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Abstract: Pain is one of the most common symptoms experienced by patients. The use of current 

analgesics is limited by low efficacy and important side effects. Transient receptor potential vanil-

loid-1 (TRPV1) is a non-selective cation channel, activated by capsaicin, heat, low pH or pro-inflam-

matory agents. Since TRPV1 is a potential target for the development of novel analgesics due to its 

distribution and function, we aimed to develop an in silico drug repositioning framework to predict 

potential TRPV1 ligands among approved drugs as candidates for treating various types of pain. 

Structures of known TRPV1 agonists and antagonists were retrieved from ChEMBL databases and 

three datasets were established: agonists, antagonists and inactive molecules (pIC50 or pEC50 < 5 

M). Structures of candidates for repurposing were retrieved from the DrugBank database. The cu-

rated active/inactive datasets were used to build and validate ligand-based predictive models using 

Bemis–Murcko structural scaffolds, plain ring systems, flexophore similarities and molecular de-

scriptors. Further, molecular docking studies were performed on both active and inactive confor-

mations of the TRPV1 channel to predict the binding affinities of repurposing candidates. Variables 

obtained from calculated scaffold-based activity scores, molecular descriptors criteria and molecu-

lar docking were used to build a multi-class neural network as an integrated machine learning al-

gorithm to predict TRPV1 antagonists and agonists. The proposed predictive model had a higher 

accuracy for classifying TRPV1 agonists than antagonists, the ROC AUC values being 0.980 for pre-

dicting agonists, 0.972 for antagonists and 0.952 for inactive molecules. After screening the ap-

proved drugs with the validated algorithm, repaglinide (antidiabetic) and agomelatine (antidepres-

sant) emerged as potential TRPV1 antagonists, and protokylol (bronchodilator) as an agonist. Fur-

ther studies are required to confirm the predicted activity on TRPV1 and to assess the candidates’ 

efficacy in alleviating pain. 

Keywords: molecular docking; machine learning; pain; drug discovery; TRPV1 agonist;  

TRPV1 antagonist 

 

1. Introduction 

Chronic pain is correlated with disability and significant impairment of the patient’s 

quality of life. Furthermore, most of the patients need medical assistance to treat pain 

[1,2]. Depending on the etiology and type of the pain, current therapeutic solutions in-

clude drugs such as opioids, nonsteroidal anti-inflammatory, analgesic-antipyretics, anti-

depressants and anticonvulsant drugs. However, their use is limited by severe side effects 

and/or reduced efficacy [3–5]. Current research focuses on the discovery of new drugs 

with analgesic effect, with superior efficacy and safety profile [2]. 
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In recent years, multiple studies have revealed the capsaicin receptor, the transient 

receptor potential vanilloid 1 (TRPV1), as a therapeutic target for the discovery of new 

analgesics [3,6–10]. 

The non-selective cation channel TRPV1 is highly expressed in peripheral unmyelin-

ated C fibers and thinly myelinated A-delta fibers, and has lower levels of expression in 

upstream central components of the pain circuitry [11,12]. It is activated by low pH (<6.5), 

temperature > 42 °C and multiple exogenous (such as capsaicin, resiniferatoxin (RTX), 

gingerol and zingerone) and endogenous ligands (such as anandamide). The activation of 

this receptor was correlated with the appearance of inflammation and pain [13]. Capsaz-

epine (CPZ), ruthenium red and iodo-resiniferatoxin are well-known TRPV1 receptor an-

tagonists [14]. 

The role of the TRPV1 channel in pain modulation has been supported by numerous 

pharmacological and genetic studies [3]. Its activation enhances various cascades of intra-

cellular signaling, involved in the response to algogenic and inflammatory agents [11]. In 

animal models using TRPV1 knockout mice, a significant decrease in thermal hyperalge-

sia associated with inflammatory pain has been observed [15,16]. Capsaicin administered 

in an increased dose (e.g., 6 nmol/rat administered intra-periaqueductal grey [17]) initially 

causes a sensation of irritation followed by loss of sensitivity to mechanical, chemical and 

thermal painful stimuli [18]. Thus, pharmaceutical preparations with agonists for differ-

ent routes of administration are evaluated for the treatment of chronic pain [19,20].  

Owing to the specific side effects of TRPV1 agonists following oral administration 

(e.g., digestive irritation and pain), current research has focused on the discovery of new 

selective low molecular weight antagonists [3,21]. Antagonists (e.g., BCTC, AMG9810, 

A425619, and SB-705498) [11] and powerful agonists (such as capsaicin or RTX), that cause 

desensitization of TRPV1 [3,19], have been shown to attenuate thermal and mechanical 

hyperalgesia as well as tactile allodynia in various preclinical models—inflammatory [22–

25], neuropathic [23,26], postoperative, cancer-related [27,28] and osteoarthritic pain 

[29,30]. Although some of the TRPV1 antagonists (Figure 1) were assessed in clinical phase 

I and phase II trials for the treatment of inflammatory, neuropathic and visceral pain, their 

severe hyperthermal side effects led to their withdrawal [31]. 

The discovery of new TRPV1 antagonists with fewer side effects is necessary for 

proper pain management. The structural details of the TRPV1 channel are essential for 

identifying such compounds. According to mutagenic studies, amino acid residues 

Tyr511 and Ser512 located in the loop between transmembrane domains (TM) 2 and 3, 

and Thr550 in the loop between TM4 and 5 are involved in mediating the effect of capsa-

icin on the TRPV1 channel [32,33]. However, Cao et al. analyzed the structure of resinif-

eratoxin- or capsaicin-bound TRPV1 and observed that these agonists bind to TM3-4, but 

also act on TM4-5 and 6 [34]. This is supported by different chimeric strategies that have 

revealed that TM3 and 4 are important for binding agonists (capsaicin and RTX) and an-

tagonists (CPZ) [35].  

Although the approval of analgesic drugs acting on the TRPV1 channel has been lim-

ited for the aforementioned reasons, information on the key elements of the receptor struc-

ture that contribute to its interactions is essential for the discovery of new therapeutic 

agents with analgesic potential. Drug repurposing studies are based on the discovery of 

new uses for approved or experimental drugs, and advantages such as reduced costs and 

time and low risk of failure support the use of this method [36]. A drug repurposing vir-

tual screening framework was implemented in our study to identify, among approved 

drugs, new potential ligands that may interact with the TRPV1 receptor, considering that 

for these substances the pharmaco-toxicological profiles are well known. 

Thus, the aim of our study was the use of in silico methods (ligand-based methods 

such as graph mining, classification models and structure-based methods based on mo-

lecular docking experiments) to identify potential TRPV1 antagonists and agonists/desen-

sitizers with potential analgesic effects for the treatment of chronic pain.  
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Figure 1. Representative structures of TRPV1 antagonists that have undergone clinical trials for pain 

management [8]. 

2. Materials and Methods 

A virtual screening framework was implemented with the scope of discovering po-

tentially novel TRPV1 antagonists and agonists/desensitizers, using both ligand-based 

and structure-based in silico approaches. The proposed multi-step methodology is pre-

sented summarily in Figure 2. The implemented framework focused on building a ma-

chine learning algorithm (artificial neural network) based on structural scaffolds, flexo-

phores, molecular descriptors and predicted binding affinities. The predictive model was 

used to find promising candidates as potential analgesic agents and is discussed in more 

detail in the following sections. 

 

Figure 2. Schematic illustration of the drug repurposing framework. 
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2.1. Datasets Curation 

Chemical structures of known human TRPV1 antagonists and agonists with their 

corresponding activity values expressed as half maximal inhibitory concentration (IC50, 

nM) or half maximal effective concentration (EC50, nM) were downloaded from the 

ChEMBL database [37]. Datasets with activity values expressed as inhibitory constant (Ki, 

nM), potency (nM), activity (%) or inhibition (%) were also retrieved, to extract molecules 

that were further included in the inactive dataset (molecules declared as inactive in the 

database). Three datasets were built: active antagonists (ANT), active agonists (AG) and 

inactive molecules (IN).  

OSIRIS DataWarrior v5.0.0 software [38] was used to further curate the datasets. 

Mean IC50 or EC50 values were calculated for compounds tested in multiple activity assays, 

duplicate structures being merged into a single entry, and negative logarithmic values of 

IC50 (pIC50, M) and EC50 (pEC50, M) were calculated for all compounds, where applicable. 

The chemical structures with pIC50/pEC50 values lower than 5 M were saved separately as 

inactive ligands and were merged with the structures tagged as “inactive” in the Ki, po-

tency, activity or inhibition datasets. Notably, some compounds were found within both 

the ANT and AG datasets, since agonists can act as desensitizers that inhibit the channel 

activity at higher concentrations, and have activity values expressed as both EC50 (for ac-

tivating TRPV1) and IC50 (for desensitizing TRPV1), hence not being “true” antagonists 

[39]. These compounds were removed from the ANT dataset and were retained as ago-

nists. A diverse decoy dataset was also created for the validation of the molecular docking 

protocol. The decoys were extracted from ChEMBL and were chosen based on common 

molecular descriptors widely used for describing drug-likeness, such as the molecular 

weight (MW), the logarithm of octanol/water partition coefficient (logP), the number of 

hydrogen bond donors (HBD) and the number of hydrogen bond acceptors (HBA). All 

these values had to be within the ranges of the active molecules. Three-dimensional coor-

dinates were generated for all retained structures using OpenBabel v2.4.1 [40]. 

Compounds that were used for the drug repurposing screening framework were 

downloaded from the DrugBank v5.1.9 database [41] with their respective desalted 3D 

coordinates. The acquired database consisted only of approved drugs for human use and 

included neither organometallic nor biologic drugs. 

Molecular descriptors (1D and 2D) were calculated with PaDEL-Descriptor v2.21 [42] 

and were integrated into both datasets for future analyses. Constant descriptors were re-

moved from the datasets. 

2.2. Ligand-Based Models 

2.2.1. Activity Scores 

Activity scores were calculated for agonists, antagonists, inactives and decoys based 

on their activity values. These values were equal with pIC50/pEC50 for compounds in the 

AG and ANT sets, respectively, and were considered 0 for inactives and decoys. Further, 

structural scaffolds were taken into account by generating Bemis–Murcko skeletons and 

plain ring systems with DataWarrior. Bemis–Murcko (BM) skeletons are molecular frame-

works that result from the removal of atom types, bond types and side chains, and have 

proven to be useful in various in silico screening studies [43,44]. Plain ring systems (PR) 

are rings with removed substitution patterns, linkers and side chains [45,46]. 

Flexophore descriptors were generated for all datasets using DataWarrior. A flexo-

phore is a 3D versatile pharmacophore descriptor calculated based on molecular flexibil-

ity, which is represented using a complete graph. The function compares vertices and 

edges between maximum common substructures of two descriptor graphs [47]. Within 

each set, compounds were clustered based on flexophores with an 80% similarity thresh-

old. 

