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Abstract: Recently, the biosynthesis of gold nanoparticles (AuNPs) has been widely studied and
described. In the age of bacterial drug resistance, an intensive search for new agents with antibacterial
properties or a new form of antibiotics with effective action is necessary. As a result, the antibacterial
activity of AuNPs functionalized with natural compounds is being investigated more frequently.
AuNPs biosynthesized with plant extract or functionalized with bioactive compounds isolated from
plants could be particularly useful for pharmaceutical applications. The biosynthesized AuNPs are
stabilized by an envelope, which may consist of flavonoids, phenolic acids, lipids and proteins as well
as carbohydrates and vitamins. The composition of the natural coating affects the size, shape and
stability of the AuNPs and is also responsible for interactions with the bacterial cell wall. Recently,
several mechanisms of AuNP interactions with bacterial cells have been identified. Nevertheless,
they are not yet well understood, due to the large diversity of plants and biosynthesized AuNPs.
Understanding the antibacterial mechanisms allows for the creation of pharmaceutical formulations
in the most useful form. Utilizing AuNPs functionalized with plant compounds as antibacterial
agents is still a new concept. However, the unique physicochemical and biological properties of
AuNPs emphasises their potential for a broad range of applications in the future.

Keywords: biosynthesis; gold nanoparticles; plant extract; antibacterial activity; antibacterial mechanism;
reduction potential

1. Introduction

Nanoparticles (NPs) can be obtained by various methods, and the increased interest
in metallic NPs (MNPs) has forced the development of new synthesis strategies that
are inexpensive, easy to carry out, and most importantly, environmentally friendly [1].
Recently, there has been increased interest in biological methods of obtaining MNPs. Unlike
chemical syntheses, biological methods do not use toxic reducing, blocking and stabilizing
compounds, which makes biosynthesis eco-friendly [2]. Moreover, the obtained NPs are
biocompatible. On the other hand, physical methods require specialized equipment and
large amounts of energy to carry out the synthesis process (e.g., generation of high pressure
and temperature, ultrasound waves, UV radiation, etc.), which makes the synthesis process
time-consuming and expensive [3].

MNPs, including gold NPs (AuNPs), are of great interest due to their intrinsic surface
plasmon resonance (SPR) property. The SPR of AuNPs promotes their use in imaging
diagnostics, anti-cancer therapy to induce local hypothermia, or as biosensors and biomark-
ers [4,5]. Additionally, AuNPs are highly valued for their unique biological properties such
as biocompatibility, facile surface functionalization, catalytic activity and the ability to re-
veal cytotoxic and/or antimicrobial activity [5]. AuNPs having various types of envelopes,
i.e., surfaces functionalized with active biomolecules which give them unique properties,
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are especially useful for antimicrobial applications [6–8]. Currently, the most widespread
searches regarding AuNPs are those for specific biological properties. Biosynthesized
AuNPs, which have specific biological properties due to the natural envelope formed dur-
ing the biosynthesis process, are included in these searches [9]. Products of natural origin
are used for the biosynthesis of AuNPs; most often, microorganisms and plants are used [3].
Biological methods for the synthesis of AuNPs are more attractive than conventional meth-
ods due to the greater availability and variety of the material used. In addition, the waste
generated during ingredient preparation and post-reaction does not have a negative impact
on the environment, and it is easier and cheaper to dispose of biosynthesis waste compared
to the waste generated using conventional methods [3,10,11]. Recently, great progress
has been made regarding the biological activity and the possible applications of AuNPs
synthesized using plant extracts or substances isolated from them [10,12,13]. Due to this
trend, the number of publications related to the synthesis of AuNPs from plant material
has increased. The biological activity of the plant extracts themselves and the compounds
they contain, as well as the vast variety of research material, have led to the increased
acceptance of biosynthesis as a promising method to obtain AuNPs [4,7,13].

Plants have the ability to synthesize NPs both intracellularly and extracellularly.
Intracellular methods of synthesizing NPs include culturing plants in metal-rich organic
environments, e.g., metal-rich soil or hydroponic solutions. This method of obtaining NPs
is usually aimed at applications outside of the biomedical space. In contrast, extracellular
methods include the NPs synthesized using an extract obtained from the leaves, flowers,
fruits or other parts of the selected plant [14]. Interestingly, extracts from different parts
of the same plant can significantly differ in their composition and biological properties.
Bioactive compounds present in plant extracts are primarily flavonoids, phenols, citric acid,
ascorbic acid, polyphenols, terpenoids and alkaloids [9,12,14]. Many substances belonging
to these groups of compounds have antioxidant properties and the ability to reduce gold
ions to metallic gold.

The biosynthesis of AuNPs from plant extracts is an easy process. The selection of the
plant from which the extract will be prepared is important because the plant species and
the part from which the extract will be obtained affect the amount of reducing compounds
and the formation of the envelope coating around the AuNPs (Figure 1) [1,15,16].
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First, the harvested plant material is thoroughly rinsed in distilled water. The next
step is mechanically grinding the material with the addition of distilled water. Then,
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the mixture is heated to 60–80 ◦C or, in some cases, it is brought to the boil. Afterward,
the obtained mixture is filtered several times. Finally, the filtrate is centrifuged [9]. The
aqueous plant extract prepared in this way can be used for the biosynthesis of AuNPs or
stored in a refrigerator (at −5 ◦C) until needed. The second reactant of the reaction is an
aqueous solution of chloroauric acid (HAuCl4), which should be added in an appropriate
amount to the prepared plant extract. The most commonly used concentrations of HAuCl4
solution range from 0.5–30 mM. The biosynthesis process is carried out in the dark at an
appropriate temperature ranging from 25–90 ◦C [7,11]. The successful synthesis of AuNPs
is evidenced by the color change of the mixture from yellow to pink, dark red or purple [17].
Particular attention is paid to the influence of physicochemical factors, i.e., concentration of
reaction substrates, pH, temperature and duration of reaction, on the resultant NPs of the
biosynthesis process. By selecting the appropriate synthesis conditions and the appropriate
plant extract, the size and shape as well as the rate of formation and stability of AuNPs
can be controlled [18]. Moreover, biosynthesized AuNPs can be complexed with other
nanostructures or functionalized in a way to enhance their properties and increase their
scope of application [19,20].

AuNPs are biocompatible, so they can easily bind to proteins or nucleic acids [21].
Biofunctionalized AuNPs with biologically active molecules incorporated within the NP
envelope have recently become a popular subject of research due to their specific proper-
ties and their potential application in many areas, including as antibacterial agents [22].
Developing the most effective methods of fighting pathogens and preventing and treating
bacterial diseases is a primary goal of current research [23]. The need for new antibacterial
agents is due in part to the increasing resistance of bacteria to known antibiotics, but also
due to the desire to increase the drug potency while reducing side effects [24]. Therefore,
scientists aim to develop a broad acting antimicrobial agent which will reduce side effects
to a minimum, and at the same time will not be toxic to bacteria that do not cause diseases
but form bacterial flora of humans, such as Lactobacillus [23]. Notably, biosynthesized
AuNPs would be advantageous as a new antibacterial agent because synthesized bacteria
are unable to acquire resistance to them [25].

Studying the antibacterial activity of biosynthesized AuNPs is relatively complicated
due to the multitude of parameters on which it depends, including the physicochemical
conditions of the synthesis reaction (on which the shape and size of the AuNPs depend),
the composition of the AuNPs’ envelope (on which the surface charge and stability of
the AuNPs depend), the specificity of the interaction with bacterial cells at the molecular
level, and parameters common to all pharmaceuticals (i.e., the type of bacteria and the
concentration of AuNPs) [26,27]. Two terms are used to define the antimicrobial properties
of tested substances: bacteriostatic and bactericidal. Bacteriostatic agents delay the growth
of bacteria and stop their initial growth phase for a long time. Bactericidal agents completely
inhibit bacterial growth [28,29]. The methods used to determine the antibacterial activity
of other agents are also used to evaluate the antimicrobial activity of biosynthesized
AuNPs. The most common method is the disk-diffusion method (zone of inhibition)
and determining of the minimum inhibitory concentration (MIC50%) value, which is the
minimum amount of a substance that inhibits the growth of 50% of bacteria, using the
dilution method. The antibacterial activity of biosynthesized AuNPs differs depending
on the type of bacteria, which is mainly related to the difference in the structure of the
cell walls of Gram-positive and Gram-negative bacteria. Gram-negative bacteria have a
more complex cell wall in terms of structure, but it is much thinner (from 2 to 10 nm) and
much more susceptible to damage compared to the cell walls of Gram-positive bacteria [30].
The cell walls of Gram-negative bacteria contain one layer of murein (peptidoglycan)
between two lipid membranes. The outer membrane consists of phospholipids, proteins
and lipopolysaccharides [31]. The cell wall thickness of Gram-positive bacteria varies from
15 to 80 nm. The cell walls of Gram-positive bacteria are devoid of the outer lipid membrane,
and the densely cross-linked murein contains teichoic acids, proteins and lipids [30,31].
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Bacteria have developed mechanisms for protection and acquiring resistance. There-
fore, it is important to learn about the specificity of the interaction of biosynthesized AuNPs
with bacterial cells, determine the parameters on which the antibacterial activity of AuNPs
depends, and identify what the mechanism of action of AuNPs on bacteria is and the
path of cell death. The presented review aims to discuss the current knowledge of AuNPs
synthesized from plant extracts for use as antibacterial agents while focusing on the suit-
ability of plant products for the biosynthesis of AuNPs, the antibacterial properties of the
biosynthesized AuNPs and plant extracts, and the parameters on which the antibacterial
activity of biosynthesized AuNPs depends. Analyzing these research results will lead to
conclusions regarding how biosynthesized AuNPs interact with bacterial cells and the
potential mechanisms of their antibacterial action.

