulated by adjusting the intensity of the light source and
content of the photothermal-responsive agent loaded in the material. Local thermotherapy
using the high-efficiency photothermal conversion ability of BP can also effectively promote
bone tissue repair. It has been reported that local photothermal therapy using BP can
upregulate the expression of type 1 collagen (Col-1) and heat shock proteins and accelerate
the process of bone tissue repair [19]. Chen et al. loaded BP, Sr, and ibuprofen into
sodium alginate microspheres and loaded them onto PLLA nanofiber scaffolds [79]. BP
enhanced the photothermal response of the scaffold. Furthermore, the controlled release
of Sr and ibuprofen was achieved under NIR irradiation. In vitro experiments showed
that the scaffold had good cell adhesion and proliferation and could induce osteogenesis
by inducing in situ biomineralization. Matrix vesicles (MVs) are extracellular vesicles
released by bone-related functional cells that play an essential role in the regulation of
biomineralization [107]. Previous studies have reported that increasing the phosphate
concentration in and around the MVs can accelerate bone tissue repair [108]. Wang et al.
embedded BP in MVs and modified MVs with aptamers to enhance biomineralization and
osteoblast-targeting ability [109]. After the targeted delivery of MV by the aptamer, the
photothermal response ability of BP can be used to stimulate the expression of heat shock
proteins and alkaline phosphatases to promote osteogenic repair. Li et al. used microfluidic
technology to develop a fibrous scaffold that could provide bioactive elements to bone-
defect areas [80]. BP, hydroxyapatite, and silica loaded on the fibrous scaffold released
phosphate, calcium, and silicon ions in the defect area to promote osteogenesis. In addition,
the photothermal response of the scaffold promoted ion release, which has a positive effect
on bone regeneration [110]. Wang et al. developed a light-triggered drug-delivery platform
by loading strontium chloride and BPNs into PLGA microspheres [18]. The microspheres
exhibited excellent cell compatibility and degradation ability. Under NIR irradiation, the
heat generated by BP accelerated the degradation of PLGA microspheres and promoted
the release of strontium ions, thereby achieving controlled drug delivery. The authors used
microspheres to treat femoral defects in rats. The microspheres showed a good ability to
promote bone repair under NIR light irradiation.

Irregular bone defects are a problem in clinical orthopedic treatment. For such bone
defects, customized 3D-printed scaffolds cannot be directly implanted into the defect site.
This imposes additional surgical burden [111]. Wang et al. added a β-tricalcium phos-
phate/poly(lactic acid-co-trimethylene carbonate) (TCP/P(DLLA-TMC)) nanocomposite
with BP as a photothermal agent scaffold to construct a four-dimensional-printed scaffold
with shape memory function [112]. When the scaffold was heated to 45 ◦C by NIR light
irradiation, the shape reconfiguration of the scaffold occurred to facilitate the implantation
of the scaffold in irregular bone defects. The implanted scaffolds had good mechanical
properties at 37 ◦C and could slowly release osteogenic active peptides to promote bone
defect repair.

5.4. Antibacterial Bone Regeneration Material Based on Black Phosphorus

Inspired by the chloroplast structure, Zhao et al. developed an antibacterial osteogenic
scaffold based on BP and silver nanoparticles to repair infected bone defects [113]. BPNs
protected by PDA and linked with silver were loaded onto a 3D porous chitosan and
polycaprolactam composite fiber network to construct a biological platform for chloroplast
simulation. The scaffold showed a strong antibacterial effect. Furthermore, the mild heat
generated by NIR light irradiation effectively promoted the expression of osteogenesis-
related proteins and accelerated the repair of the infected bone defects. Miao et al. prepared
a photothermal antibacterial therapeutic nanocomposite hydrogel (BP/gel) by loading
BPNs into GelMA hydrogel [81]. BPNs enhanced the cross-linking network and mineral-
ization ability of the hydrogels. Under NIR light irradiation, the hydrogel could be heated
up to 55.3 ◦C, thereby showing efficient antibacterial and antitumor effects in vitro. Addi-
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tionally, the osteogenic induction ability of the hydrogels was verified. The addition of BP
enabled the hydrogel to promote bone formation in vitro without osteogenic factors. This
promoted bone defect healing in Sprague–Dawley (SD) rat skull defects. Wu et al. prepared
a photothermal antibacterial scaffold by loading BPNs modified with a zinc sulfonate lig-
and onto the surface of a hydroxyapatite scaffold [15]. BP and zinc sulfonate ligands have a
synergistic antibacterial effect, whereby the scaffold can exert an antibacterial effect below
50 ◦C. This minimizes the tissue damage caused by high temperatures. After anti-infective
treatment, mild photothermal at 40–42 ◦C combined with zinc ions and phosphate released
from the scaffold exerted a synergistic osteopromoting effect. Qing et al. constructed a mul-
tifunctional hydrogel with photothermal antibacterial and bioactive ion-release properties
using a poly (vinyl alcohol)/chitosan hydrogel loaded with magnesium oxide nanoparticles
and BPNs [114]. The photothermal effect of BP and the antibacterial ability of chitosan
play a synergistic role. The magnesium and phosphate ions released by the hydrogel can
promote the biomineralization, migration, and osteogenic differentiation of mesenchymal
stem cell (MSC) to accelerate the repair of bone defects [115].