Activity scores were generated for each specific BM skeleton, PR and flexophore clus-

ter by calculating the arithmetic means of activity values. The average activity score (Score) 
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of each individual compound was calculated as the average of BM scores (BMS), PR scores 

(PRS) and flexophore similarity clusters scores (SCS) (Equations (1)–(4)). 
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where i—number of plain rings, 

pX—pIC50 or pIC50; 0 for inactives. 

2.2.2. Binary Classification Model 

Binary classification models were built based on setting cutoff values for several de-

scriptors, similar to our previous work [48]. An independent sample t-test was applied in 

order to identify molecular descriptors that were statistically different between active and 

inactive molecules. Descriptors with areas under the receiver operating characteristics 

(ROC) curve >0.8 were further processed by building the correlation matrix and were re-

ferred to as variables. Variables that were highly intercorrelated (R >0.75) were excluded. 

Cutoff values of the classifiers were chosen using ROC curves and by identifying the co-

ordinates with a good balance between sensitivity and specificity. Classification perfor-

mance parameters were calculated (sensitivity, specificity, accuracy, ROC AUC and F1 

score) for model evaluation. The classification model was applied thereafter to the Drug-

Bank dataset. 

2.3. Structure-Based Approaches 

Molecular docking experiments were carried out to estimate the predicted binding 

affinity of screened molecules to the TRPV1 channel. The crystal structures of human 

TRPV1 in complex with either RTX or CPZ were retrieved from the RCSB Protein Data 

Bank (PDB codes: 5IS0 [49] and 7MZC [50]) and were further optimized using YASARA 

Structure [51], by removing solvent molecules, correcting structural errors, adding miss-

ing residues and polar hydrogens at physiological pH (7.4), and by optimizing the hydro-

gen-bonding networks. The retrieved protein–ligand complexes were thereafter mini-

mized using the NOVA2 forcefield. 

The docking protocols were validated by extracting the co-crystallized ligands and 

redocking them into the binding sites. Thereafter, the predicted conformations of the lig-

ands were superposed on the experimentally determined structure and the root-mean-

square deviation (RMSD) values were calculated. Ligands used for validation also served 

as positive controls in terms of the correct binding pose. 

Three-dimensional structures of TRPV1 agonists and antagonists, inactive molecules, 

decoys and DrugBank compounds were prepared for docking using energy minimization 

with the MMFF94s+ force field and protonation at physiological pH. Docking runs were 

executed using the AutoDock Vina v1.1.2 algorithm [52], and the grid box was selected 

based on the coordinates of the co-crystallized ligands. For the validation of the docking 

experiment in terms of prioritizing active ligands over inactive molecules and for balanc-

ing the datasets, a selection of antagonists and inactive compounds was performed based 

on structural similarity and clustering, as suggested by expert opinions on molecular 

docking-based virtual screening protocols [53], while all agonists were retained. There-

fore, ligands were clustered using a 0.75 structural similarity threshold and only the most 

potent compound from each cluster was retrieved. Validation of the docking score accu-

racy was performed through ROC curve analysis. 

Docking scores (binding energies, ΔG, kcal/mol) and ligand efficiencies (LE, ΔG/no. 

of heavy atoms) corresponding to the first conformation generated for each ligand were 
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retrieved for the screened compounds (TRPV1 agonists and antagonists, inactive mole-

cules, decoys and repositioning candidates). Graphical depictions of ligand poses and mo-

lecular interactions were generated using BIOVIA Discovery Studio Visualizer (BIOVIA, 

Discovery Studio Visualizer, Version 17.2.0, Dassault Systèmes, 2016, San Diego, CA, 

USA).  

2.4. Integrated Repurposing Model 

A global predictive model was applied for all retrieved DrugBank molecules by in-

tegrating average activity scores, satisfied descriptor criteria and docking scores. The re-

purposing model was a multi-class classification algorithm based on a multilayer percep-

tron neural network (MLP NN) and was trained to discriminate not only between active 

and inactive molecules but also between TRPV1 agonists and antagonists. The ChEMBL 

datasets were randomly split into training (70%) and test (30%) subsets for model training 

and validation. This dataset included all the agonists, but only the antagonists and inac-

tive molecules selected for the molecular docking study. Therefore, the ratio between an-

tagonists, agonists and inactive ligands was approximately 1:1:2, which is relatively bal-

anced. The network input layer consisted of the normalized values of the 6 dependent 

variables. The most optimal network architecture was established by varying the number 

of hidden layers and neurons in each layer. Moreover, hyperparameters such as initial 

learning rate, momentum and the maximum number of epochs were also varied until the 

most optimal model was generated. A gradient descent algorithm was used for optimiza-

tion. Since we were dealing with a multi-class classification problem, hyperbolic tangent 

(tanh) activation functions were used for the hidden layers, and the softmax activation 

function was used for the output layer. 

2.5. Statistical Analysis, Machine Learning and Performance Metrics 

ROC curve analysis, independent t-tests, correlation analysis and MLP NN genera-

tion were performed using IBM SPSS Statistics v20 (Armonk, New York, NY, USA). Per-

formance metrics of binary classification and logistic regression models were calculated 

using the following equations: 

��� =
�����

�����������
  (5)

��� =
��

�����
  (6)

��� =
��

�� + �� 
  (7)

�1 =
2��

2�� + �� + ��
, (8)

where ACC = accuracy; 

TPR—true positive rate (recall or sensitivity); 

TNR—true negative rate (selectivity or specificity); 

F1—F-score (harmonic mean of precision and recall); 

TP—true positives; 

TN—true negatives; 

FP—false positives; 

FN—false negatives. 

3. Results 

3.1. Dataset Preparation 

Virtual chemical libraries were constructed in order to implement the in silico drug 

repurposing campaign. After initial curation, the datasets contained the chemical struc-

tures and activity values of 2377 TRPV1 antagonists (ANT set), 194 agonists (AG set), and 

996 experimentally determined inactive molecules (IN set). In order to establish a set of 
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decoy molecules with matching properties with the active molecules, ANT and AG sets 

were merged and four drug-likeness parameters were calculated with DataWarrior: MW, 

logP, HBD and HBA. Further, a set of molecules was downloaded from ChEMBL, con-

taining structures with MW values ranging between 226.3 and 796.6 g/mol, logP values 

between 0.837 and 11.074, 1–12 HBA and 0–4 HBD atoms. Among these structures, 500 

diverse molecules, presumably inactive on TRPV1, were retrieved as the decoy set (DCY). 

Candidates for repurposing were retrieved from DrugBank database and contained a total 

of 1981 approved drugs. 

In order to train the predictive models, antagonists were considered true positives, 

and non-antagonists (agonists and inactive molecules) were considered true negatives 

when predicting antagonists, while agonists were labeled as true positives and non-ago-

nists (antagonists and inactive molecules) as true negatives when predicting agonist mol-

ecules. This rationale was used in the attempt to build a framework that discriminates 

between TRPV1 agonists and antagonists. 

A total of 1444 1D and 2D molecular descriptors were calculated for all datasets using 

PaDEL-Descriptor software.  

3.2. Activity Scores 

The first independent variable that was established in the proposed framework was 

the average activity score (AAS). This average score was calculated as the arithmetic mean 

of three scores based on the structural features of TRPV1 antagonists and agonists: Bemis–

Murcko structural skeletons, plain ring systems and clustering based on flexophore de-

scriptors. Firstly, a scaffold analysis was performed to extract Bemis–Murcko skeletons 

and plain ring systems. For each individual BM skeleton, the specific score (BMS, Bemis–

Murcko score) was established by calculating the mean activity value (pIC50 for antago-

nists, pEC50 for agonists, 0 for inactive molecules) between all compounds that share the 

same skeleton. The same rationale was applied for plain rings (PRS, plain ring score). 

However, when PR scores were calculated for each compound, we took into account that 

some molecules contain more than one ring. Thus, for compounds with multiple rings, 

the mean PR score was calculated as the arithmetic mean between scores of all rings. 

Moreover, if one ring is present more than once in a structure (e.g., phenyl radical), then 

the score was calculated considering only one apparition of that ring. Lastly, the similarity 

cluster score (SCS, flexophore cluster score) was established by calculating the mean ac-

tivity values between compounds that fall into one specific cluster. Therefore, two average 

activity scores were calculated, one for predicting antagonists (Score-ANT), and another 

for agonists (Score-AG).  

After performing the scaffold analysis, a total of 591 BM structures resulted from the 

group of 3564 compounds (antagonists, agonists and inactive molecules). Most of the scaf-

folds are formed by 3 or 4 cyclic structures. For each BM skeleton the corresponding ANT 

and AG scores were calculated. For a total of 256 skeletons, both scores were zero. For the 

remaining 335 structures, we analyzed the relationship between the two scores (Figure 

S1A). Interestingly, one BM scaffold ({2-[10-(4-cyclohexylbutyl)-hexadecahydro-1H-in-

deno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) had both scores above 4, scoring high for both 

agonist and antagonist prediction. Moreover, 9 agonists and 26 inactive molecules did not 

contain any rings in their structure and BM skeletons could not be generated. 

The PR analysis resulted in 271 unique rings. The most frequent ring is benzene, and 

it is present in 2682 compounds. Pyridine, the second most frequent ring, is present in 

1207 derivatives. The structures contain between 3 and 25 heavy atoms. The correspond-

ing ANT and AG scores were calculated for each PR structure. For a total of 34 rings both 

scores were zero, and the relationship between the two scores is shown in Figure S1B. 

Notably, four plain rings had activity scores between 2 and 4, showing less specificity for 

one activity type: (7aR,11bR,13aR,13bS)-icosahydro-1H-cyclopenta[a]chrysene, 

(2S,10R,11S)-12,14-dioxatetracyclo[8.7.0.0²,⁶.0¹¹,¹⁵]heptadeca-3,8-dien-5-one, 
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(1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one 

and 1,2-dihydroisoquinolin-1-one. 

Flexophore descriptors were generated for the merged dataset containing TRPV1 an-

tagonists, agonists and inactive compounds. A total number of 419 clusters was obtained, 

using a similarity threshold of 80% between flexophores. Scores based on structural simi-

larity clustering were also calculated since some TRPV1 agonists and inactive molecules 

are acyclic compounds, thus lacking both BM skeletons and plain rings. As observed in 

Figure S1C, several clusters had mean activity scores between 1 and 4 for both agonist and 

antagonist prediction (SCS-AG and SCS-ANT), thus being non-specific for either class. A 

map of flexophore-based similarity relationships generated using automatically deter-

mined similarity limits is shown in Figure S1D, highlighting that several TRPV1 antago-

nists share structural similarity with agonists or experimentally determined inactive com-

pounds.  