2. Biosynthesis of AuNPs Using Plants
2.1. Reduction Potential of Plant Extracts

Plants are a source of biologically active compounds that not only possess antioxidant
properties, but also act as reducing agents in the biosynthesis reaction [8,11,12,32]. The
total reduction capacity of plant extracts can be determined by studying electron transfer
with antioxidants by reaction with the Folin–Ciocalteu reagent, the DPPH radical, or using
one of the electrochemical methods [33,34]. The reduction potential of plant extracts may
vary significantly depending on the composition of bioactive compounds [1,3,35]. Well-
known reducing substances include secondary metabolites of plants such as sugars, terpenoids,
polyphenols, alkaloids and proteins, most of which possess antioxidant properties [1,15,36]
(Table 1). The in vitro antioxidant activity and reduction potential of Crassocephalum rubens
leaf extract were investigated, and the obtained AuNPs synthesized using this extract were
deemed suitable for future applications. The antioxidant potential of the post-reaction
mixture was lower than that of the extract itself. Thus, the obtained results indicate that
substances with antioxidant properties are associated with the reduction of gold ions to
metallic gold [37]. The most common antioxidants in plant extracts are terpenoids and
polyphenols. Terpenoids are a group of organic polymers that consist of five-carbon iso-
prene units. In contrast, flavonoids are a large group of polyphenolic compounds that
includes anthocyanins, isoflavonoids, flavonols, chalcones, flavones, and flavanones [38,39].
Terpenoids and flavonoids can actively reduce metal ions to NPs because they contain
various functional groups [40,41]. Additionally, monosaccharides can play a reducing role.
Monosaccharides that contain a ketone group can act as an antioxidant only when the ke-
tone is converted tautomerically into an aldehyde [40–42]. Moreover, the reducing capacity
of disaccharides and polysaccharides depends on the composition of the monosaccharides
and their ability to share an aldehyde group with the metal ion. Amino acids such as
lysine, cysteine, tryptophan, tyrosine, arginine and methionine possess a high ability to
bind various metal ions and reduce them [40,43].

Thus, the process of AuNP synthesis from plant extracts is closely related to the
reduction potential and the presence of appropriate functional groups [44]. Three factors
have a clear impact on biosynthesis efficiency. These include: the degree of reduction by
metal ions (reduced by individual substances contained in the extract), the concentration
of the reducing compounds and the composition of bioactive compounds forming the
envelope stabilizing the AuNP [18]. Greater total content of reducing substances in the
plant extract accelerates AuNP formation, increases the fraction of small NPs and increases
the stability of the AuNPs [12,18,45]. The efficiency of the MNP biosynthesis process also
depends on the electrochemical potential of a given metal ion [40]. The reduction potential
of all noble metal salts ranges from 0.35 to 1.0 V. Any type of metal ions can be reduced
to MNPs, provided that the reduction potential of the extract is greater than +0.16 V [44].
Hossanisaadi et al. (2021) screened and compared studies of plant extracts in terms of
their ability to reduce gold ions. The review presents the results regarding the ability of
the extracts from 27 plants, including Rosa damascena, Juglans regia, Caccinia macranthera,
Urtica dioica, Areca catechu and Anethum graveolens, which are used in traditional medicine
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in the Middle East, to reduce gold ions. Extracts were prepared from various parts of the
plants. Additionally, 28 new plants with suitable extracts were also identified. The derived
extracts were able to successfully reduce gold ions during biosynthesis [46].

Plant extracts, especially fruit extracts, contain high concentrations of reducing com-
pounds. For example, blackberries, blueberries, grapes, Citrullus lanatus, Cornus mas,
Punica granatum, and Terminalia arjuna extracts contain large amounts of flavonoids, phe-
nolic compounds, anthocyanins, saccharides, ascorbic acid and other vitamins [47–51].
Biosynthesis carried out using the extracts from these plants is more effective and less
expensive compared to traditional chemical synthesis due to the abundance and presence
of naturally occurring reducing agents [9]. In order to investigate the reducing properties
of the Papaver somniferum extract, the synthesis of AuNPs was carried out. Moreover, they
discovered that methanol extract has a high reducing potential with a high affinity for
gold cations. The resulting spherical AuNPs were 77 nm in diameter and stabilized by
phytochemicals present within the extract [52]. On the other hand, the synthesis of AuNPs
carried out with the use of Artemisia capillaris extract showed that the composition of the
plant extract had a significant impact on biosynthesis. The extract contained saponins,
amino acids, phenolic compounds, flavonoids and diterpenes, but only flavonoids, phenolic
compounds and amino acids were involved in the synthesis of AuNPs [53,54]. Examination
of the composition of amino acids in the lyophilized extract of Galaxaura elongata revealed
the presence of glutamic acid, asparagine, leucine, lysine, glycine and alanine. Amino acids
were responsible for the reduction and stabilization of AuNPs, but sulphate polysaccha-
rides and polypeptides also played a role [55]. Presumably, the reduction of gold ions by
amino acids is due to the hydroxyl and carboxyl groups [56].

The influence of the extract composition, particularly the reducing compounds present
in the extract, impact the size of AuNPs generated via biosynthesis. During the synthesis of
AuNPs with ethanolic extract from black tea, the tannins acted as a reducing and stabilizing
agent [57]. Spherical NPs were obtained with a bimodal size distribution of 10 nm and
3 nm for two fractions of AuNPs. Similarly, AuNPs synthesized using the Plumeria alba
extract also resulted in a bimodal size distribution with spherical NPs either in the range of
20–30 nm or 80–150 nm [57]. Spherical AuNPs synthesized with fruit infusion from
Medinilla speciosa were 200–450 nm in diameter and the phenolic compounds were responsi-
ble for the reduction of gold ions and stabilization of the AuNPs [36]. During the synthesis
of AuNPs using the Mimosa tenuiflora extract, the v/v ratio of the reagents had a significant
impact on the biological activity of the obtained AuNPs. However, neither the size of the
AuNPs nor the composition of the plant extract were found to impact the biological activity
of the resulting AuNPs [10].

Plants produce numerous secondary metabolites with antioxidant properties and
enzymes that prevent oxidative damage to cell organelles and their contents. Flavonoids,
flavonoid glycosides and vitamins, such as ascorbic acid isolated from plant extract, have
also been shown to reduce gold ions [58]. Leaf extracts from medicinal plants are used for
most of the AuNPs synthesis reactions. Active herbal compounds such as polyphenols
are involved in the reduction of gold ions and the stabilization of AuNPs [54,59]. Active
compounds isolated from the extract of Ocimum sanctum, such as apigenin, cirsimaritin,
rosmarinic acid, estragole, linalool, carvacrol and urosolic acid, have numerous pharma-
ceutical applications, and the ligands of these compounds can reduce metal ions [60]. In
the case of AuNPs synthesized using fruit extract from Genipa americana, substances such
as genipin, genipaol, geniposide and ranolazine acted as reductants of gold ions. During
AuNP synthesis using the extract of Lycopersicon esculentum, citric and ascorbic acids also
had the ability to reduce gold ions [61,62].
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Table 1. Compounds responsible for creating the reducing potential of plant extracts.

Compounds Plant Kind of Extract References

Phenolic compounds, flavonoids Crassocephalum rubens Leaf;
water extract [37]

Anthocyanins Cornus mas Fruit;
water extract [47]

Anthocyanins Punica granatum Fruit;
water extract [48]

Cholidonic, superbine, colchicine, gloriosol, phytosterils
and stigmasterin Gloriosa superba Leaf;

water extract [49]

Pectins, ribose, phenolic compounds Papaver somniferum Leaf;
methanol extract [52]

Amino acids, phenolic compounds, flavonoids Artemisia capillaris Whole plant;
water extract [53,54]

Glutanic acid, asparagine, leucine, lysine, glycine, alanine Galaxaura elongata Whole plant;
water extract [55,56]

Tannins Black tea Leaf;
ethanol extract [57]

Phenolic compounds Medinilla speciosa Fruit;
water extract [36]

Catechins, ascorbic acid Mimosa tenuiflora
Tree bark;

water/ethanol
extract

[10]

Estragole, linalool, carvacral, urosalic acid, cirsimarin,
rosmarinic acid Ocinum sanctum Flower and leaf;

water extract [60]

Genipin, genipol, geniposide, ronolazine Genipa americana Fruit;
water extract [61]

Citric and ascorbic acid Lycopersicon esculentum Fruit;
water extract [62]

Pectins Musa paradisiaca Fruit;
water extract [63–70]

Pectins Citrus sinensis Peels;
water extract [63–70]

Curcumin Curcuma longa Water solution [71]

AuNPs of various sizes were synthesized using pectins isolated from Musa paradisiaca
fruit extracts and orange peels [63–70]. The resultant AuNPs were biocompatible with
bacterial cells, cytotoxic against HeLa and HepG2 cell lines and zebrafish embryos, and
showed anti-inflammatory activity [68–70]. Curcumin isolated from Curcuma longa was also
investigated as a reducing and stabilizing agent for AuNPs. Curcumin is well known and
primarily investigated due to its anti-cancer properties. Moreover, many research teams
have successfully used curcumin to synthesize AuNPs under various pH and temperature
conditions [71].

2.2. Mechanism of AuNPs Biosynthesis Using Plants

The biosynthesis of MNPs can take place through biogenesis and bioreduction. Bio-
genesis utilizes microorganisms. In contrast, only bioreduction is possible when using
plant extracts or substances isolated from plants [72]. The process of AuNPs biosynthesis
begins with the reduction of gold ions, i.e., activation, which depends on the reducing
potential of the extract. The next stage of biosynthesis is the growth of the NPs [63,73].
This process involves increasing the size of the NP nuclei (seeds) and the merging of the
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NP nuclei into clusters. The last stage of the process, i.e., termination, continues until
thermodynamic equilibrium is achieved and results in the formation of the final shape and
size of the AuNPs (Figure 2) [18,73].
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ions and stabilization of AuNPs.