Sensory nerve fibers play an important role in bone repair [104]. As previously
reported, nerve repair peaks on the first day of bone repair and influences the subsequent
vascularization, osteogenic differentiation, and mineralization [116]. Bone infections cause
an unfavorable microenvironment around the defect area. Excessive inflammatory factors
and acidic substances in the microenvironment caused by bacteria and inflammatory cells
are not conducive to nerve repair and may affect the repair of bone defects [117,118].
Jing et al. loaded magnesium-modified BPNs into GelMA to develop a photosensitive
conductive hydrogel for the repair of infected bone defects [83] (Figure 6). The hydrogel can
be heated to over 50 ◦C under NIR irradiation of 1 W/cm2. It displays a high antibacterial
effect in vitro and in vivo. The continued release of magnesium ions promotes Schwann
cells to secrete more nerve growth factors. Combined with the electrical conductivity of
the hydrogel, this induces further nerve growth in bone defects. The hydrogel effectively
promoted intrinsic bone regeneration in a model of infected bone defects.

One of the challenges in treating infected bone defects is the difficult-to-cure infections
caused by biofilms formed by microbial infections [119]. Coating the surface of implants to
improve their osteoinductive activity while acting as an anti-biofilm is a feasible research
direction for infected bone defects [120]. Yuan et al. prepared a layer of BPNs and hydroxya-
patite composite coating on the surface of metal implants to treat bone infections [82]. The
coating had excellent photothermal conversion ability (heating up to 60 ◦C after 1 W/cm2

NIR light irradiation) and good anti-biofilm properties. In addition, BP and hydroxyapatite
exhibited a synergistic bone-repair effect to promote the healing of infected fractures.

5.5. Antitumor Bone Regeneration Materials Based on Black Phosphorus

The photothermal and photodynamic effects of BP can effectively kill tumor cells. This
improves the microenvironment and promotes bone tissue repair. Yang et al. prepared a
dual-functional scaffold with photothermal antitumor and osteogenic repair promotion
ability by loading BPNs into 3D-printed biogas scaffolds (Figure 7) [84]. The scaffold
had an excellent photothermal response and could be heated up to 68.7 ◦C after 5 min
of 1 W/cm2 NIR light irradiation. This met the requirements of photothermal antitumor.
Bioactive glass scaffolds are conducive to cell proliferation, differentiation, and angiogen-
esis and can synergize with BP to promote osteogenic repair. Wang et al. developed a
low-temperature 3D-printed polymer scaffold loaded with doxorubicin hydrochloride,
β-tricalcium phosphate, BPNs, and osteogenic peptide P24 for treating tumoral bone de-
fects [13]. The photothermal function of the stent based on BP is used for on-demand
photothermal tumor killing after implantation and the possibility of preventing local tumor
recurrence by continuously releasing low concentrations of doxorubicin hydrochloride. In
addition, the presence of TCP and osteogenesis-related peptides in the scaffold can have a
continuous osteogenic effect that improves the repair of bone defects. Ma et al. constructed
a BP/doxorubicin hydrochloride/PDA coating on a NiTi alloy surface to treat bone tumors
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and bone defects [85]. The authors fabricated groove-like microstructures and nanostruc-
tures on the surface of a NiTi alloy using a femtosecond laser to promote osseointegration
of the implants. Then, they coated the surface with BP/doxorubicin hydrochloride/PDA to
achieve NIR light/pH dual control of antitumor drug release. In addition, the antibacterial
properties of the implant were tested. It showed high antibacterial activity against both
Staphylococcus aureus and Pseudomonas aeruginosa under NIR light irradiation.
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Figure 6. Schematic of GelMA-BP@Mg (GBM) hydrogel for antibacterial and innerved bone regener-
ation of infected bone defects. Under NIR irradiation, GBM hydrogel displays a high antibacterial
efficiency and reduces the damage to bone tissue by bacteria. Magnesium-modified black phos-
phorus nanosheets promote skeletal-associated nerve fiber repair and accelerate bone regeneration.
Reproduced with permission from [83], Advanced Healthcare Materials, 2022.
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5.6. Applications of Black Phosphorus-Based Biomaterials in Other Orthopedic Diseases

Rheumatoid arthritis is characterized by the excessive proliferation of synovial cells,
which destroy cartilaginous joints and bone tissue. This requires treatment to remove excess
synovial tissue and repair damaged bone tissue. Pan et al. developed a chitosan/platelet-
rich plasma hydrogel loaded with BPNs to treat rheumatoid arthritis [17]. After the hydro-
gel is injected into the joint cavity, the photothermal and photodynamic effects of BP can be
used to remove the excess synovial tissue. In addition, phosphate released from the hydro-
gel can subsequently promote bone tissue repair. This makes hydrogel suitable for treating
rheumatoid arthritis. Sun et al. used polyetheretherketone (PEEK)/polytetrafluoroethylene
and BPNs to construct an artificial joint material with antibacterial properties and wear
resistance [121]. The wear rate of the composite material was significantly improved com-
pared with that of pure PEEK. Furthermore, the addition of BP resulted in antibacterial
properties, with an antibacterial rate of 99.9%.