The top five scoring BM and PR structures, ranked by activity scores are highlighted 

in Table 1, for both antagonists and agonists. BM and PR structures were labeled by fre-

quency of apparition in the dataset, in descending order. BM-75 (3-[(decahydronaphtha-

len-1-yl)methyl]-1,1′-bi(cyclohexane)) and BM-230 (1-[(3,4-dicyclohexylcyclopentyl)me-

thyl]-decahydronaphthalene) are two similar antagonist-specific Bemis–Murcko skele-

tons with high activity scores, BM-230 having a cyclopentane scaffold instead of cyclohex-

ane, which also has one additional substitution forming an uncondensed tricyclic sub-

structure instead of the bicyclohexane scaffold. In the case of agonists, BM-145 ({2-[10-(3-

cyclohexylpropyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) and 

BM-106 ({2-[10-(5-cyclohexylpentyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-

yl]ethyl}cyclohexane) have highly similar structural skeletons and activity scores, the only 

difference between the structures being the number of linker atoms (three for BM-145 and 

five for BM-106). Additionally, structures of BM-264 ((11-cyclopropylundecyl)cyclohex-

ane), BM-176 ((10-cyclopropyldecyl)cyclohexane) and BM-205 ((3-cyclopropylpropyl)cy-

clohexane) are comprised of two cyclic substructures (cyclohexane and cyclopropane) 

linked together by an aliphatic chain, the activity score increasing with the number of 

linker atoms (3 for BM-205, 10 for BM-176 and 11 for BM-264). 

Interestingly, the top five scoring plain rings for antagonists are nitrogen heterocy-

cles. Among these fragments, PR-126 (pteridine), PR-127 (pyrido[3,2-d]pyrimidine) and 

PR-87 (pyrido[2,3-d]pyrimidine) are variations of the same scaffold. Furthermore, azo-

cane (PR-100) had a higher activity score than 2,3,4,5-tetrahydro-1H-2-benzazepine (PR-

136), the latter being specific to TRPV1 antagonist CPZ and other related derivatives. The 

PR with the highest score for agonists (PR-126, 1,2-dihydroisoquinolin-1-one) share struc-

tural similarities with the highly ranking antagonist-specific PR-128 (1,2-dihydroquinox-

alin-2-one). Moreover, two out of the top five scoring agonist-specific plain rings, PR-57 

((2S,10R,11R)-12,14-dioxatetracyclo[8.7.0.0²,⁶.0¹¹,¹⁵]heptadeca-3,8-dien-5-one) and PR-45 

((1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one), 

are also highly similar. 

Table 1. Top five Bemis–Murcko skeletons and plain rings ranked by activity scores for both antag-

onists and agonists. 

 Antagonists Agonists 

Type Label Structure Score Frequency Label Structure Score Frequency 

Bemis–

Murcko 

skeletons 

BM-487 

 

9.00 1 (0.03%) BM-264 
 

8.50 1 (0.03%) 

 BM-433 

 

8.90 1 (0.03%) BM-176 
 

8.04 3 (0.08%) 
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 BM-176 
 

8.84 3 (0.08%) BM-145 

 

8.04 4 (0.11%) 

 BM-75 
 

8.84 9 (0.25%) BM-106 
 

7.96 6 (0.17%) 

 BM-230 
 

8.79 2 (0.06%) BM-205 
 

7.65 2 (0.06%) 

Plain rings PR-126 
 

9.68 1 (0.03%) PR-126 

 

7.36 1 (0.03%) 

 PR-127 
 

9.20 1 (0.03%) PR-57 

 

7.36 12 (0.34%) 

 PR-128 
 

9.15 1 (0.03%) PR-127 
 

6.90 1 (0.03%) 

 PR-87 
 

7.98 3 (0.08%) PR-45 

 

6.15 20 (0.56%) 

 PR-100 
 

7.94 2 (0.06%) PR-100 
 

5.53 2 (0.06%) 

The distributions of activity scores for antagonists, agonists and inactive compounds 

are shown in Figure S2. As observed, antagonists had overall higher AAS values than 

agonists, since antagonists represented a significantly larger population among the bio-

logically active compounds.  

The predictive power of the established average activity score was assessed by gen-

erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 

activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 

agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 

ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 

of three and a maximum of eight molecular descriptors as independent variables. ROC 

AUC values were calculated for all descriptors to assess the discriminatory power of each 

variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 

values, statistically significant differences between values of active and inactive mole-

cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 

describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 

are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 

the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 

(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-

ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-

nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 

between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 

(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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atoms (fluorine), one hexa-atomic heterocycle (pyrimidine), and nine hydrogen bond ac-

ceptors (three fluorine atoms, four nitrogens, two oxygens). Moreover, AMG-517 respects 

seven out of the eight criteria for descriptor threshold values, the only unsatisfied feature 

being the minimum sum of atom-type E-State for secondary nitrogens. Three of the estab-

lished criteria require the presence of at least two halogen atoms, at least one hexa-atomic 

heterocycle, and a minimum five hydrogen bond acceptors. 

Table 2. Molecular descriptors included in the classification models for antagonist prediction. 

Descriptor Meaning Threshold Sensitivity Specificity 
ROC 

AUC 

SssNH Sum of atom-type E-State: -NH- >2.962 0.681 0.689 0.743 

MDEN-22 
Molecular distance edge between all secondary 

nitrogens 
>0.454 0.678 0.685 0.735 

ETA_BetaP_s 
A measure of electronegative atom count of the 

molecule relative to molecular size 
>0.638 0.676 0.662 0.734 

nX Number of halogen atoms ≥2 0.641 0.730 0.727 

fragC Complexity of a system >172.070 0.682 0.669 0.724 

n6HeteroRing 
Number of six-membered rings containing het-

eroatoms 
at least 1 0.783 0.547 0.723 

nHBAcc2 

Number of hydrogen bond acceptors (any oxy-

gen; any nitrogen where the formal charge of 

the nitrogen is non-positive, except a non-aro-

matic nitrogen that is adjacent to an oxygen and 

aromatic ring, or an aromatic nitrogen with a 

hydrogen atom in a ring, or an aromatic nitro-

gen with three neighboring atoms in a ring, or a 

nitrogen with total bond order ≥4; any fluorine) 

>5 0.753 0.574 0.715 

maxHother 
Maximum atom-type H E-State: H on aromatic 

CH, =CH2 or =CH- 
>0.631 0.678 0.678 0.723 

In the case of TRPV1 agonists, it can be noted that active molecules have 0–3 hydroxyl 

groups in their molecules, logP values between 0.86 and 10.93, hybridization rations be-

tween 0 and 0.95, 0–3 halogen atoms, 0–5 nitrogen atoms, average molecular weight be-

tween 5.25 and 9.00, 0–22 atoms in the longest aliphatic chain, and between 3 and 21 atoms 

in the largest pi system. The established criteria for agonists classification were logP val-

ues above 3.023, hybridization ratios higher than 0.383, at least one hydroxyl group, at 

least 3 atoms in the longest aliphatic chain, the absence of halogen atoms, less than 10 

atoms in the largest pi system, less than 3 nitrogen atoms and an average molecular weight 

lower than 7.25. For instance, the well-known TRPV1 agonist capsaicin ((E)-N-[(4-hy-

droxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide) respected all the threshold cri-

teria, having a logP value of 3.983, a hybridization ratio of 0.5, one hydroxyl group, nine 

atoms in the longest aliphatic chain, no halogen atoms, eight atoms in the largest pi sys-

tem, one nitrogen atom, and an average molecular weight of 6.228 (Figure S5). 

Table 3. Molecular descriptors included in the classification models for agonist prediction. 

Descriptor Meaning Threshold Sensitivity Specificity 
ROC 

AUC 

XLogP Octanol/water partition coefficient >3.023 0.689 0.700 0.788 

HybRatio Fraction of sp3 carbons to sp2 carbons >0.383 0.689 0.719 0.762 

nsOH Count of atom-type E-State: -OH >0 0.736 0.762 0.761 

nAtomLAC Number of atoms in the longest aliphatic chain >2 0.668 0.754 0.758 
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nX Number of halogen atoms =0 0.855 0.702 0.806 

nAtomP Number of atoms in the largest pi system <10 0.627 0.918 0.825 

nN Number of nitrogen atoms <3 0.870 0.721 0.848 

AMW 
Average molecular weight (Molecular 

weight/Total number of atoms) 
<7.250 0.751 0.802 0.860 

Notably, neither AMG-517 nor capsaicin met any of the required criteria for being 

classified as the opposite type of active compound, and only one molecular descriptor was 

included in classification models of both agonists and antagonists (number of halogen 

atoms). The optimal number of required criteria for considering a molecule either an an-

tagonist or an agonist in our classification problem was established by calculating the per-

formance metrics (such as accuracy and ROC AUC) after varying the minimum number 

of satisfied molecular descriptor thresholds from three to eight. The performance metrics 

for each classification condition are shown in Figure 3. In the case of antagonists, it can be 

noted that the model accuracy decreased when the minimum number of required criteria 

is increased, while in the case of agonists the accuracy varies in proportion to the number 

of required criteria.  

 

Figure 3. Performance metrics for binary classification in relation to variation of the minimum num-

ber of satisfied criteria (molecular descriptor thresholds); (A) performance metrics for antagonist 

classification; (B) performance metrics for agonist classification. 

For classifying antagonists, the accuracy varied between 47.8 and 77.4%, while for 

agonist classification models the same parameter ranged between 72.5 and 95.8%. The 

classification model for predicting antagonists with the most optimal balance between 

sensitivity (0.724) and specificity (0.733) had a minimum number of five satisfied criteria, 

the accuracy of the model being 72.7%, showing an ROC AUC value of 0.729. On the other 

hand, the most balanced model for classifying agonists had a minimum required criteria 

of four satisfied descriptor thresholds, the model’s accuracy being 83.9%, showing sensi-

tivity and specificity values of 0.834 and 0.839, respectively and an ROC AUC of 0.837. 

Although the model that used a minimum number of five criteria had better accuracy 

(89.7%), the ROC AUC value was lower (0.819) and this classification model showed a 

higher preference for true negatives over true positives. 

3.4. Molecular Docking Simulations 

Molecular docking studies were carried out to estimate the binding affinities of po-

tential repurposing candidates and to investigate the predicted binding modes. Molecular 
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docking results were the third and final independent variable in the proposed repurpos-

ing predictive model. Two crystal structures were used in this study: activated TRPV1 

bound to agonist RTX and TRPV1 in a closed state bound to antagonist CPZ. Both quali-

tative and quantitative validations of the docking procedure were performed. First of all, 

the accuracy of binding mode predictions was assessed by docking the co-crystallized lig-

ands into the binding site and superposing the predicted conformation with the experi-

mentally determined ligand pose. The RMSD values calculated after superposition were 

1.1277 Å for CPZ and 1.2564 Å for RTX, showing low deviations from original confor-

mation and satisfying accuracy for pose prediction (Figure S6). Binding energies for the 

positive controls were −9.13 kcal/mol for CPZ and −11.55 kcal/mol for RTX, respectively. 