The shape and size of AuNPs are influenced by electrostatic interactions between
bioactive compounds derived from the plant extract and metallic gold [74]. The source of
gold ions is the HAuCl4 solution in which three Cl atoms are covalently bonded and the
fourth is coordinated. Many studies show that the mechanism of the reduction reaction
depends on the number of Cl ligands in the metal complex, which is the source of the
energy differences during the reaction [75]. For example, the synthesis of AuNPs was
performed using 1,8-cineole obtained from the extract of Eucalyptus, an organic compound
belonging to the terpenes. They discovered that the oxidation of 1,8-cineole initiated the
entire biosynthesis process. Thus, the presence of a water molecule was necessary for
energy reduction, and the bioreduction process itself took place in several stages [76].

The presence of hydroxyl or amino groups in the plant extract play an important role
in the process of reducing gold ions to metallic gold. This process can take place during an
oxidation reaction or due to the formation of specific quinine forms [43,60]. Gold reduction
has also been demonstrated during the tautomeric conversion of flavonoids (from the enol
form to the ketone form). In this reaction, a reactive hydrogen atom is released which can
reduce gold ions to metallic gold [43]. The internal mechanism of the transformation of
flavonoids from ketones to carboxylic acids may also be responsible for the reduction of
gold ions [9]. In the case of AuNP synthesis using Garcinia cambogia and Pyrus fruit extracts,
saccharides acted as a reducing agent. The reduction of gold ions most likely involves the
oxidation of an aldehyde group to a carboxyl group by nucleophilic addition of a hydroxyl
group [77,78]. Numerous plant extracts contain proteins with reducing potential. However,
a protein’s ability to reduce gold ions varies based on its amino acid sequences [79].

2.3. Conditions of Biosynthesis Reaction

Physicochemical parameters have a significant impact on the course of each reaction,
including biosynthesis, affecting the rate of the reaction and the size, shape and stability of
the obtained AuNPs [18,35]. Moreover, the concentration of reactants, temperature, pH and
the duration of the reaction have a decisive influence on the products of biosynthesis [80].
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2.3.1. Role of the Reactant Concentration

The concentration of reactants or the v/v ratio of reactants influences the size and
shape of AuNPs, as well as the duration of the biosynthesis. AuNP biosynthesis from
Solanum indicum fruit extract was more effective when the concentration of the fruit extract
and/or chloroauric acid solution was increased [81]. In the AuNP biosynthesis process
using Phyllanthus amarus, the concentration of the extract itself played a key role. When the
extract concentration was too low, AuNPs of various shapes were formed. On the other
hand, at higher concentrations of extract, spherical AuNPs were formed [82].

At the lowest investigated concentration of the Artemisia capillaris extract, the duration
of AuNPs biosynthesis was 1 h. However, at the highest extract concentrations, the biosyn-
thesis reaction decreased to 30 min. Additionally, the size of the AuNPs decreased with
increasing concentration of extract [53]. The optimal reaction time for the biosynthesis of
AuNPs carried out using the Padina tetrastromatica extract was also investigated. Moreover,
this reaction lasted 24 h resulting in small, spherical AuNPs [27].

AuNPs synthesized using Carallia brachiata leaf extract and at HAuCl4 solution con-
centrations greater than 1 mM increased the reaction rate and decreased the stability of
AuNPs. However, increasing the volume of extract decreased the size of the obtained
AuNPs [83]. Decreased NP stability due to an increased concentration of HAuCl4 solu-
tion was also observed for AuNPs obtained using Elaeis guineensis leaf extract [84]. At a
concentration of HAuCl4 solution greater than 0.5 mM, the size of AuNPs synthesized
using Solidago canadensis leaf extract increased dynamically (up to 250 nm) and NPs formed
various shapes. Interestingly, in this case, an inverse relationship was observed between
the rate of biosynthesis and the concentration of reagents [85].

2.3.2. Role of pH

The pH of the reaction medium is of particular importance because this parameter
determines whether the reaction will take place at all and, ultimately, what shape and size
the AuNPs will be. The reaction pH affects the reducing compounds in the extract, and
thus changes their charge [40]. Depending on the pH of the reaction, differences in the size
of the obtained AuNPs were also observed [9]. The influence of the reaction pH on the
size of AuNPs was investigated during biosynthesis with Mangifera peel extract. The more
alkaline the pH was, the smaller the AuNPs were. In an alkaline pH of 9, AuNPs were
6 nm; in an acidic pH of 2, AuNPs were three times larger [3]. A similar relationship was
found in the case of AuNPs synthesized using Carallia brachiata leaf extract. Additionally,
as the pH increased, the AuNPs became less polydisperse [83]. Larger AuNPs are usually
formed in an acidic pH environment and smaller AuNPs form in an alkaline pH [86].
This relationship is most likely due to the electrostatic interaction between gold ions and
the functional groups of reducing compounds. Under acidic conditions, biosorption is
enhanced. On the other hand, an increase in pH (i.e., a decrease in the concentration of
protons in the solution) drastically reduces the biosorption potential of the extract. This
is likely because the lower pH neutralizes the negative charge of the functional groups of
biomolecules, which increases the intermolecular attraction [87]. An inverse relationship
was also observed between reaction pH and the size of the resultant AuNPs. At a pH of 3.2,
the most spherical AuNPs were formed in the NP biosynthesis using Padina tetrastromatica
extract. For reaction carried out in the pH range of 7–10, AuNPs were polydisperse and
polymorphic [27]. A similar relationship was observed for AuNPs synthesized with the
extract from the stem of Periploca aphylla. Additionally, at a pH of 4, the smallest AuNPs
formed [88]. AuNPs obtained using Pyrus extract were also the most polydisperse at
alkaline pH [78]. Therefore, the acidic pH was optimal for these biosynthesis reactions.

2.3.3. Role of Temperature

Increasing reaction temperature above room temperature will increase the rate of
synthesis and makes the reaction more effective. Temperature may also affect the shape
and size of the formed AuNPs due to the shortened total reaction time. The biosynthesis of
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AuNPs from Padina tetrastromatica was carried out at three temperatures: 25 ◦C, 60 ◦C and
90 ◦C. An increase in AuNP size was observed at temperatures above room temperature, at
which point monodisperse and spherical NPs were obtained [27]. Temperature was also
found to influence the shape of AuNPs synthesized using Cassia fistula extract. Nanotubes
were formed mainly at room temperature, whereas spherical AuNPs were formed at
temperatures above 60 ◦C [40]. During the synthesis of AuNPs using Magnolia kobus leaf
extract, an inverse relationship was observed between the size of the obtained NPs and the
reaction temperature. As a result, syntheses carried out at 25 ◦C produced large AuNPs,
whereas small AuNPs were obtained when the same experiment was run at 95 ◦C [60].

3. Antibacterial Activity of AuNPs Biosynthesized from Plants

The antibacterial activity of AuNPs biosynthesized from plant extracts has been an
important research topic for a long time due to the unique physicochemical and biological
properties that make them suitable for use as antibacterial agents [89]. Antibacterial activity
is mainly attributed to a high surface-to-volume ratio, and the small size of AuNPs facilitates
their penetration into cell walls and membranes [35,90]. The dependence of antibacterial
activity on the size of AuNPs and their concentration was initially confirmed using bare,
chemically synthesized AuNPs [91–93]. Many studies using biosynthesized AuNPs suggest
that positive antibacterial tests are due to the composition of the AuNP envelope formed
during the bioreduction process, the surface charge and the stability of AuNPs. The
presence of non-reduced Au1+ and Au3+ ions is also important [36,89,94,95]. This effect
was noticed, for example, in the case of AuNPs synthesized from Ziziphus zizyphus leaf
extract, which at a concentration of 5 mg/mL had no effect on Gram-negative E. coli, while
gold ions did [58]. This is because gold ions are toxic and cytotoxic [96]. Unreduced gold
ions may also be present in the post-reaction mixture as a result of incorrect selection of
the v/v ratio of the reagents, or the fact that the synthesis reaction is not yet complete [14].
Biosynthesized AuNPs may have antibacterial properties and may be active only against
Gram-positive or Gram-negative bacteria, or show antibacterial properties simultaneously
against both types of bacteria (Table 2) [97].

Table 2. Antibacterial activity and mechanism of antibacterial action of AuNPs synthesized from
plant extracts.

Plant Kind of
Extract

Reducing and
Stabilizing

Agent
Shape and

Size of AuNPs
Bacterial
Strains

(MIC [µg/mL])

Mechanism of
Antibacterial

Activity
Another
Activity References

Ocimum
tenuiflorum

Flower and
leaf; water

extract

Phenolic
compounds

Spherical;
20–25 nm

S. aureus,
P. aeruginosa,

K. pneumoniae
(512–600)

Disturbing the
membrane

permeability
and cell

metabolism

- [15]
Azadiriachta indica Leaf; water

extract

Mentha spicata Leaf; water
extract

Citrus sinensis Peel; water
extract

Spherical;
25–30 nm

Nigella arvensis Leaf; water
extract

Flavones,
proteins

Spherical,
triangular,

pentagonal,
hexagonal;
3–37 nm

E. coli, B.
subtilis,

S. aureus
(62.5–125)

Cell wall
structure and

cell respiration
disruption

Antioxidant,
cytotoxic,
catalytic
capacity

[1]

Thymus vulgaris Whole plant Unknown Spherical;
6–35 nm

B. subtilis
(15.62) Unknown Antioxidant;

non-toxic [98]

Cryptolepis
buchanani

Leaf; water
extract

Phenolic
compounds

Spherical;
11.1 nm

S. aureus,
A. baumannii

(0.209)
Unknown Catalytic

capacity [99]

Cola acuminata Fruits; water
pulp

Flavonoids,
terpenoids

Spherical;
14–22 nm

S. aureus,
E. coli,

P. aeruginosa,
B. cereus

Unknown - [100]
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Table 2. Cont.