6. Conclusions and Outlook

Since the successful preparation of BPNs in 2014, research on BP in biomedicine has re-
ceived considerable attention. The excellent characteristics of BP make it the basis for exten-
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sive tissue engineering research. Research on BPNs and BPQD has been reported in many
fields, including biosensing, drug delivery, cancer treatment, and tissue repair [16,122–124].
This review summarizes the structure and properties of BP and its advantages in bone
tissue engineering. In addition, it comprehensively summarizes the current research and
application progress of BP in bone tissue engineering. The main application strategies
of BP in bone tissue engineering include the following: (1) The degradation of BP into
phosphate in the presence of oxygen and water can capture calcium ions in the surrounding
environment to form local mineralization to simulate the mineralized components in bone
tissue and promote bone formation. (2) Utilizing the photothermal conversion ability of BP,
NIR light is used to generate mild heat locally, activating the expression of local tissue heat
shock proteins, alkaline phosphatase, and other osteogenesis-related proteins to promote
bone repair. It can also exert antibacterial, antitumor, and synovial cell clearance effects
through high heat and photodynamic effects to improve the local pathological microenvi-
ronment and promote bone regeneration. (3) The high specific surface area of BP is used as
a drug delivery carrier to deliver bioactive ions and biological factors to local bone defects
to play a role in osteogenesis. These strategies have been applied in bone tissue engineering
and have achieved specific expected effects, thus laying a foundation for the subsequent
improvement of treatment strategies [86].

One of the current research directions for BP is to improve its original function or obtain
functions that are unaffected by certain functional modifications. The lack of penetration
depth of NIR light may limit its clinical application in orthopedics [125]. Ultrasound-
driven sonodynamic therapy is an emerging cancer treatment method. Liu et al. con-
structed three types of functionalized BPNs using a covalent modification method. The
fullerene-functionalized BPNs and benzoic acid-functionalized BPNs exhibited stronger
sonodynamic effects than the BPNs and produced more hydroxyl radicals. Thus, they have
good application prospects in ultrasound-driven anticancer therapy. Tan et al. used poly
(4-pyridone methyl styrene) endoperoxide (PPMS-EPO) and BPNs to fabricate an antibac-
terial film, PPMS-EPO/BPS [126]. PPMS-EPO can store singlet oxygen, which is generated
after exposure to light. In the absence of external light, this hybrid antibacterial film could
release ROS to exert an antibacterial effect and improve the stability of BP. The antibacterial
rates of Escherichia coli and Staphylococcus aureus without infrared light irradiation were
76.5% and 69.7%, respectively. These studies will stimulate researchers to develop new
functions and applications for BP.

However, compared with other nanomaterials, such as graphene, the research on BP
is still in its early stages [127,128]. Many problems still need to be solved and improved.
First, BP is expensive, unstable in unprotected conditions, and prone to degradation. This
limits its clinical use and may undermine the expected efficacy [129,130]. The preparation
and preservation methods of BP need to be optimized further for large-scale applications.
Second, the immune response elicited by BP must be defined in vivo. According to previous
reports, the uptake of BP by macrophages decreases its activity and promotes the secretion
of inflammatory cytokines including TNF-α [131]. BP may form a protein crown upon
contact with hemoglobin, affect cellular uptake, activate the NF-κB pathway, and induce
an immune response [20]. The immune response induced by BP may destroy the local
microenvironment, thereby affecting its tissue-repair function. The modification of BP is a
feasible means of regulating inflammatory responses. The role of BP in the regulation of
oxidative stress requires further investigation. Some researchers have used the degradation
ability of BP to exert an antioxidant effect, which is important for improving the local
tissue repair environment [60]. However, a high concentration (200 µg mL−1) of BPQD can
induce lipid peroxidation in cells and affect cell viability [62]. Balancing the antioxidant and
oxidative stress of BP and its antioxidant function in bone tissue engineering has not been
reported. Currently, the research on BP is becoming increasingly extensive and in-depth.
We believe that with the joint efforts of researchers, the application of BP in bone tissue
engineering will be developed better. This will lay a firm foundation for large-scale clinical
applications of BP and other nanomaterials in orthopedics.
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