A second validation of the docking protocol was performed by assessing the capabil-

ity of the two TRPV1 conformations to discriminate against active and inactive ligands by 

analyzing the predicted binding energies or ligand efficiencies. Therefore, a selection of 

TRPV1 agonists (n = 194), antagonists (n = 222), inactive molecules (n = 488) and decoys (n 

= 500) were docked against the binding sites of active (PDB ID 7MZC) and inactive (PDB 

ID 5IS0) conformations of TRPV1. Molecular docking simulations on TRPV1 in closed 

conformation yielded binding energies ranging from −13.04 to −5.93 (−9.56 ± 1.096) 

kcal/mol for antagonists, −11.48 to −5.80 (−8.27 ± 1.260) kcal/mol for agonists, −11.05 to 

−3.39 (−8.12 ± 1.213) kcal/mol for inactive ligands and from −11.13 to −4.78 (−7.54 ± 1.171) 

for decoys. The differences in binding energies between antagonists and inactive mole-

cules, and between antagonists and decoys, were statistically different (p < 0.05, Student’s 

independent t-test). 

After docking on the open state receptor conformation, binding energies between 

−12.21 and −5.61 (−8.51 ± 1.412) kcal/mol were obtained for agonists, −12.15 and −5.62 

(−9.20 ± 0.934) kcal/mol for antagonists, −11.48 and −3.92 (−8.13 ± 1.187) kcal/mol for inac-

tive compounds and between −11.53 and −4.77 (−7.52 ± 1.088) kcal/mol for decoys. Alt-

hough statistically significant differences were observed between the binding energies of 

agonists and inactive molecules and between the docking scores of agonists and decoys 

(p < 0.05, independent t-test), the differences were not strong enough to discriminate well 

between agonists and experimentally determined inactives. Due to this inconvenience, a 

derived parameter was calculated in order to solve the issue of comparable docking scores 

between agonists and inactive ligands. Thus, the ligand efficiency-dependent lipophilicity 

index (LELP) was calculated for all the docked ligands, which is expressed as logP divided 

by ligand efficiency. Mean LELP values were obtained as follows: 13.44 for antagonists, 

18.90 for agonists, 9.40 for inactive molecules and 9.61 for decoys. Using LELP values, 

statistically significant differences were observed between agonists and inactive ligands 

and between agonists and decoys, respectively (p < 0.05).  

ROC curves were generated to assess the suitability of the docking procedure for 

discriminating between active and inactive ligands. In the first case, antagonists were la-

beled as positives and non-antagonists (agonists, inactive compounds and decoys) as neg-

atives after docking on the closed conformation of TRPV1. ROC AUC values of 0.852 were 

obtained after testing antagonists against inactive ligands, 0.894 against decoys, 0.779 

against agonists (Figure 4A) and 0.844 against all non-antagonists (Figure 4B). The same 

rationale was applied after docking on the open conformation, when agonists were treated 

as positives and non-agonists as negatives, LELP being used in this case instead of binding 

energy as a classifier. ROC AUC values were 0.868, 0.799 and 0.623 when testing agonists 

against inactive compounds, decoys and antagonists (Figure 4C), and 0.780 when testing 

against all non-agonists, respectively (Figure 4D). Thus, the best performance was ob-

served when inactive ligands were treated as negatives. Notably, the molecular docking 

experiment showed greater accuracies in predicting true antagonists than true agonists.  
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Figure 4. ROC curves showing prioritization of active ligands over inactive compounds and decoys. 

(A) Prioritization of antagonists over inactive compounds, decoys and agonists; (B) prioritization of 

antagonists over all non-antagonists; (C) prioritization of agonists over inactive compounds, decoys 

and antagonists; (D) prioritization of agonists over all non-agonists. 

3.5. Integrated Predictive Model Based on Neural Networks 

After establishing activity scores, the number of satisfied descriptor criteria, and 

binding affinities and efficacies for antagonists, agonists and inactive molecules, these 

data were integrated into one global predictive model in order to increase the predictive 

accuracy by adding weights to each of the aforementioned parameters. Since antagonist, 

agonist and inactive datasets are rather unbalanced, we generated the machine learning 

model using only the compounds that were selected for molecular docking, thus creating 

a more balanced training dataset. The machine learning algorithm that we selected for this 

task was the multilayer perceptron neural network since it also allows the prediction of 

multiple classes. The architecture with the most optimal parameters had the following 

characteristics: six input nodes (average activity scores and satisfied descriptor criteria for 

both antagonists and agonists, binding energies for antagonists, LELP values for agonists), 

one hidden layer with four neurons (which, in fact, represents the geometric mean be-

tween the number of input and output nodes) activated with tanh function, and the out-

put layer with three nodes corresponding to the probabilities for each of the three classes, 

generated with the softmax function. The most optimal values for the hyperparameters 

were 0.5 for initial learning rate, 0.7 for momentum and 25 for maximum number of 

epochs. 
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The chosen neural network correctly predicted 86.3% of inactive molecules, 86.2% of 

antagonists and 89.4% of antagonists in the training set, with an overall 86.9% prediction 

accuracy. Moreover, the trained model did not suffer from overfitting, since the algorithm 

correctly predicted 90.7% of the ligands from the test set: 89.7% of inactive compounds, 

90.0% of antagonists and 94.3% of agonists. The distribution of the predicted pseudo-prob-

abilities is shown in Figure 5A. The overall prediction accuracy was 88.8% for predicting 

inactive compounds, 92.04% for antagonists and 93.70% for agonists, the model showing 

better accuracies for correctly predicting agonists and antagonists (Table 4). ROC AUC 

values were 0.957 for classifying inactive ligands, 0.972 for antagonists and 0.980 for ago-

nists (Figure 5B). The generated classification model showed higher values for specificity 

over sensitivity, and thus the algorithm identifies true negatives relatively more accu-

rately than true positives. 

 

Figure 5. (A) Estimated pseudo-probabilities for experimentally determined TRPV1 antagonist, ag-

onists and inactive molecules after applying the MLP NN algorithm; (B) ROC curves for classifying 

TRPV1 antagonists, agonists and inactive molecules; (C) importance metrics for independent vari-

ables used in the multi-class classification model; Crit-ANT—number of satisfied molecular de-

scriptor criteria for predicting antagonists, Crit-AG—number of satisfied molecular descriptor cri-

teria for predicting agonists. 
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Table 4. Performance metrics for the multi-class neural network. 

 Class 

Parameter Inactive Antagonist Agonist 

Accuracy 0.888 0.920 0.937 

Sensitivity 0.867 0.851 0.876 

Specificity 0.913 0.943 0.954 

ROC AUC 0.957 0.972 0.980 

F1 score 0.893 0.840 0.856 

The independent variables with the highest importance in predicting the three clas-

ses were average activity scores for antagonists and agonists, followed by binding energy 

and LELP, while the numbers of satisfied molecular descriptor criteria for antagonists and 

agonists had the lowest weights (Figure 5C).  

3.6. Prediction of Potential TRPV1 Modulators through Drug Repurposing 

The 1981 approved drugs retrieved from the DrugBank database were subjected to 

the virtual screening protocol to identify potentially new TRPV1 modulators. Firstly, 

graph mining techniques were used with DataWarrior software to append appropriate 

activity scores for the repurposing molecules. Then, scaffold analysis and flexophore sim-

ilarity search were performed to retrieve Bemis–Murcko, plain rings and cluster similarity 

scores for approved drugs that had similar structural features with experimentally deter-

mined TRPV1 antagonists, agonists and inactive molecules. After performing the analysis, 

average activity scores varied between 0 and 6.23 (1.42 ± 1.151) for predicting antagonists 

and between 0 and 4.40 (0.41 ± 0.549) for predicting agonists. Only five compounds had 

higher activity scores than the mean score of antagonists (5.79) and only one drug showed 

a higher activity score than the mean value for agonists (3.01). 

Among the screened compounds, 686 (34.6%) have in their structure Bemis–Murcko 

skeletons present among TRPV1 antagonists, and 725 (36.6%) molecules have BM skele-

tons observed within agonists. A total of 1348 (68%) compounds contain plain rings con-

tained by structures of antagonists, and 1406 (80%) drugs contain plain rings commonly 

found within agonists, which denotes that agonists contain aromatic or non-aromatic 

rings that are not highly specific to TRPV1 agonistic activity. After performing the simi-

larity search based on flexophore descriptors, we found that 333 (16.8%) and 146 (7.4%) 

approved drugs shared structural similarities higher than 0.8 with antagonists and ago-

nists, respectively. 

Furthermore, 1D and 2D molecular descriptors were generated for marketed drugs 

to establish the number of relevant molecular features that are shared with known TRPV1 

ligands. We previously showed that a compound should satisfy at least five antagonist-

specific molecular descriptor criteria to be classified as an antagonist and at least four ag-

onist-specific criteria to be considered an agonist, with a good balance between sensitivity 

and specificity. After applying the thresholds for the 16 chosen molecular descriptors, 315 

(15.9%) molecules satisfied the condition of being classified as antagonists, and 1121 

(56.6%) compounds met the criteria for being considered potential agonists. These results 

hinted toward the fact that the minimum required number of descriptor criteria for clas-

sifying agonists is too permissive. On another note, we observed while training the neural 

networks that the machine learning algorithm performed more accurately when we used 

the total number of the satisfied descriptor criteria instead of the binary categorical values 

(1 for active antagonist or agonist, 0 for inactive) as classifiers. The last two observations 

led to the treatment of the molecular descriptor-derived property as an ordinal independ-

ent variable, rather than dichotomous.  

Molecular docking experiments were carried out to estimate binding energies after 

predicting the interaction with a closed-state conformation of TRPV1, and the ligand effi-

ciency-dependent lipophilicity index after simulating interactions with the agonist-bound 
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conformation of the ion channel. Among the screened drugs, 79 (4%) molecules showed 

lower binding energies than the mean value for TRPV1 antagonists (−9.56 kcal/mol) after 

docking into the antagonist-specific binding site. After simulating the interactions with 

the agonist-specific conformation of the binding site, 276 (13.9%) compounds had lower 

energies than the mean value for agonists (−8.51 kcal/mol), and 147 (7.4%) showed LELP 

values higher than the mean for agonists (18.90). 

The distribution of the established input variables for class prediction is depicted in 

Figure S7. As observed, only the number of satisfied descriptor criteria for predicting ag-

onists, predicted binding energies and calculated LELP followed normal distributions 

among the screened drugs. 

The independent variables that were determined after performing the prerequisite 

screening were fed into the validated neural network. The distribution of the estimated 

probabilities corresponding to each of the predicted classes yielded after applying the in-

tegrated machine learning model is illustrated in Figure 6A. The implemented model pre-

dicted 1112 (56.1%) compounds as inactive molecules, 258 (13%) as potential antagonists 

and 572 (28.9%) as potential agonists, if a 50% probability threshold was applied for being 

considered a positive. Moreover, 116 (5.9%) drugs from the predicted antagonist class and 

210 (10.6%) from the predicted agonist class showed probabilities over 90%. 