Plant Kind of
Extract

Reducing and
Stabilizing

Agent
Shape and

Size of AuNPs
Bacterial
Strains

(MIC [µg/mL])

Mechanism of
Antibacterial

Activity
Another
Activity References

Olea europaea
Acacia nilotica

Fruit and husk;
mixture of

water extracts

Phenolic
compounds,
terpenoids

Spherical;
45 nm

E. coli, Bacillus
sp.,

P. aeruginosa,
Klebsiella sp.

Unknown Cytotoxic [101]

Pistacia atlantica Leaf and fruit,
water extract Unknown Spherical;

50–60 nm S. aureus, E. coli Unknown Antioxidant,
cytotoxic [98]

Amomum villosum Fruit; water
extract

Phenolic
compounds,

tannins,
terpenoids

Spherical;
10–15 nm S. aureus, E. coli Unknown

Antioxidant,
cytotoxic,
catalytic
capacity

[102]

Cannabis sativa Stem; water
extract

Cannabinoids,
terpenoids,
flavonoids,
phenolic

compounds

Spherical,
triangular,
elongated,
hexagonal;
12–18 nm

S. epidermidis,
P. aeruginosa,

E. coli
(25–50)

Unknown - [9]

Citrullus lanatus Fruit; water
extract

Citrulline,
proteins,

carotenoids

Spherical;
20–140 nm

B. cereus,
S. aureus,

S. typhimurium
Unknown - [103]

Medinilla speciosa Fruit; water
infusion

Phenolic
compounds,
amino acids

Spherical;
200–450 nm

P. aeruginosa,
S. aureus

Oxidative
stress - [36]

Cynodon dactylon Whole plant;
water extract Unknown Spherical;

200–450 nm

E. cloacae,
B. cereus,

S. haemolyticus,
S. petrasii

Oxidative
stress Cytotoxic [104]

Areca catechu Nuts; water
extract

Flavonoids,
proteins

Spherical;
13.7 nm

E. coli,
S. aureus,

K. pneumonia,
P. aeruginosa

Unknown
Antioxidant,

catalytic
capacity,
cytotoxic

[77]

Petroselinum
crispum

Leaf; water
extract Unknown

Spherical,
semi-rod,

flower-shaped;
17–50 nm

Enterobacter
ludwigii Unknown - [105]

Salix alba Leaf; water
extract

Amides,
proteins

Spherical;
50–80 nm S. aureus Unknown Antifungal [106]

Jasminum
auriculatum

Leaf; water
extract Unknown Spherical;

8–37 nm
S. pyogenes,

S. aureus, E. coli,
K. pneumonia

Unknown

Catalytic
capacity,

antifungal,
cytotoxic

[107]

Solanum nigrum Leaf; water
extract Unknown Spherical;

50 nm

S. saprophyticus,
B. subtilis,

E. coli,
P. aeruginosa

Unknown Antioxidant [108]

Aloysia triphylla Leaf; water
extract Flavonoids Spherical;

40–60 nm
E. coli, S. aureus

(50) Unknown Catalytic
capacity [109]

Plumeria alba Flower; water
extract Unknown Spherical; 28,

3.4 nm
E. coli
(400) Unknown Catalytic

capacity [110]

Platycodon
grandiflorum

Leaf; water
extract Flavonoids Spherical;

15 nm
E. coli,

B. subtilis
(10)

Unknown - [111]

Peganum harmala Leaf; water
extract

Polyphenols,
alcohols

Spherical;
43.44 nm E. coli, S. aureus Unknown - [112]

Allium
ampeloprasum

Leaf; water
extract

Phenolic,
aromatic

compounds,
proteins

Spherical;
22.76 nm

S. aureus,
B. subtilis,

E. coli,
P. aeruginosa

Cell wall,
mitochondrial
and ribosome

damage
Antifungal [113]

Annona muricata Leaf; water
extract

Flavonoids,
terpenoids,

proteins
Spherical;
25.5 nm

C. sporogenes,
S. aureus,
E. faecalis,

K. pneumonia
Unknown Antifungal [114]

Uncaria gambir Leaf; water
extract Unknown

Spherical,
triangular,
hexagonal;
32.52 nm

E. coli, S. aureus
(50)

Cell wall
structure

disruption
- [115]
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Table 2. Cont.

Plant Kind of
Extract

Reducing and
Stabilizing

Agent
Shape and

Size of AuNPs
Bacterial
Strains

(MIC [µg/mL])

Mechanism of
Antibacterial

Activity
Another
Activity References

Pergularia daemia Leaf; water
extract Unknown Spherical;

3–15 nm

E. coli,
B. subtilis,

P. aeruginosa
(300)

Membrane
permeability

and cell
respiration
disruption

- [116]

Macadamia Nut shell;
water extract Unknown

Spherical,
triangular,
hexagonal;
50–200 nm

E. coli,
S. epidermidis Unknown - [117]

Aloe vera Leaf; water
extract

Alcohols,
phenolic

compounds

Spherical;
<15 nm

E. coli, S. aureus
(10) Unknown - [118]

Azadirachta indica,
Zingiber officinale

Leaf; mixed
water extracts Unknown

Spherical,
triangular,
hexagonal;
32.52 nm

S. mutans,
S. aureus,
E. faecalis

Unknown - [119]

Tilia argentea Leaf; water:
PBS extract Unknown Unknown

E. coli,
B. subtilis,

K. pneumoniae,
Aeromonas sp.,
S. aureus (250)

Unknown - [120]

Hibiscus sabelariffa
Flower; water
and ethanol

extracts

Unknown Unknown

E. coli, S. aureus,
P. aeruginosa,

V. para-
haemolyticus,
S. enteritidis,

B. cereus

Changes in
internal pH of
bacterial cell

- [72]
Syzygium

aromaticum
Flower; water
and ethanol

extracts

Rosmarinus
officinalis

Leaf; water
and ethanol

extracts

Epaltes divaricata

Whole plant;
ethanol extract

Unknown Unknown S. aureus Unknown - [121]
Whole plant;

hexane extract

Whole plant;
water extract

Vetiveria
zizanioides

Root; ethanol
extract

Unknown Unknown S. aureus Unknown - [121]
Root; hexane

extract

Cleome coluteoides

Stem;
methanol

extract

Polyphenols Unknown B. cereus,
S. aureus Unknown - [122]

Flower;
dichloromethane,

methanol,
ethyl acetate

extracts

Leaf;
dichloromethane,

methanol,
ethyl acetate

extracts

The antibacterial activity of biosynthesized AuNPs is usually concentration-dependent,
and the lack of such a relationship is very rare. For example, AuNPs biosynthesized by
Srinath (2017) showed activity against the Gram-positive bacteria S. aureus, regardless of
the concentration. However, in the case of E. coli Gram-negative bacteria, the antibacterial
activity was observed only at the concentration of AuNPs equal to 100 µL/mL [97].
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The only difference was the reducing biomaterial used to carry out the reaction. In the
first case, secondary metabolites of plants were used. In the second example, secondary
metabolites of bacteria were utilized, which explains the influence of the type of biore-
ducer used on the antibacterial properties of AuNPs. The antibacterial activity of AuNPs
synthesized with extracts from Ocimum tenuiflorum flowers and leaves, Azadirachta indica
and Mentha spicata leaves and Citrus sinensis peels was also investigated [15]. At a con-
centration greater than 512 µg/mL, all biosynthesized AuNPs showed activity against
Gram-positive S. aureus and Gram-negative P. aeruginosa and K. pneumoniae. The de-
pendence of antibacterial activity of biosynthesized NPs on their concentration was also
confirmed using AuNPs obtained using the extract from Annona muricata leaves which
showed activity against Gram-positive and Gram-negative bacteria (C. sporogenes, S. aureus,
E. faecalis and K. pneumoniae), AuNPs synthesized using Azadirachta indica leaf extract and
Zingiber officinale root which were active against E. faecalis, S. mutant and S. aureus, and
many other AuNPs biosynthesized using plants [114,119]. In addition, each of these plant
extracts had a different composition, which influenced the reduction of Au3+ ions to Au0

and the size and stabilization process of AuNPs [15]. In a few cases, no dependence of the
antibacterial activity on the concentration of AuNPs was observed; for example, in the case
of AuNPs synthesized using Uncaria gambir leaves and Macadamia nut shells [115,117].

Chemically synthesized and non-functionalized AuNPs exhibit greater activity against
Gram-negative than Gram-positive bacteria [93]. This relationship was also observed for
the majority of AuNPs biosynthesized using plants [111,114,115,117]. These were AuNPs
obtained using extracts from Uncaria gambir leaf, Platycodon grandiflorus flowers, Macadamia
nut shells and Annona muricata leaves. Sometimes, biosynthesized AuNPs exhibited better
activity against Gram-positive bacteria. For example, AuNPs synthesized using Aloe vera
extract, Citrullus lanatus and Catharanthus roseus leaves demonstrated antibacterial activity
against S. aureus, S. epidermidis, and S. pyogenes, and S. aureus, respectively [118,123,124].
However, in most cases, biosynthesized AuNPs exhibit antibacterial activity against both
types of bacteria. For example, AuNPs obtained using Ananas comosus fruit extract were
effective against Gram-positive and Gram-negative bacteria inhabiting the aquatic envi-
ronment. The obtained effect was attributed to the supporting effect of bromelain present
in the extract [125]. The biosynthesis of AuNPs using Garcinia indica and Garcinia cambogia
fruit extract was also carried out which resulted in small, spherical AuNPs with sufficient
antibacterial activity against the Gram-positive bacteria B. subtilis and the Gram-negative
E. coli [126]. Additionally, AuNPs biosynthesized using the leaf extract of Allium ampeloprasum
showed sufficient activity against Gram-positive (S. aureus, B. subtilis) and Gram-negative
(E. coli, P. aeruginosa) bacteria [113].

Some AuNPs synthesized using plant extracts do not have antibacterial properties
but exhibit a different kind of biological activity. For example, AuNPs obtained using
the ethanolic extract of Moringa oleifera or the aqueous extract from Dracocephalum kotschyi
leaves showed no antibacterial activity. However, the ethanolic extract of Moringa oleifera
causes antiepileptic activity and the aqueous extract from Dracocephalum kotschyi leaves is
cytotoxic to HeLa and K562 cell lines [127,128].

3.1. Role of AuNPs Shape and Size

Controlled synthesis of NPs is aimed at tailoring AuNPs to the appropriate shape and
size for the applicable bacterial cell system [24]. Moreover, a significant relationship has
been established between the size, shape and concentration of the obtained AuNPs and
their antibacterial properties [58]. The small size of NPs allows them to penetrate into the
cell and influence the various cellular processes [25,129]. For example, 6 nm AuNPs showed
less toxicity against B. subtilis, whereas 2 nm AuNPs were able to lyse the bacteria [130].
Very small AuNPs can interact with the bacterial surface and penetrate bacteria cells despite
the thickness of their cell walls [52,131,132]. Small AuNPs biosynthesized using the leaf
extract of Uncaria gambir and triethanolamine blocker exhibited antibacterial activity against
Gram-positive and Gram-negative bacteria which was dependent not on the concentration
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of AuNPs but on their size [115]. However, an opposite trend regarding antibacterial
activity can be observed in the case of biosynthesized AuNPs with a different type and
composition of envelope coating. The effect of AuNP size on antibacterial activity was
investigated using AuNPs biosynthesized using dextrose isolated from plants. Optimal,
average, and no antibacterial activity was found against E. coli using 120 nm, 60 nm, and
20 nm AuNPs, respectively [132].

Often, there is no clear dependence on the concentration and size on the antibacterial
activity of AuNPs biosynthesized from plants. In such cases, it seems that the polymor-
phism of NPs may play a role. AuNPs synthesized from Macadamia nut shells exhibited
no relationship between AuNP concentration and size on antibacterial activity, although
the size distribution of the obtained AuNPs was quite large (50–200 nm) [117]. Another
characteristic feature of the obtained AuNPs was their different shapes. Spherical, hexago-
nal and triangular AuNPs can be formed via biosynthesis. Thus, the observed differences
in antimicrobial activity could be related to the degree of polymorphism of the obtained
AuNPs. Whether spherical, hexagonal or triangular AuNPs will form is dependent on the
physicochemical parameters (i.e., the v/v ratio of the reactants, HAuCl4 solution concentra-
tion, temperature, pH and the duration of the reaction) of the synthesis reaction [18,35,80].
However, for AuNPs biosynthesized and biofunctionalized by bioactive molecules from
plant extracts, the shape of the NPs does not have a large significance on the NPs’ biological
activity as compared to naked AuNPs or other types of NPs [133–135].

However, the size, surface charge, and the antibacterial activity of AuNPs depends on
the specific surface area (i.e., the ratio of the surface area to the volume of the NP) [136].
As the specific surface area of an AuNP increases, more biomolecules may be attached
and the NP has a larger surface area to interact with the bacterial cell [14,137]. Similarly,
the spherical and elongated shape of AuNPs may facilitate their passage through cell
membranes, as found in studies investigating the effects of AuNP size and shape on the
efficiency of cellular uptake [136,138]. Hence, tailoring the surface-area-to-volume ratio of
AuNPs is one of the most favorable parameters to adjust in order to influence the way NPs
interact with bacterial cells [133–135].

3.2. Role of AuNP Envelope

Comparative studies were carried out to test the antibacterial activity of chemically and
biologically synthesized AuNPs. AuNPs which do not possess an envelope comprised of
bioactive molecules exhibited no antibacterial activity. On the other hand, biosynthesized
AuNPs demonstrated a large degree of antimicrobial activity [139]. The results of the
performed antibacterial tests suggest that naked AuNPs had no effect on bacteria growth
or their vitality, whereas AuNPs possessing an envelope formed via bioactive compounds
during biosynthesis inhibited the growth of bacterial cells [140]. In addition, AuNPs
synthesized using Medinilla speciosa (a plant known for its antibacterial properties) infusion
enhanced the antibacterial effects compared to the extract alone [36]. This approach is less
frequent, i.e., when plant extracts with antibacterial properties are used for the synthesis of
AuNPs (Table 3).

However, regardless of whether the extract contains phytochemicals with antibacterial
properties or not, the most common antibacterial tests for the extract itself are negative.
This is because such antibacterial tests are carried out using plant extract concentrations
that are the same as those used for the synthesis of AuNPs. Extracts for the synthesis of
NPs are diluted because a very low concentration of phytochemicals is sufficient to carry
out the reaction and spectrophotometric methods can characterize the obtained AuNPs at
these concentrations [27,78].
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Table 3. Examples of plant compounds used in the synthesis of AuNPs.

Compound/Kind
of Solution Plant Shape and

Size of AuNPs
Bacterial Strains
(MIC [µg/mL])

Mechanism of
Antibacterial

Activity
Other

Activities Function References

Pectin; water
solution

Musa
paradisiaca Spherical; 8 nm

- -
Cytotoxic Anticancer

drug [64,65,68,69]
[141,142]Orange peels Spherical;

7–13 nm
Anti-

inflammatory Drug carrier

Flavonoid,
tricetin

pollen of
Myrtaceae

Spherical;
12 nm

B. licheniformis,
S. aureus, A. pittii,
E. xiangfangensis,

E. fergusonii,
P. mirabilis,

P. aeruginosa,
A. enteropelogenes

Unknown Biocompatibility
Chitozan

carrier,
antibacterial

drug
[143]

Polyphenol,
epigallocate-

chin 3-gallate;
water solution

Green tea Spherical
S. aureus, E. coli,

E. faecalis,
P. aeruginosa

(15–120)

Mechanical
destruction of
cell wall, cell

lysis
Non-cytotoxic Antibacterial

drug [144]

Dextrose;
water solution Corn Spherical; 25,

60, 120 nm E. coli

Cell wall
structure

disruption, cell
lysis

- Antibacterial
drug [132]

The special properties of plant extracts cause the formation of the envelope, which also
acts as a stabilizing layer preventing the aggregation of AuNPs and the formation of larger
structures [39]. The zeta potential measures the surface charge of NPs and is used to assess
AuNP stability. Zeta potential values vary with pH, and therefore they can be modified
by changing the concentration of hydrogen ions. The greater the absolute value of the
zeta potential, the more stable the AuNPs are. Mutual repulsion of neighboring molecules
prevents their aggregation [3]. The lowest zeta potential values are observed in a strongly
acidic pH. For example, AuNPs obtained using Punica granatum fruit extract exhibited
small, negative zeta potential values, indicating they were less stable and therefore had
a greater tendency to aggregate and form large AuNPs [18]. On the other hand, AuNPs
biosynthesized using Ananas comosus extract were stable for 30 days. High stability was a
result of the potential barrier created by the interaction between the weak Van der Waals
bonds and the repulsive forces of the electrostatic interaction [125]. The surface charge of
the NP depends on the envelope composition (i.e., the charge of the biomolecules that form
the envelope) and the ionic composition of the extract. Due to the negative charge of the
bacterial cell wall, the positive surface charge of AuNPs may facilitate greater interaction
with bacterial cells than neutral or negatively charged AuNPs [145]. Hydrophobic AuNPs
have a positive surface charge. As a result, hydrophobic AuNPs can create spatial aggre-
gates on the surface of bacterial cells [130]. Similarly, small hydrophobic AuNPs can more
easily penetrate lipid membranes and enter the cell [133,146]. The mode of interaction with
bacterial cells also depends on the bacterial strain [130]. Many studies indicate that the
antibacterial activity of AuNPs biosynthesized using plant extracts is strongly related to
the composition of the envelope [147–149].

3.3. Composition of AuNP Envelope

The ability of plant extracts to stabilize AuNPs plays an important role. The biomolecules
responsible for the reduction of gold ions are likely also responsible for the stabilization
of AuNPs [150]. The phytochemicals present on the surface of AuNPs make them stable
colloids [106]. For example, the flavonoids present in the Trigonella foenum-graecum extract
were responsible for both the reduction of gold ions and the stabilization of AuNPs due
to the presence of the carboxyl group [151]. Hence, studies investigating the characteri-
zation and composition of plant extracts used for the bioreduction of Au3+ ions are a key
issue [150].