 

Figure 6. (A) Distribution of multi-class predicted probabilities using neural networks; (B–D) pro-

posed drug repurposing candidates predicted as TRPV1 antagonists; (E) proposed drug repurpos-

ing candidate predicted as TRPV1 agonists. 

The top 10 (0.5%) predicted antagonists ranked by probabilities and their established 

pharmacological activity are shown in Table 5, while the top 10 predicted agonists are 

shown in Table 6. Approved drugs with high probabilities of being active antagonists are 

very structurally and pharmacologically diverse. For instance, the top 10 predicted antag-

onists have entirely different therapeutic indications and had calculated probabilities over 

95%. The top three potential antagonists were repaglinide (antihyperglycemic agent, ATP-

dependent potassium channel blocker), telmisartan (antihypertensive, angiotensin II re-

ceptor blocker) and tafenoquine (antimalarial agent). 

Table 5. Top 0.5% predicted TRPV1 antagonists ranked by estimated probability. 

Rank 
DrugBank 

ID 
Generic Name Pharmacological Class Score-ANT Crit-ANT 

ΔG 

(kcal/mol) 

Probability 

(ANT) 

1 DB00912 Repaglinide antidiabetic (meglinide) 5.42 3 −7.78 0.9759 

2 DB00966 Telmisartan 
antihypertensive (angiotensin II recep-

tor antagonist) 
4.29 2 −9.20 0.9730 

3 DB06608 Tafenoquine antiparasitic 4.66 5 −7.53 0.9718 

4 DB00836 Loperamide antidiarrheals (opioid agonist) 3.80 2 −8.59 0.9703 
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5 DB09056 Amorolfine antifungal 4.74 1 −8.42 0.9703 

6 DB08820 Ivacaftor CFTR potentiator 3.74 3 −9.34 0.9695 

7 DB14677 Gestonorone caproate progestin medication 4.48 1 −7.15 0.9694 

8 DB08976 Floctafenine NSAID 4.56 5 −7.48 0.9692 

9 DB00354 Buclizine antiallergic (H1 receptor antagonist) 3.70 2 −8.21 0.9680 

10 DB06202 Lasofoxifene selective ER modulator 3.91 1 −7.94 0.9678 

Crit-ANT—number of satisfied molecular descriptor criteria for predicting antagonists. 

Some of the drugs with high predicted probabilities for acting as TRPV1 agonists 

were adrenergic receptor modulators, either sympathomimetics (e.g., protokylol, ephed-

rine, etilephrine and formoterol) or β-blockers (e.g., bisoprolol, esmolol, practolol, celipro-

lol, sotalol and labetalol), indicating that these molecules share common features with 

TRPV1 agonists. However, timolol, nadolol, carteolol and prazosin were predicted as po-

tential antagonists. Lidocaine and other local anesthetics (e.g., butacaine, prilocaine, ox-

etacaine and procaine) were also identified as potential agonists. Calcitriol (active form of 

vitamin D) showed the highest probability of exerting TRPV1 agonist activity. Moreover, 

vitamin A and its derivatives (alitretinoin, isotretinoin) were identified among the top 10 

potential agonists. Most of these compounds have high lipophilicity, which is a common 

property for TRPV1 agonists as seen from molecular descriptor analysis and LELP values. 

Table 6. Top 0.5% predicted TRPV1 agonists ranked by estimated probability. 

Rank 
DrugBank 

ID 
Generic Name Pharmacological Class Score-AG Crit-AG 

ΔG 

(kcal/mol) 
LELP 

Probability 

(AG) 

1 DB00136 Calcitriol active form of vitamin D 2.92 8 −8.27 21.65 0.9416 

2 DB06814 Protokylol adrenergic β2 receptor agonist 2.76 6 −8.71 5.52 0.9412 

3 DB00523 Alitretinoin retinoid (antineoplastic agents) 2.07 6 −7.29 17.56 0.9405 

4 DB01597 Cilastatin dipeptidase inhibitor 2.62 5 −7.29 −2.76 0.9389 

5 DB01187 Iophendylate radiocontrast agent 1.24 5 −6.66 21.40 0.9387 

6 DB00162 Vitamin A retinoid 2.07 7 −8.26 15.68 0.9384 

7 DB00982 Isotretinoin retinoid (anti-acne agent) 2.07 6 −8.79 14.56 0.9375 

8 DB11570 Padimate O sunscreen agent 1.60 6 −7.01 12.46 0.9374 

9 DB04822 Oxeladin antitussive agent 1.24 7 −6.59 13.55 0.9372 

10 DB11594 Domiphen antiseptic 1.24 7 −6.31 12.55 0.9368 

Crit-AG—number of satisfied molecular descriptor criteria for predicting agonists; ligand effi-

ciency-dependent lipophilicity index. 

The most promising candidates for repurposing as TRPV1 modulators with pharma-

cotherapeutic utility in pain relief were chosen based on three criteria: high probability of 

being active, favorable interactions with relevant residues within the binding site of 

TRPV1 and acceptable safety profiles. Therefore, three potential antagonists (repaglinide, 

telmisartan and agomelatine) and one potential agonist (protokylol) were proposed as re-

positioning candidates and were discussed in further detail (Figure 6B–E). 

Repaglinide, an antidiabetic drug acting as a blocker of ATP-dependent potassium 

channels [54], showed the highest probability of blocking TRPV1 and had an average ac-

tivity score of 5.42, its structure being characterized by a BM-24 skeleton (2-(4-cyclohexyl-

butyl)-1,1′-bi(cyclohexane)). Moreover, repaglinide contains in its molecule two phenyl 

rings (PR-1) and a piperidine scaffold (PR-5), both being present in structures of TRPV1 

antagonists. Repaglinide also has a flexophore similarity of 87% with TRPV1 antagonist 

CHEMBL1779679. Furthermore, repaglinide satisfied three out of eight proposed molec-

ular descriptor criteria, having in its molecule one secondary nitrogen, one hexa-atomic 

ring containing heteroatoms and six hydrogen bond acceptors. Telmisartan, an antihyper-

tensive agent that blocks angiotensin II receptors [55] showed an average activity score of 

4.29, having also the second highest predicted probability of blocking TRPV1. Its structure 

contained no antagonist-specific BM scaffold, but the benzodiazole (PR-21) and benzene 
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(PR-1) rings had high contributions to the overall score. Moreover, telmisartan had a flex-

ophore similarity of 80.5% with TRPV1 antagonist CHEMBL3961718. Telmisartan satis-

fied only two molecular descriptor criteria, the measure of electronegative atom count 

relative to molecular size and molecular complexity. Another interesting potential TRPV1 

antagonist was agomelatine, a melatonin naphthalene analog used to treat depressive dis-

orders [56], which had an estimated probability of binding to the channel of 80.25%. This 

atypical antidepressant had an average activity score of 4.00, its structure being derived 

from the decahydronaphthalene BM skeleton (BM-90) or naphthalene scaffold (PR-16), 

which are present among potent TRPV1 antagonists. Agomelatine had 83.1% flexophore 

similarity with TRPV1 antagonist CHEMBL400371. In fact, the discovered flexophore sim-

ilarity pair is characterized by strikingly similar structures, since the two molecules share 

a large structural fragment ((7-methoxynaphthalen-1-yl)ethyl), while the acetamide moi-

ety from agomelatine is replaced with (trifluoromethoxy)benzamide in the TRPV1 antag-

onist. Although agomelatine contains a secondary nitrogen, its structure did not satisfy 

any molecular descriptor criteria for antagonists.  

Bronchodilator protokylol [57] showed the second highest estimated probability for 

acting as a TRPV1 agonist. Protokylol had an average activity score of 2.76, its molecule 

containing the 5-(5-cyclohexylpentyl)-octahydro-1H-indene BM skeleton (BM-126), repre-

sented by the benzene (PR-1) and benzodioxole (PR-44) plain rings, these structural fea-

tures being also present among TRPV1 agonists. A flexophore similarity match of 87.8% 

was observed between protokylol and nylidrin. Nylidrin (buphenine) is a β2-adrenore-

ceptor agonist acting as a vasodilator (withdrawn for lack of effectiveness) [58], which has 

15.85 µm potency for TRPV1 agonist activity (pEC50 = 4.8 M), the result being declared 

inconclusive in the ChEMBL database. Protokylol met six out of eight molecular de-

scriptor criteria for acting as a TRPV1 agonist, the only violated thresholds being for XlogP 

and hybridization ratio. 

Repaglinide, telmisartan and agomelatine had binding energies after docking into 

the antagonist-specific conformation of the vanilloid pocket of −7.78, −9.20 and −7.69 

kcal/mol, respectively. The predicted conformations of the three potential antagonists 

were not highly torsioned, while repaglinide and agomelatine adopted spatial orienta-

tions similar to antagonist CPZ (Figure 7). All three ligands formed hydrogen bonds or 

carbon–hydrogen bonds with Thr550, located in the loop between TM4 and 5, which was 

shown to be a key residue for TRPV1 modulation [32,33]. Moreover, agomelatine forms a 

hydrogen bond with Ser512 from the loop connecting TM2 and TM3, while repaglinide 

forms a hydrogen bond and a salt bridge with Arg557, a residue that is relevant for CPZ 

antagonist activity. For instance, CPZ forms hydrogen bonds with Thr550, Ser512 and 

Arg557. Multiple non-polar interactions were also observed between the docked ligands 

and residues within the vanilloid binding pocket, the docked ligands showing high po-

tential for blocking the TRPV1 channel by acting on the CPZ binding site. On the other 

hand, the structure of telmisartan lacks a vanillyl head analogous scaffold and therefore 

did not bind as deep into the vanilloid pocket as other ligands. 

Protokylol showed a predicted binding energy of −8.27 kcal/mol after simulating the 

interaction with the agonist-bound conformation of the TRPV1 active site, the calculated 

LELP being 5.52. Similar to the other analyzed ligands, protokylol fit very well within the 

binding cavity (Figure 8A), showing similar orientations with known TRPV1 ligands. 

Protokylol formed three hydrogen bonds with Thr550, Asn551 and Ala566 and multiple 

non-polar pi-alkyl interactions with other residues (Figure 8B). Interestingly, after analyz-

ing the third predicted conformation, we found that protokylol could potentially bind to 

the phosphoinositides-specific binding site (−7.52 kcal/mol, Figure 8C,D). This binding 

site overlaps with the vanilloid binding pocket and can inhibit capsaicin-induced activa-

tion of TRPV1 [59]. Protokylol formed a salt bridge and a pi-anion interaction with Asp707 

and a pi-sigma interaction with Ile703, residues that were shown to be essential for TRPV1 

modulation by phosphoinositides [59]. Additionally, the protonated secondary amine 
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moiety also interacted with Glu513 through attractive charges. Moreover, three hydrogen 

bonds and one carbon–hydrogen bond were formed with other residues. 