With regard to antibacterial activity, AuNPs possessing an envelope formed via bioac-
tive molecules showed greater effectiveness than naked AuNPs [140]. Many studies show
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that the group of compounds most often responsible for the reduction of gold ions and
the stabilization of AuNPs are flavonoids [38,39,41]. There are about 1000 variants of
flavonoid derivatives, and these compounds act as pigments to protect plants against radi-
ation [54,55]. The number of hydroxyl groups in the flavonoid compound, their location,
and the flavonoid’s degree of oxidation are the most important structural properties related
to AuNP synthesis and stabilization. Moreover, the presence of hydroxyl groups has great
importance in the reduction of gold ions and the stabilization of AuNPs [54,55]. Flavonoids
are also known to form chelate bonds with metals, thus trapping metals and inactivating
certain enzymes. The affinity of flavonoids for AuNPs can also be explained by their ability
to chelate metals [152]. Flavonoids possess many types of biological activity that can be
used in biomedicine, such as the ability to strengthen blood vessel walls (rutin, hesperidin,
diosmin), stimulate the production of anti-inflammatory prostaglandins, scavenge free
radicals and improve blood circulation in vessels. At the same time, the antibacterial,
antiviral and antifungal properties of flavonoids are being reported more frequently [153].
For example, the analysis of FTIR spectra of AuNPs synthesized with the extracts of
Terminalia arjuna, Polygonum fagopyrum, Couroupita guianensis, Solanum indicum, Malus domestica,
Citrullus lanatus, Cornus mas and grapes revealed that mainly flavonoids and phenolic
compounds were forming a stabilizing envelope around the AuNPs [9]. Furthermore, the
envelope surrounding AuNPs synthesized using extract from Imperata cylindrica leaves
consisted mainly of phenolic compounds [154]. The stabilizing envelope of AuNPs synthe-
sized using Medinilla speciosa infusion consisted of polyphenolic compounds. Naringin and
quercetin present in the extract were specifically responsible for the antibacterial effect [36].
The envelope surrounding AuNPs synthesized using the pod extract of Gymnocladus assamicus
consisted mainly of phenolic acids such as gallic and protocatechuic acids and kaempferol.
In the case of AuNPs synthesis using Muntingia calabura leaf extract, the envelope was not
only composed of flavonoids, but also tannins and saponins [155].

Another group of compounds that has a significant impact on the stability of AuNPs
are fatty acids. In the research conducted by Abdel-Raouf et al. (2017), 22 components,
including fatty acids such as palmitic acid, oleic acid, and stearic acid, formed AuNPs
envelopes [55]. Palmitic acid is a very strong antiseptic, and its presence increased the
antibacterial properties of AuNPs. Similarly, palmitic acid also stabilized the AuNPs
and thus prevented their aggregation [55]. Additionally, secondary metabolites such as
terpenoids, flavonoids and aliphatic amines, which form a stabilizing envelope around
AuNPs, were detected in the Salix alba extract. For this reason, such compounds are isolated
and used for the synthesis of AuNPs. For example, terpenoids included in plant extracts
can act against S. aureus bacteria and change the permeability of the membrane [156].

Proteins are a frequent component of AuNP envelopes synthesized using plant extracts
and likely responsible for the reduction of gold ions and stabilization of AuNPs. Moreover,
the presence of proteins in the AuNP envelope may also determine the type of interaction
with the bacterial cell wall [157]. In the case of AuNPs synthesized using Annona muricata
leaf extract and extract from stem of Periploca aphylla, the envelope consisted of flavonoids,
terpenoids and proteins. The envelopes of AuNPs obtained using the leaf extracts of
Allium ampeloprasum and Eclipta prostrata were composed of phenolic compounds and
proteins [88,113,114,157]. The presence of proteins, alkaloids and flavones was also found
in the envelope of AuNPs synthesized using Nigella arvensis leaf extract [1].

Studies investigating the composition of the AuNP envelope indicate that the presence
of bioactive secondary metabolites may play an important role in the reduction of gold
ions and the stabilization of AuNPs. In addition, studies have confirmed the participation
of amine and amide functional groups, as well as hydroxyl and aromatic groups, in the
reduction of gold ions and the role of these groups in stabilizing AuNPs [55].

3.4. Antibacterial Properties of Plant Extracts and Isolated Phytocompounds

Most often, AuNPs are synthesized from extracts without antibacterial properties,
or such activity of the extracts is not tested because these studies aim to characterize the
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reduction ability of extracts and the characteristics of the obtained AuNPs. Interestingly,
AuNPs may exhibit antibacterial activity even if the extract used during the biosynthesis
did not previously exhibit antibacterial activity on its own. Furthermore, several examples
of AuNPs synthesized using extracts or phytochemicals to achieve antibacterial activ-
ity demonstrated that the presence of AuNPs always enhanced the antibacterial action.
Therefore, future studies should first test the antibacterial activity of the extract itself or
the phytochemicals isolated from it, and then assess the ability of the extract or extract
components to reduce gold ions.

Interestingly, many extracts and extract components have already been tested in this
manner (Table 4). Extracts from plants used in traditional medicine, generally known as
herbs, are often used for the synthesis of AuNPs [158].

Table 4. Plant extracts with antibacterial activity.

Plant Kind of Extract Extract Composition Bacterial Strains
Mechanism of
Antibacterial

Activity
References

Crotalaria bernieri

Leaf; hexane extract
Tannins, polyphenols,
steroids, triterpenes,
unsaturated sterols

S. aureus Unknown

[159]

Leaf; methanol
extract

Alkaloids, flavonoids,
tannins, polyphenols

E. aerogenes, P. aeruginosa,
V. parahaemolyticus,
P. mirabilis, B. cereus,

C. perfringens, S. aureus,
S. pneumonia, S. pyogenes

Unknown

Seed; hexane extract
Tannins, polyphenols,
steroids, triterpenes,
unsaturated sterols

V. parahaemolyticus,
S. aureus Unknown

Seed; ethyl acetate
extract

Flavonoids, tannins,
polyphenols, steroids,

triterpenes,
unsaturated sterols

E. cloacae, S. aureus,
V. parahaemolyticus,

P. mirabilis, S. pneumoniae,
S. pyogenes

Unknown

Seed; methanol
extract

Flavonoids, tannins,
polyphenols, steroids,

triterpenes,
unsaturated sterols

Y. enterocolitica,
S. pneumoniae, S. pyogenes Unknown

Pod; hexane extract Steroids, triterpenes,
unsaturated sterols

E. aerogenes, S. aureus,
C. perfringens Unknown

Pod; ethyl acetate
extract

Polyphenols, steroids,
triterpenes,

unsaturated sterols

V. parahaemolyticus,
S. aureus, B. cereus,

C. perfringens, S. pyogenes,
S. pneumoniae

Unknown

Crotalaria bernieri

Pod; methanol
extract Alkaloids, flavonoids

S. enteridis, S. flexneri,
V. parahaemolyticus,

P. mirabilit, P. mirabilis,
S. aureus, S. pneumoniae,

S. pyogenes

Unknown

[159]

Root; hexane extract
Tannins, polyphenols,
steroids, triterpenes,
unsaturated sterols

P. aeruginosa, S. enteridis,
S. pyogenes Unknown

Root; ethyl acetate
extract

Tannins, polyphenols,
steroids, triterpenes,
unsaturated sterols

V. parahaemolyticus,
B. cereus, C. Perfringens,
S. aureus, S. pneumoniae,

S. pyogenes
Unknown

Root; methanol
extract

Saponins, tannins,
polyphenols

S. enteridis, P. mirabilis,
B. cereus, C. perfringens,
S. aureus, S. pneumoniae,

S. pyogenes
Unknown

Arum maculatum

Leaf; water extract Phenols, tannins,
tocopherols,
flavonoids,

beta-carotene

E. coli, S. aureus,
L. monocytogene,

S. enteritidis, P. aeruginosa
Unknown [160]Leaf; water: ethanol

(50:50) extract

Leaf; ethanol extract
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Table 4. Cont.

Plant Kind of Extract Extract Composition Bacterial Strains
Mechanism of
Antibacterial

Activity
References

Luma apiculata

Leaf; hexane extract
Catechins, flavonoids,
glycosyloxyflavone,

triterpenoids

S. aureus, S. epidermidis,
S. saprophyticus, E. coli

A. boumanii, P. aeruginosa,
Enterococcus sp.

Unknown

[161,162]

Flower; hexane
extract

S. epidermidis, S. aureus,
S. saprophyticus,
Enterococcus sp

Unknown

Green tea;
epigallocatechin

3-gallate
Leaf; water solution Polyphenol S. aureus, E. coli,

E. faecalis, P. aeruginosa
Mechanical

destruction of cell
wall; cell lysis

[144]

Areca catechu Nuts; water extract Flavonoids, proteins
E. cloacae, S. haemolyticus,

S. petrasii, B. cereus,
Enterobacter sp.

Unknown [77]

Salix alba Leaf; hydro-alcoholic
fraction Salicin S. aureus, K. pneumoniae,

B. sublitis Unknown [106]

Thymus vulgaris
Leaf and flower;
hydro-alcoholic

fraction

Thymol, carvacrol,
flavonoids, tannins,

triterpenes
P. aeruginosa, Proteus sp. Unknown

[158]

Rosmarinus officinalis Leaf; hydro-alcoholic
fraction

Flavonoids, phenolic
acids (caffeic,
chorogenic,

rosmarinic), essential
oils (camphor,

cineole), diterpenes
(carnosol)

B. subtilis Unknown

Syzygyum joabolanum Leaf; hydro-alcoholic
fraction Flavonoids, tannins S. aureus, K. pneumoniae Unknown

Punica granatum
Pericarp;

hydro-alcoholic
fraction

Ellagitannins,
alkaloids P. aeruginosa, B. subtilis Unknown

Psidium guajava Leaf; hydro-alcoholic
fraction

Comarins, essencial
oils, flavonoids,

triterpenes,
ellagitannins

S. aureus Unknown

Ocimum
basilicum

Leaf; hydro-alcoholic
fraction

Essential oils (linalol,
estragol, eugenol),
tannins, flavonoids

P. aeruginosa Unknown

Hibiscus sabdariffa
Flower; water extract Phenolic compounds,

terpenoids, esters,
weak and fatty acids

E. coli, V. parahaemolyticus,
P. aeruginosa, S. enteritidis,

B. cereus, S. aureus
Membrane potential

changes [72]Flower; ethanol
extract

Syzygium
aromaticum

Flower; water extract Phenolic compounds,
terpenoids, esters,

weak and fatty acids

E. coli, V. parahaemolyticus,
P. aeruginosa, S. enteritidis,

B. cereus, S. aureus
Membrane potential

changes [72]Flower; ethanol
extract

Moringa oleifera Leaf; ethanol extract

Alkaloids, saponins,
tannins, phenolics,

flavonoids,
triterpenoids,

steroids, glycosides

S. aureus, E. coli Unknown

[163]