 

Figure 7. Predicted molecular interactions between potential antagonists and TRPV1 vanilloid bind-

ing site. (A) Conformation of the predicted repaglinide–TRPV1 complex; (B) 2D interaction diagram 

for the predicted repaglinide-TRPV1 complex; (C) conformation of the predicted telmisartan–

TRPV1 complex; (D) 2D interaction diagram for the predicted telmisartan–TRPV1 complex; (E) con-

formation of the predicted agomelatine–TRPV1 complex; (F) 2D interaction diagram for the pre-

dicted agomelatine–TRPV1 complex; van der Waals contacts were not displayed for simplicity. 
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Figure 8. Predicted molecular interactions between protokylol and different overlapping TRPV1 

binding sites. (A) Conformation of the predicted protokylol–TRPV1 complex after binding to the 

vanilloid site; (B) 2D interaction diagram for the predicted protokylol–TRPV1 complex after binding 

to the vanilloid site; (C) conformation of the predicted protokylol–TRPV1 complex after binding to 

the phosphoinositides site (fragment of RTX bound to the vanilloid pocket is depicted in blue); (D) 

2D interaction diagram for the predicted protokylol–TRPV1 complex after binding to the phospho-

inositides site; van der Waals contacts were not displayed for simplicity. 

4. Discussion 

The ligand-dependent cation channel TRPV1 is a promising target for managing var-

ious types of pain disorders [3]. In recent years, an increasing number of studies have 

focused on discovering TRPV1 antagonists and agonists/desensitizers as therapeutic so-

lutions for chronic, neuropathic and inflammatory pain, but also for migraine and cluster 

headache [8,19,60]. Unfortunately, the approval of TRPV1 antagonists is hindered due to 

severe side effects observed in clinical trials, such as hyperthermia. However, the discov-

ery of novel TRPV1 modulators with therapeutic utility in pain conditions can be acceler-
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ated by channeling efforts into drug repurposing approaches, including consecrated com-

puter-aided drug discovery methods. Drug repositioning strategies are advantageous due 

to the significantly lower human, financial and temporal resources required for discover-

ing new therapies for diseases that lack optimal therapeutic options, by identifying new 

pharmacological actions for marketed drugs with well-established pharmaco-toxicologi-

cal profiles [36] 

In our study, we focused on implementing an in silico drug repurposing framework 

aimed at predicting novel TRPV1 antagonists and agonists/desensitizers with analgesic 

activity. The predictive model was developed to discriminate between TRPV1 antagonists 

and agonists since virtual screening approaches can lead to discovering ligands with ac-

tivity types opposite to the predicted outcome. For instance, in a previous work, we iden-

tified febuxostat (xanthine oxidase inhibitor) as a potential TRPA1 antagonist [48], which 

was proven thereafter to act as a weak TRPA1 agonist [61]. Both ligand-based and struc-

ture-based approaches were applied to generate a set of variables that were further used 

to develop an artificial intelligence algorithm based on neural networks aimed at predict-

ing the probabilities of tested molecules behaving as TRPV1 antagonists, agonists/desen-

sitizers, or being classified as inactive. Artificial neural networks were chosen as an end-

point predictive model due to their increasing usefulness in drug discovery campaigns. 

However, neural networks are often elusive in terms of comprehensibility of nonlinear 

relationships between chemical structural features and biological activity, and other au-

thors have suggested that predictive accuracy could be sacrificed in favor of highly inter-

pretable models [62].  

Foremost, this paper presents our strategy for implementing a relative sense of line-

arity in characterizing the relationships between the physicochemical and structural prop-

erties of TRPV1 modulators and the biological outcome. In this regard, activity scores 

based on biological activity measures were assigned to structural scaffolds of known 

TRPV1 active and inactive molecules, such as Bemis–Murcko skeletons and plain rings, to 

transform the building blocks present within molecules of active TRPV1 modulators into 

continuous variables. Therefore, structural scaffolds that yield highly potent TRPV1 lig-

ands were identified. For instance, one such substructure was the pyrido[2,3-d]pyrimi-

dine heterocycle, which is considered a privileged scaffold that can provide compounds 

with diverse pharmacotherapeutic indications (e.g., antihypertensive, antidiabetic and an-

titumor agents) [63]. Further, structural flexibility and pharmacophoric characteristics 

were also transformed, by assigning activity scores based on clustering using a flexophore 

descriptors similarity threshold of 80%. The calculated average activity score was proven 

highly accurate in discriminating between active and inactive molecules. 

Several molecular descriptors were chosen for our predictive model by analyzing 

ROC curves and relevance in characterizing TRPV1 ligands. In this case, we established a 

set of rules defined as certain thresholds for descriptor values that should be respected to 

confer antagonist or agonist activity on TRPV1 receptors. Hence, an ordinal categorical 

variable was defined, which illustrates the number of such criteria satisfied by each mol-

ecule (from three to eight). The classification model based on these rules was proven to be 

more accurate in correctly classifying known agonists than antagonists since the antago-

nist dataset is considerably more structurally diverse. However, the models generated for 

classifying agonists had a relatively lower F1 score (weighted average of precision and 

recall), possibly due to a more unbalanced dataset (agonists/non-agonists ratio of 1:17). 

This issue was further addressed in the process of training the neural networks, by prun-

ing the antagonists and inactives datasets based on chemical similarity, yielding a training 

dataset consisting of an approximately 1:1:2 ratio of agonist/antagonist/inactive com-

pounds. 

Molecular docking simulations were carried out using agonist- and antagonist-

bound TRPV1 channel conformations. The docking procedure was more successful in 

classifying antagonists. The resulting binding energies and LELP values were further used 

as variables in training the neural networks.  
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Independent variables obtained from the scaffold and flexophore analysis estab-

lished molecular descriptors criteria and molecular docking screening were used to train 

the machine learning model. The developed multilayer perceptron neural network algo-

rithm showed higher accuracies in correctly predicting antagonists and agonists than in-

active molecules. On the other hand, specificity values were considerably higher for all 

three classes. These observations translate into the fact that the proposed model behaves 

more accurately when assigning molecules to antagonist and agonist classes, while there 

is a smaller chance that the algorithm would predict false positives. The neural network 

architecture also attenuated the modest predictive performances of molecular descriptors 

and docking on agonist-specific conformation by assigning lower weights to the variables 

described as the number of satisfied descriptor criteria and LELP. 

The dataset containing the approved drugs retrieved from the DrugBank database 

was subjected to the same analysis as TRPV1 ligands in order to predict probabilities of 

acting on the TRPV1 receptor by using the developed neural network. As observed in 

many drug discovery campaigns, docking scores alone do not often yield remarkably high 

success rates in discovering true positives [53] or appropriate repurposing candidates. For 

instance, among the top 1% (20) molecules ranked by predicted binding affinities, only 6 

showed antagonist activity probabilities higher than 0.5. Moreover, antitumoral tyrosine 

kinase inhibitors (nilotinib, sorafenib, capmatinib and imatinib) were noticed among the 

top-scoring drugs ranked by binding affinity, which cannot be repurposed as analgesics 

due to high toxicities. Interestingly, despite having a very high predicted binding affinity 

to TRPV1 (−10.52 kcal/mol), paliperidone was predicted as inactive, which is in concord-

ance with previously published molecular biology studies that assessed the interaction 

with TRPV1 activity [61]. Overall, the screened compounds with a high probability of act-

ing as TRPV1 antagonists are highly pharmacologically diverse. The first two molecules 

ranked by TRPV1 inhibition probability were the antidiabetic repaglinide and the antihy-

pertensive telmisartan. 

Binding pose analysis of repaglinide revealed its potential to competitively block the 

vanilloid binding site of TRPV1. Moreover, our analysis showed that repaglinide shares 

relevant structural features with certain TRPV1 antagonists. To the best of our knowledge, 

there are no available preclinical studies that analyzed the analgesic potential of rep-

aglinide. Frequent adverse reactions such as hypoglycemia and weight gain associated 

with repaglinide treatment [64] indicate that its use as an analgesic agent might be limited 

to patients suffering from diabetic neuropathy.  

The analgesic and anti-inflammatory effects of telmisartan have been evaluated in 

preclinical studies of different types of neuropathic pain [65–68]. The main mechanism 

underlying these effects is partial activation of PPAR-γ receptors [65,66,68], but according 

to one study, telmisartan reduced thermal and mechanical hypersensitivity by inhibiting 

CYP2J2 [67]. In addition, Sisignano et al. used electrophysiological measurements and cal-

cium-imaging experiments to investigate the possibility of interaction between telmisar-

tan and the TRPV1 channel and did not observe an effect of the substance on TRVP1-

dependent calcium transients or inward currents [67]. Considering these findings, 

telmisartan can be considered as a false positive discovered by our algorithm as a potential 

TRPV1 antagonist. The lack of telmisartan activity on TRPV1 could be explained by the 

molecular docking results. Unlike other ligands, telmisartan lacks a vanilloid-like head 

substructure and therefore its conformation cannot fit as well into the vanilloid pocket. 

Another interesting compound that was predicted as a TRPV1 antagonist was 

agomelatine, a naphthalene analog of melatonin. Agomelatine fits satisfyingly into the 

vanilloid binding pocket, and it shares a high similarity with a TRPV1 antagonist, the me-

thyl radical within the acetamide moiety being replaced with the trifluoromethoxy-me-

thyl substructure in the known antagonist. Interestingly, melatonin was shown to regulate 

intracellular calcium influx, possibly by inhibiting the TRPV1 channel [69]. Since 

agomelatine is an analog that acts as an agonist of the melatoninergic receptors MT1 and 

MT2 [70], other studies investigated whether agomelatine shows a melatonin-like effect 
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on TRPV1 receptor signaling, but direct interaction with the channel was not demon-

strated, since no direct and specific experiments were performed to assess the binding of 

agomelatine to TRPV1 receptor [71]. The role of agomelatine in pain is supported by few 

preclinical studies [72,73]. In this regard, it has been observed that in various animal mod-

els of neuropathic pain (e.g., induced by streptozotocin, oxaliplatin or chronic constriction 

nerve injury), agomelatine ameliorated pain-associated hypersensitivity [73]. 5-HT2C and 

MT2 receptors are involved in pain modulation [74–77]. Researchers believe that the anal-

gesic effect of agomelatine is due to its action on these receptors (agonist on melato-

ninergic receptor and antagonist on the 5-HT2C receptor) [73]. Agomelatine has an optimal 

safety profile, with few side effects (such as dizziness, nausea, diarrhea and dry mouth) 

occurring especially early in the treatment [78]. 

Calcitriol, the active form of vitamin D, had the highest probability of acting as a 

TRPV1 agonist. Moreover, a recently published study revealed that vitamin D acts as a 

partial agonist of the TRPV1 channel, this discovery being in line with our prediction [79]. 

Protokylol, a β2-adrenergic agonist used as a bronchodilator [57] emerged as a com-

pound with the second highest probability of exerting agonist activity on TRPV1. Two 

different, overlapping binding sites were observed for protokylol, one specific to vanil-

loids and competitive antagonists and another for phosphoinositides [59]. Protokylol 

formed favorable interactions with relevant amino acid residues within both binding sites. 

Therefore, protokylol could potentially show analgesic activity either by desensitizing 

TRPV1 through interaction with the vanilloid binding site or by inhibiting the channel 

through allosteric modulation, similar to phosphoinositides [59]. No preclinical studies 

regarding the analgesic potential of protokylol are available. The main side effects of beta-

adrenergic agonists such as protokylol are mild tachycardia, tremor or metabolic effects 

[80]. Moreover, other adrenergic receptor modulators (bisoprolol, esmolol, practolol, 

celiprolol, sotalol and labetalol) were also identified by the repurposing algorithm as po-

tential TRPV1 agonists. A previous study revealed that catecholamines can upregulate 

TRPV1 activity in cultured neurons, but no direct interactions between adrenergic modu-

lators and TRPV1 receptor were studied [81]. 

Due to their optimal predicted binding into TRPV1 active sites and high estimated 

probabilities of being active ligands, we propose repaglinide and agomelatine as potential 

TRPV1 antagonists and protokylol as a potential TRPV1 agonist/desensitizer. Further 

studies are required to experimentally evaluate the interactions between the proposed 

molecules and TRPV1 and to investigate their activity in various animal models of pain-

related disorders. 

5. Conclusions 

An in silico drug repurposing framework was established using ligand-based, struc-

ture-based and machine learning approaches for identifying novel TRPV1 modulators. 

After screening the approved drugs with the validated algorithm, repaglinide (antidia-

betic) and agomelatine (antidepressant) emerged as potential TRPV1 antagonists, and 

protokylol (bronchodilator) as an agonist. Further studies are required to confirm the pre-

dicted activity on TRPV1 and to assess the candidates’ efficacy in alleviating pain. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/pharmaceutics14122563/s1, Figure S1: (A) Relationship be-

tween BM scores for predicting antagonists and agonists; (B) relationship between PR scores for 

predicting antagonists and agonists; (C) relationship between SC scores for predicting antagonists 

and agonists (representative structures are highlighted); (D) map of structure similarity relation-

ships based on flexophores for TRPV1 antagonists (class 1), agonists (class 2) and inactive molecules 

(class 0); Figure S2: Box plots representing activity scores established based on structural features 

for both antagonists and agonists. (A) Bemis-Murcko activity scores for predicting antagonists 

(BMS-ANT); (B) Bemis-Murcko activity scores for predicting agonists (BMS-AG); (C) plain rings 

activity scores for predicting antagonists (PRS-ANT); (D) plain rings activity scores for predicting 

agonists (PRS-AG); (E) flexophore similarity cluster activity scores for predicting antagonists (SCS-
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ANT); (F) flexophore similarity cluster activity scores for predicting agonists (SCS-AG); (G) average 

activity scores for predicting antagonists (Score-ANT); (H) average activity scores for predicting 

agonists (Score-AG); Figure S3: ROC curves showing predictive capacity of average activity scores. 

(A) activity scores for predicting antagonists (Score-ANT); (B) activity scores for predicting agonists 

(Score-AG); Figure S4: ROC curves showing discriminant capacity of each selected descriptor. (A) 

descriptors included for antagonists classification (larger values indicate more positive test result); 

(B) descriptors included for agonists classification, with higher values indicating more positive test 

result; (C) descriptors included for agonists classification, with lower values indicating more posi-

tive test result; Figure S5: Chemical structures of TRPV1 antagonist AMG-517 and TRPV1 agonist 

capsaicin; Figure S6: Validation of binding pose prediction. (A) superposition between predicted 

(purple) and experimental (green) conformations for CPZ; (B) superposition between predicted 

(purple) and experimental (green) conformations for RTX; Figure S7: Distribution of input variables 

established for approved drugs (DrugBank). (A) distribution of average activity scores for predict-

ing antagonists (Score-ANT); (B) distribution of number of satisfied molecular descriptor criteria for 

predicting antagonists (Crit-ANT); (C) distribution of binding energies for predicting antagonists 

(ΔG); (D) distribution of average activity scores for predicting agonists (Score-AG); (E) distribution 

of number of satisfied molecular descriptor criteria for predicting agonists (Crit-AG); (F) distribu-

tion of calculated LELP values for predicting antagonists. 

Author Contributions: Conceptualization, C.A., D.P.M., A.Z., G.M.N. and S.N.; data curation, C.A. 

and D.P.M.; investigation, C.A. and A.Z.; methodology, D.P.M. and G.M.N.; supervision, S.N.; val-

idation, A.Z. and G.M.N.; visualization, S.N.; writing—original draft, C.A., D.P.M. and A.Z.; writ-

ing—review and editing, G.M.N. and S.N. All authors have read and agreed to the published ver-

sion of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: The data presented in this study are available on request from the 

corresponding authors. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Finnerup, N.B.; Scholz, J.; First, M.B.; Barke, A.; Cohen, M.; Smith, B.H.; Aziz, Q.; Kaasa, S.; Vlaeyen, J.W.S.; Bennett, M.I.; et al. 

Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases 

(ICD-11) Rolf-Detlef. Pain 2018, 160, 19–27. 

2. Szallasi, A.; Sheta, M. Targeting TRPV1 for pain relief: Limits, losers and laurels. Expert Opin. Investig. Drugs 2012, 21, 1351–

1369. 

3. Iftinca, M.; Defaye, M.; Altier, C. TRPV1-Targeted Drugs in Development for Human Pain Conditions. Drugs 2021, 81, 7–27. 

4. Harbaugh, C.M.; Suwanabol, P.A. Optimizing Pain Control During the Opioid Epidemic. Surg. Clin. N. Am. 2019, 99, 867–883. 

5. Domenichiello, A.F.; Ramsden, C.E. The silent epidemic of chronic pain in older adults. Prog. Neuro-Psychopharmacol. Biol. 

Psychiatry 2019, 93, 284–290. 

6. Szolcsányi, J.; Sándor, Z. Multisteric TRPV1 nocisensor: A target for analgesics. Trends Pharmacol. Sci. 2012, 33, 646–655. 

7. Kym, P.R.; Kort, M.E.; Hutchins, C.W. Analgesic potential of TRPV1 antagonists. Biochem. Pharmacol. 2009, 78, 211–216. 

8. Trevisani, M.; Szallasi, A. Targeting TRPV1: Challenges and Issues in Pain Management. Open Drug Discov. J. 2010, 2, 37–49. 

9. Premkumar, L.; Sikand, P. TRPV1: A Target for Next Generation Analgesics. Curr. Neuropharmacol. 2008, 6, 151–163. 

10. Szallasi, A.; Cruz, F.; Geppetti, P. TRPV1: A therapeutic target for novel analgesic drugs? Trends Mol. Med. 2006, 12, 545–554. 

11. Gunthorpe, M.J.; Chizh, B.A. Clinical development of TRPV1 antagonists: Targeting a pivotal point in the pain pathway. Drug 

Discov. Today 2009, 14, 56–67. 

12. Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated 

ion channel in the pain pathway. Nature 1997, 389, 816–824. 

13. Leong, M.S.; Copenhaver, D. Potent Neurotoxins for Cancer Pain Treatment, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; 

ISBN 9780128053539. 

14. Pethö, G.; Izydorczyk, I.; Reeh, P.W. Effects of TRPV1 receptor antagonists on stimulated iCGRP release from isolated skin of 

rats and TRPV1 mutant mice. Pain 2004, 109, 284–290. 

15. Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, 

K.; et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405, 183–187. 

16. Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Martin, W.J.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, 

D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 306–313. 

17. Palazzo, E.; de Novellis, V.; Marabese, I.; Cuomo, D.; Rossi, F.; Berrino, L.; Rossi, F.; Maione, S. Interaction between vanilloid 

and glutamate receptors in the central modulation of nociception. Eur. J. Pharmacol. 2002, 439, 69–75. 



Pharmaceutics 2022, 14, 2563 25 of 27 
 

 

18. Fattori, V.; Hohmann, M.S.N.; Rossaneis, A.C.; Pinho-Ribeiro, F.A.; Verri, W.A. Capsaicin: Current Understanding of Its 

Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses. Molecules 2016, 21, 844 

19. Wong, G.Y.; Gavva, N.R. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: Recent 

advances and setbacks. Brain Res. Rev. 2009, 60, 267–277. 

20. Anand, P.; Bley, K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-

concentration capsaicin 8 patch. Br. J. Anaesth. 2011, 107, 490–502. 

21. Smutzer, G.; Jacob, J.C.; Tran, J.T.; Shah, D.I.; Gambhir, S.; Devassy, R.K.; Tran, E.B.; Hoang, B.T.; McCune, J.F. Detection and 

modulation of capsaicin perception in the human oral cavity. Physiol. Behav. 2018, 194, 120–131. 

22. Kissin, I.; Bright, C.A.; Bradley, E.L. Selective and long-lasting neural blockade with resiniferatoxin prevents inflammatory pain 

hypersensitivity. Anesth. Analg. 2002, 94, 1253–1258. 

23. Honore, P.; Wismer, C.T.; Mikusa, J.; Zhu, C.Z.; Zhong, C.; Gauvin, D.M.; Gomtsyan, A.; El Kouhen, R.; Lee, C.H.; Marsh, K.; et 

al. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor 

antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther. 2005, 

314, 410–421. 

24. Pomonis, J.D.; Harrison, J.E.; Mark, L.; Bristol, D.R.; Valenzano, K.J.; Walker, K. N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-

2-yl)tetrahydropyrazine -1(2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic 

properties: II. in vivo characterization in rat models of inflammatory and neuropath. J. Pharmacol. Exp. Ther. 2003, 306, 387–393. 

25. Yu, L.; Yang, F.; Luo, H.; Liu, F.Y.; Han, J.S.; Xing, G.G.; Wan, Y. The role of TRPV1 in different subtypes of dorsal root ganglion 

neurons in rat chronic inflammatory nociception induced by complete Freund’s adjuvant. Mol. Pain 2008, 4, 61. 

26. Namazi, H. The effect of epidural resiniferatoxin in the neuropathic pain rat model randomized trial: A complementary 

mechanism. Pain Physician 2012, 15, E750. 

27. Ghilardi, J.R.; Röhrich, H.; Lindsay, T.H.; Sevcik, M.A.; Schwei, M.J.; Kubota, K.; Halvorson, K.G.; Poblete, J.; Chaplan, S.R.; 

Dubin, A.E.; et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci. 2005, 25, 3126–

3131. 

28. Menéndez, L.; Juárez, L.; García, E.; García-Suárez, O.; Hidalgo, A.; Baamonde, A. Analgesic effects of capsazepine and 

resiniferatoxin on bone cancer pain in mice. Neurosci. Lett. 2006, 393, 70–73. 

29. Kalff, K.M.; El Mouedden, M.; van Egmond, J.; Veening, J.; Joosten, L.; Scheffer, G.J.; Meert, T.; Vissers, K. Pre-treatment with 

capsaicin in a rat osteoarthritis model reduces the symptoms of pain and bone damage induced by monosodium iodoacetate. 