Magnolia
acuminata Leaf; ethanol extract

Alkaloids, saponins,
tannins, phenolics,

flavonoids,
triterpenoids,

steroids, glycosides

S. aureus, E. coli Unknown

Prunus cerasus Leaf; ethanol extract

Alkaloids, saponins,
tannins, phenolics,

flavonoids,
triterpenoids,

steroids, glycosides

S. aureus, E. coli Unknown

Leucaena
leucocephala Leaf; ethanol extract

Alkaloids, saponins,
tannins, phenolics,

flavonoids,
triterpenoids,

steroids, glycosides

S. aureus, E. coli Unknown
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Table 4. Cont.

Plant Kind of Extract Extract Composition Bacterial Strains
Mechanism of
Antibacterial

Activity
References

Tilia argentea Leaf; water extract

Flavonoids, phenolic
compounds, esters,
terpenes, aliphatic

acids, hydrocarbons

E. coli, S. aureus,
E. pneumoniae, B. subtilis Unknown [120,164]

Anthemis
pungens Leaf; water extract Phenolic compounds,

flavonoids E. coli, S. aureus Unknown [120]

Pistacia sp. Leaf; water extract

Flavonoids, phenolic
compounds,

carboxylic acids,
aromatic compounds

E. coli, B. subtilis Unknown [120,165]

Epaltes divaricata Whole plant; water
extract

Tannins, phenolic
compounds,

saponins, cardiac
glycosides,

flavonoids, alkaloids

S. aureus Unknown

[121]

Asparagus
falcatus

Tuber; hexane extract
Tuber; ethanol extract

Tannins, phenolic
compounds,

saponins, cardiac
glycosides,
flavonoids

S. aureus Unknown

Asteracantha longifolia
Whole plant; hexane

extract
Whole plant; ethanol

extract

Tannins, phenolic
compounds,

saponins, cardiac
glycosides,

flavonoids, alkaloids

S. aureus Unknown

Vetiveria
zizanioides

Root; hexane extract
Root; ethanol extract

Tannins, phenolic
compounds,

saponins, cardiac
glycosides,

flavonoids, alkaloids

S. aureus

High concentration
of low-polarity

compounds in the
extract

Coriandrum sativum Seed; hexane extract
Seed; ethanol extract

Tannins, phenolic
compounds, cardiac

glycosides,
flavonoids, alkaloids

S. aureus Unknown

The antibacterial activity of extracts obtained from Achillea millefolium, Caryophyllus
aromaticus, Melissa officinalis, Ocimum basilicum, Psidium guajava, Punica granatum, Rosmarinus
officinalis, Salvia officinalis, Syzygium jambolanum and Thymus vulgaris plants was investigated
using 14 strains of bacteria. Extracts from Thymus vulgaris, Rosmarinus officinalis, Syzygium
jambolanum, Punica granatum, Psidium guajava and Ocimum basilicum exhibited antibacterial
activity against P. aeruginosa, C. albicans, Proteus sp., B. subtilis, S. aureus, K. pneumoniae and
E. aerogenes [158]. Antimicrobial activity of substances isolated from plants, such as eugenol,
benzoyl acid and cinnamic acid, was observed against S. aureus, S. choleraesuis, B. subtilis,
C. albicans, K. pneumoniae, E. aerogenes and E. coli [72,158]. The composition and antimicrobial
activity of leaf extracts from Moringa oleifera, Magnolia acuminata, Prunus cerasus and Leucaena
leucocephala were also investigated. Positive antibacterial test results were observed against
E. coli, S. aureus and B. subtilis. Mainly, extracts contain alkaloids, saponins, tannins,
phenolic acids, flavonoids, steroids and glycosides [163]. Out of the extracts derived from
Digitalis purpurea, Sanicula europaea, Anthemis pungens, Ecballium elaterium, Urtica dioica,
Nerium oleander, Tilia argentea, Juglans regia, Pistacia sp. and cardiac glycoside isolated from
Digitalis purpurea, the extract from Tilia argentea showed antibacterial activity against the
greatest number of bacterial strains (i.e., E. coli, B. subtilis, K. pneumoniae, S. aureus and
Aeromonas sp.). On the other hand, extracts from Anthemis pungens exhibited antibacterial
activity against two strains of E. coli and S. aureus, whereas Pistacia sp. exhibited activity
against E. coli and B. subtilis [120].

In addition, the synthesis of AuNPs using ethanol extracts usually provides greater
antibacterial efficacy compared to aqueous extracts [55]. In the case of methanol extracts
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from Allium sativum, Caryophyllus aromaticus flowers, rhizomes of Zingiber officinale and
Psidium guajava, Cymbopogon citratus and Mikania glomerata leaves, all of the extracts exhib-
ited antibacterial activity against E. coli, Salmonella, S. aureus and Enterococcus sp. However,
different MIC50% and MIC90% values were obtained for the individual extracts [166]. Simi-
larly, a zone of inhibition of bacterial growth was observed for methanol extracts from the
stems, leaves and roots of Sclerocarya birrea and Sterculia setigera against E. coli, C. albicans,
S. aureus and A. niger [167]. Additionally, the metal extract from the leaves of Premna
pubescens showed antibacterial activity against S. aureus [168].

On the other hand, results obtained using aqueous extracts should be considered
separately. The antimicrobial activity of alcohol extracts is usually much greater and affects
a greater number of bacterial strains than aqueous extracts, which can be attributed to the
antiseptic properties of alcohols. Thus, the size of the bacterial growth inhibition zone is
not only a result of the properties of the phytochemicals contained in the extract. This
relationship is most evident in comparative tests carried out using aqueous, alcoholic
and other extracts from the same plants. Such studies were carried out using extracts
from the tubers of Asparagus falcatus, the whole plants of Asteracantha longifolia and Epaltes
divaricata, the roots of Vetiveria zizanioides, and the seeds of Coriandrum sativum. Only one
aqueous extract (i.e., Epaltes divaricata) achieved a positive antibacterial result, whereas the
ethanolic and hexane extracts resulted in eight positive antibacterial tests [121]. All types
of extracts were tested against one bacterial strain of S. aureus. The antimicrobial activity
of the extracts from leaves, branches, and flowers of Luma apiculata obtained in various
organic solvents, including ethanol, methanol, hexane and distilled water, was studied.
Only the hexane extracts were effective against S. aureus, S. epidermidis, S. saprophyticus,
Enterococcus sp., A. baumannii, P. aeruginosa and E. coli [161]. On the other hand, both ethano-
lic and aqueous extracts from leaves of Arum maculatum exhibited antibacterial activity
against all of the investigated bacterial strains including E. coli, S. aureus, L. monocytogenes,
S. enteritidis and P. aeruginosa. The results differed only slightly in MIC50% values for both
types of extracts [160]. Studies were also carried out comparing the antimicrobial activity of
methanol extracts from different parts of the same plant [122]. All extracts derived from the
flowers, leaves and seeds of Cleome coluteoides showed antibacterial activity against B. cereus
and S. aureus. Interestingly, only slight differences in the size of the zone of inhibition were
observed, but the same relationship was evident for both bacteria. The leaf extract was the
most effective, followed by the flower extract, and the smallest zone of inhibition was found
for the seed extract [122]. Similar studies were carried out for methanol extracts obtained
from the leaves, roots, and seeds of Crotalaria bernieri against 17 strains of bacteria. The
leaf extract was most effective and demonstrated antibacterial activity against E. aerogenes,
P. aeruginosa, V. parahaemolyticus, and P. mirabilis. Conversely, the root extract exhibited
only two positive antibacterial activity results against S. enteritidis and P. mirabilis. The
seed extract was the least effective, for which only one positive result was observed for Y.
enterocolitica [159].

4. Mechanism of the Antibacterial Activity of AuNPs Synthesized from Plants

The antibacterial properties of biosynthesized AuNPs differ based on their size, shape,
concentration, composition, envelope composition, stability, and surface charge. The
mechanism of cellular toxicity is important. However, because the antibacterial effects of
biosynthesized AuNPs is dependent on so many parameters, identifying the root of cellular
toxicity remains difficult [25].

The mechanisms responsible for the antibacterial activity of AuNPs are oxidative stress,
the release of gold ions and non-oxidative stress (Figure 3) [3,28]. The antibacterial proper-
ties of biosynthesized AuNPs are also determined by the presence of secondary metabolites
derived from plant extracts. In one study, the biological activity of AuNPs, including
antibacterial properties, was determined by the concentration of tannins, flavonoids, phe-
nols and aromatic compounds present in their envelopes [169]. For example, proteins and
enzymes were present in the AuNPs obtained using the Nigella arvensis leaf extract, and
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they increased the antibacterial activity of AuNPs [1]. As a result, the AuNPs were able
to interact with the bacterial cell wall, change its structure and eventually destroy it [28].
Thus, the first interaction of AuNPs with bacteria is at the molecular level with the cell
wall. Therefore, the envelope composition of AuNPs has a great impact on the antibacterial
activity of the NPs and determines the stability and surface charge of AuNPs.
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4.1. Damage to the Cell Wall

The cell wall of bacteria aids in maintaining cell shape and is the first basic barrier
which protects the cell against mechanical and osmotic damage. The antibacterial activity
of bacteria depends on the bacterial strain (i.e., the structure of the cell wall) [28,35,93,170].
The surface interactions between AuNPs stabilized by phytochemicals and the bacterial
cell wall are also important [125]. AuNPs aggregating on the cell surface can disturb the
permeability of the cell membrane by causing pits, fissures and pores [69,133,146,171].
The concentration of adherent AuNPs will depend on the NP surface charge. AuNPs
accumulating on the cell surface affect the cell wall by disturbing the equilibrium state
and changing the Gibbs energy in accordance with the Le Chatelier concept [15]. Large,
hydrophilic biosynthesized AuNPs cannot penetrate the lipid membrane [93,133,146]. On
the other hand, small AuNPs with hydrophobic surfaces can freely pass through the pores in the
lipid membranes which facilitates their internalization inside the cell [130,133,136,138]. However,
the appropriate concentration of adherent AuNPs and specific interaction are necessary
for the internalization of AuNPs [146]. The hydrophilic or hydrophobic properties and the
surface charge of the NPs depend on the stabilizing compounds within the extract [93,133,146].
When biosynthesized AuNPs penetrate inside bacteria, they can lead to cell death by
disrupting bacterial metabolism by interacting with the mitochondria and other organelles
and by intercalating with bacterial DNA [1,15,125].

At the molecular level, damage to the cell wall may consist of non-specific binding
of small AuNPs adhering to the surface of bacteria with transpeptidase, which leads
to increased membrane permeability, cell lysis and DNA leakage [7,172]. Additionally,
the accumulation of large AuNPs on the cell surface because of the attractive electrostatic
interaction forces may increase the permeability of the membrane. The critical concentration
of adhered AuNPs may lead to morphological changes in the cell wall and/or increase
its permeability, which in turn causes cell death [7,35]. The first effect of the alterations in
membrane permeability is the disruption of the membrane ion transport selectivity which
may initiate depolarization of the lipid membrane. Then, an increased influx of Ca2+ ions
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into the cell is observed. The increase in the concentration of calcium ions in the cytoplasm
initiates cell death in an apoptosis-like manner [7,109,173–175]. The interaction between
biosynthesized AuNPs and negatively charged lipopolysaccharides (LPS) can also affect
the membrane permeability of Gram-negative bacteria because LPS loses stability at a
critical concentration of AuNPs. Such a mechanism was observed in the case of AuNPs
biosynthesized using Abutilon indicum leaf extract [35,176]. On the other hand, the critical
concentration of adhered AuNPs, particularly large AuNPs which cannot penetrate cell
membranes, strongly influences deformations in the cell shape [7,177–179]. Bacterial cell
deformation occurs as a result of the mechanical action of AuNPs on the membrane, leading
to cell rupture and death. This physical mechanism of action on bacteria cell death has
been observed using perfectly spherical chemically synthesized AuNPs and biosynthesized
AuNPs from dextrose [132,180]. Mechanical damage of the membrane also leads to cell
lysis, resulting in the leakage of cytoplasm and nucleic acids [132].

4.2. Damage of Proteins and DNA

Proteins fulfill important structural and catalytic functions in all living organisms [28].
Membrane proteins and intracellular components influence cell division, respiration, and
ultimately cell survival. AuNPs showing affinity to compounds containing nitrogen and
sulphur atoms can alter or break the structure of proteins by bonding to their thiol and
amino groups [5,7,73,107,176,181–184]. For example, the mechanism of antibacterial action
of AuNPs synthesized using the leaf extract from Nigella arvensis was due to the AuNPs
binding to the external components of the bacterial cell wall, which caused changes in the
wall structure enabling AuNP penetration into the cell to disrupt cellular respiration [1,7].
Inside the cell, AuNPs interact with DNA and block transcription which inhibits cell growth
and senescence, resulting in cell degradation and bacteria death [1].

Moreover, AuNPs can prevent the binding of the ribosomal subunit to tRNA and also
disrupt the membrane potential by inhibiting ATPase activity. Inhibiting ATPase activity
reduces the level of ATP and stimulates the formation of reactive oxygen species (ROS),
which affects other cellular structures [105,185,186]. ROS generated by AuNPs inhibit
respiratory enzymes and cause an increase in oxidative stress, which in turn leads to cell
death [35,52]. The ability of AuNPs to generate ROS was confirmed in an experiment in
which bacterial cells were treated with AuNPs while adding 2,7-dichlorodihydro- fluo-
rescein diacetate (DCFH-DA). DCFH-DA is a pigment that emits green fluorescence only
in the presence of ROS while it is oxidized. In cells treated with AuNPs and DCFH-DA,
fluorescence was observed. Conversely, no fluorescence was observed in cells treated with
DCFH-DA alone [187]. The mechanism of action related to ROS generation was found in
AuNPs synthesized using Ocimum tenuiflorum flower and leaf extract, Azadirachta indica
and Mentha spicata leaves, and peel extract from Citrus sinensis [15]. Consequently, the ROS
generated by AuNPs can affect metabolic replication, transcription and cell division, since
ROS can cause DNA mutations. These modifications can lead to saccharide fragmentation
and/or double helix breakage [7,28].

Therefore, two steps occur after AuNPs enter the cell: reduction of the produced ATP,
which results in a reduction of metabolic activity, and the disturbance of ribosome binding,
which leads to inhibition of protein synthesis [7,45,93,188,189].

4.3. Changes in the Expression of Metabolic Genes

AuNPs generate not only singlet oxygen but also other radicals. ROS are harmful
to cells because they react with amino acids such as methionine, vitamins including beta-
carotene, unsaturated fatty acids, proteins and steroids [89,190]. Enzymatic antioxidant
cell defense systems in bacterial cells, e.g., superoxide dismutase (SOD) and glutathione
peroxidase (GPx), are regulated by ROS-dependent signals [191]. The level of deoxidants
varies depending on the activity of the respective genes in order to inhibit oxidative damage.
Microbes can change metabolic pathways to those that are able to repair damaged cellular
structures using ROS, such as the cell membrane or DNA [28]. Oxidative stress is a normal
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cellular process that occurs in several phases of cell signalling. However, if the balance
between ROS production and the biological ability to deoxidise ROS species becomes too
great, the effects can rapidly become very harmful [45]. Under normal conditions, the
production and removal of ROS is counterbalanced by appropriate enzyme systems. If ROS
levels are too high, the redox syndrome can lead to cell death by damaging basic structures,
including metabolic pathways and DNA [28].

Other studies indicate that the redox syndrome does not have to be associated with an
increase in ROS concentration. It may be related to the direct damage of the GPx enzyme
by AuNPs, which contributes to oxidative cell damage [36,190–193]. Such a mechanism
was found in the case of E. coli. The oxidative stress caused by AuNPs was associated with
a decrease in GPx concentration as a result of the direct destructive action of AuNPs. The
increase in ROS concentration was not found to cause the oxidative stress. This oxidative
imbalance induced apoptosis in a similar fashion as the ROS-independent apoptosis of
mammalian cells [192].

5. Conclusions

The biological synthesis of AuNPs has gained increased interest due to the simple,
cheap and eco-friendly procedure, as well as the wide availability of biological material to
carry out the syntheses. Moreover, AuNP biosynthesis using plant extracts is a particularly
promising solution due to the vast number of applications in biomedicine.

In addition to their unique physicochemical properties, AuNPs biosynthesized using
plant extracts or bioactive compounds isolated from plants have specific biological proper-
ties and are biocompatible and non-toxic. Biosynthesized AuNPs can have different shapes,
sizes, surface potentials and stabilities, and the biomolecules present within the AuNP
envelope and on the AuNP surface depend on the composition of the plant extract. The
structure and envelope composition of AuNPs formed during biosynthesis depends on
the physicochemical conditions of the reaction and type of extract used. The biological
properties of AuNPs depend on the morphological and surface properties of the NPs and
the type and composition of the envelope formed during biosynthesis.

One of the biological activities exhibited by biosynthesized AuNPs is antibacterial
action, which is particularly interesting and desired in the era of increasing bacterial resis-
tance for which new antibacterial agents are sought after. The mechanism of antibacterial
action of biosynthesized AuNPs on bacteria is very complex, and NPs of different mor-
phology and envelopes may exhibit differences in antibacterial activity because in each
case a different path of cell death is triggered. Interestingly, the extract itself may not
contain antibacterial substances, just as AuNPs with a given morphology may not exhibit
antibacterial activity. However, AuNPs of a given morphology which did not previously
exhibit antibacterial activity may become active against bacteria using a specific extract
as a result of biosynthesis. Additionally, the level of antimicrobial activity depends on
the bacterial strain and the concentration of AuNPs. Although some research observed
antimicrobial activity independent of the concentration of AuNPs, this is the exception
rather than the rule. Furthermore, the level of antimicrobial activity of biosynthesized
AuNPs may be comparable to that of standard antibiotics and even higher.

The composition of the plant extract used for synthesis is of particular importance
because the initiation of the antibacterial action depends on the adsorption of NPs to the
surface of the bacterial cell. This is possible due to the appropriate surface charge of the
AuNP and the interaction at the molecular level with the components of the bacterial
cell wall. Both the surface charge of the biosynthesized AuNPs and the composition of
the biomolecules in the envelope depend on the type of extract used. Additionally, if the
extract itself possesses antibacterial properties, AuNPs synthesized using the extract always
enhance the antibacterial activity. Due to the promising results, the demonstrated activity
against many bacterial strains and the increasingly well-known mechanism of action of
biosynthesized NPs, these AuNPs may constitute new antimicrobial agents that can be
used alone or in combination with antibiotics as they have great potential.
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The unique physicochemical and biological properties of AuNPs, such as small size,
surface charge, SPR effect, stability, envelope biomolecules, and biocompatibility predispose
them to various biomedical applications. Biosynthesized AuNPs have been considered as
the most promising nanomaterial in target delivery, controlled drug release, antimicrobial
drugs, biosensors, hyperthermia, imaging, and theranostics.
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