Eur. J. Pharmacol. 2010, 641, 108–113. 

30. Kim, Y.; Kim, E.H.; Lee, K.S.; Lee, K.; Park, S.H.; Na, S.H.; Ko, C.; Kim, J.; Yooon, Y.W. The effects of intra-articular resiniferatoxin 

on monosodium iodoacetate-induced osteoarthritic pain in rats. Korean J. Physiol. Pharmacol. 2016, 20, 129–136. 

31. Trevisani, M.; Gatti, R. TRPV1 Antagonists as Analgesic Agents. Open Pain J. 2013, 6, 108–118. 

32. Bevan, S.; Quallo, T.; Andersson, D.A. Mammalian Transient Receptor Potential (TRP) Cation Channels; Springer: Berlin/Heidelberg, 

Germany, 2014; Volume 222, ISBN 9783642542152. 

33. Cortright, D.W.; Szallasi, A. Biochemical pharmacology of the vanilloid receptor TRPV1: An update. Eur. J. Biochem. 2004, 271, 

1814–1819. 

34. Liao, M.; Cao, E.; Julius, D.; Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 2013, 

504, 107. 

35. Caballero, J. A new era for the design of TRPV1 antagonists and agonists with the use of structural information and molecular 

docking of capsaicin-like compounds. J. Enzyme Inhib. Med. Chem. 2022, 37, 2169. 

36. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. 

Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2018, 18, 41–58. 

37. Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, 

B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. 

38. Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization 

and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. 

39. Bölcskei, K.; Tékus, V.; Dézsi, L.; Szolcsányi, J.; Pethő, G. Antinociceptive desensitizing actions of TRPV1 receptor agonists 

capsaicin, resiniferatoxin and N -oleoyldopamine as measured by determination of the noxious heat and cold thresholds in the 

rat. Eur. J. Pain 2010, 14, 480–486. 

40. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open chemical toolbox. 

J. Cheminform. 2011, 3, 33. 

41. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 

5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. 

42. Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 

2011, 32, 1466–1474. 

43. Bemis, G.W.; Murcko, M.A. The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887–2893. 

44. Zanfirescu, A.; Nitulescu, G.; Mihai, D.P.; Nitulescu, G.M. Identifying FAAH Inhibitors as New Therapeutic Options for the 

Treatment of Chronic Pain through Drug Repurposing. Pharmaceuticals 2021, 15, 38. 

45. Langdon, S.R.; Brown, N.; Blagg, J. Scaffold Diversity of Exemplified Medicinal Chemistry Space. J. Chem. Inf. Model. 2011, 51, 

2174. 



Pharmaceutics 2022, 14, 2563 26 of 27 
 

 

46. Nitulescu, G.; Nitulescu, G.M.; Zanfirescu, A.; Mihai, D.P.; Gradinaru, D. Candidates for Repurposing as Anti-Virulence Agents 

Based on the Structural Profile Analysis of Microbial Collagenase Inhibitors. Pharmaceutics 2021, 14, 62. 

47. Von Korff, M.; Freyss, J.; Sander, T. Flexophore, a new versatile 3D pharmacophore descriptor that considers molecular 

flexibility. J. Chem. Inf. Model. 2008, 48, 797–810. 

48. Mihai, D.P.; Nitulescu, G.M.; Ion, G.N.D.; Ciotu, C.I.; Chirita, C.; Negres, S. Computational drug repurposing algorithm 

targeting TRPA1 calcium channel as a potential therapeutic solution for multiple sclerosis. Pharmaceutics 2019, 11, 446. 

49. Gao, Y.; Cao, E.; Julius, D.; Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 2016, 

534, 347–351. 

50. Zhang, K.; Julius, D.; Cheng, Y. Structural snapshots of TRPV1 reveal mechanism of polymodal functionality. Cell 2021, 184, 

5138–5150.e12. 

51. Land, H.; Humble, M.S. YASARA: A tool to obtain structural guidance in biocatalytic investigations. Methods Mol. Biol. 2018, 

1685, 43–67. 

52. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient 

optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. 

53. Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; et al. A 

practical guide to large-scale docking. Nat. Protoc. 2021, 16, 4799–4832. 

54. Wang, L.-C.; Fang, F.-S.; Gong, Y.-P.; Yang, G.; Li, C.-L. Characteristics of repaglinide and its mechanism of action on insulin 

secretion in patients with newly diagnosed type-2 diabetes mellitus. Medicine (Baltimore) 2018, 97, e12476. 

55. Gosse, P. A review of telmisartan in the treatment of hypertension: Blood pressure control in the early morning hours. Vasc. 

Health Risk Manag. 2006, 2, 195–201. 

56. San, L.; Arranz, B. Agomelatine: A novel mechanism of antidepressant action involving the melatonergic and the serotonergic 

system. Eur. Psychiatry 2008, 23, 396–402. 

57. Burkes, R.M.; Panos, R.J. Ultra Long-Acting β-Agonists in Chronic Obstructive Pulmonary Disease. J. Exp. Pharmacol. 2020, 12, 

589–602. 

58. Niemeyer, G.; Cottier, D.; Resch, H. Effects of buphenine (nylidrin) on the perfused mammalian eye. Graefes Arch. Clin. Exp. 

Ophthalmol. 1987, 225, 33–38. 

59. Yazici, A.T.; Gianti, E.; Kasimova, M.A.; Lee, B.-H.; Carnevale, V.; Rohacs, T. Dual regulation of TRPV1 channels by 

phosphatidylinositol via functionally distinct binding sites. J. Biol. Chem. 2021, 296, 100573. 

60. Dong, L.; Zhou, Q.; Liang, Q.; Qiao, Z.; Liu, Y.; Shao, L.; Wang, K. Identification of a Partial and Selective TRPV1 Agonist CPIPC 

for Alleviation of Inflammatory Pain. Molecules 2022, 27, 5428. 

61. Mihai, D.P.; Ungurianu, A.; Ciotu, C.I.; Fischer, M.J.M.; Olaru, O.T.; Nitulescu, G.M.; Andrei, C.; Zbarcea, C.E.; Zanfirescu, A.; 

Seremet, O.C.; et al. Effects of venlafaxine, risperidone and febuxostat on cuprizone-induced demyelination, behavioral deficits 

and oxidative stress. Int. J. Mol. Sci. 2021, 22, 7183. 

62. Jiménez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020, 2, 573–

584. 

63. Jubete, G.; Puig de la Bellacasa, R.; Estrada-Tejedor, R.; Teixidó, J.; Borrell, J.I. Pyrido[2,3-d]pyrimidin-7(8H)-ones: Synthesis and 

Biomedical Applications. Molecules 2019, 24, 4161. 

64. Scott, L.J. Repaglinide: A review of its use in type 2 diabetes mellitus. Drugs 2012, 72, 249–272. 

65. Al-Rejaie, S.S.; Abuohashish, H.M.; Ahmed, M.M.; Arrejaie, A.S.; Aleisa, A.M.; AlSharari, S.D. Telmisartan inhibits hyperalgesia 

and inflammatory progression in a diabetic neuropathic pain model of Wistar rats. Neurosciences 2015, 20, 115–123. 

66. Lin, C.M.; Tsai, J.T.; Chang, C.K.; Cheng, J.T.; Lin, J.W. Development of telmisartan in the therapy of spinal cord injury: Pre-

clinical study in rats. Drug Des. Dev. Ther. 2015, 9, 4709–4717. 

67. Sisignano, M.; Angioni, C.; Park, C.K.; Dos Santos, S.M.; Jordan, H.; Kuzikov, M.; Liu, D.; Zinn, S.; Hohman, S.W.; Schreiber, Y.; 

et al. Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proc. Natl. Acad. Sci. USA. 2016, 113, 12544–

12549. 

68. Jaggi, A.S.; Singh, N. Exploring the potential of telmisartan in chronic constriction injury-induced neuropathic pain in rats. Eur. 

J. Pharmacol. 2011, 667, 215–221. 

69. Ertilav, K.; Nazıroğlu, M.; Ataizi, Z.S.; Yıldızhan, K. Melatonin and Selenium Suppress Docetaxel-Induced TRPV1 Activation, 

Neuropathic Pain and Oxidative Neurotoxicity in Mice. Biol. Trace Elem. Res. 2021, 199, 1469–1487. 

70. Ettaoussi, M.; Sabaouni, A.; Pérès, B.; Landagaray, E.; Nosjean, O.; Boutin, J.A.; Caignard, D.H.; Delagrange, P.; Berthelot, P.; 

Yous, S. Synthesis and pharmacological evaluation of a series of the agomelatine analogues as melatonin MT1/MT2 agonist and 

5-HT 2C antagonist. ChemMedChem 2013, 8, 1830–1845. 

71. Ozdamar Unal, G.; Demirdas, A.; Nazıroglu, M.; Ovey, I.S. Agomelatine attenuates calcium signaling and apoptosis via the 

inhibition of TRPV1 channel in the hippocampal neurons of rats with chronic mild stress depression model. Behav. Brain Res. 

2022, 434, 114033. 

72. Aydın, T.H.; Can, Ö.D.; Demir Özkay, Ü.; Turan, N. Effect of subacute agomelatine treatment on painful diabetic neuropathy: 

Involvement of catecholaminergic mechanisms. Fundam. Clin. Pharmacol. 2016, 30, 549–567. 

73. Chenaf, C.; Chapuy, E.; Libert, F.; Marchand, F.; Courteix, C.; Bertrand, M.; Gabriel, C.; Mocaër, E.; Eschalier, A.; Authier, N. 

Agomelatine: A new opportunity to reduce neuropathic pain—Preclinical evidence. Pain 2017, 158, 149–160. 



Pharmaceutics 2022, 14, 2563 27 of 27 
 

 

74. Baptista-de-souza, D.; Di, L.; Mannelli, C.; Zanardelli, M.; Micheli, L.; Nunes-de-souza, R.L.; Canto-de-souza, A.; Ghelardini, C. 

Serotonergic modulation in neuropathy induced by oxaliplatin: Effect on the 5HT 2C receptor. Eur. J. Pharmacol. 2014, 735, 141–

149. 

75. Cervantes-Durán, C.; Pineda-Farias, J.B.; Bravo-Hernández, M.; Quiñonez-Bastidas, G.N.; Vidal-Cantú, G.C.; Barragán-Iglesias, 

P.; Granados-Soto, V. Evidence for the participation of peripheral 5-HT2A, 5-HT2B, and 5-HT2C receptors in formalin-induced 

secondary mechanical allodynia and hyperalgesia. Neuroscience 2013, 232, 169–181. 

76. Ambriz-Tututi, M.; Granados-Soto, V. Oral and spinal melatonin reduces tactile allodynia in rats via activation of MT2 and 

opioid receptors. Pain 2007, 132, 273–280. 

77. Yu, C.X.; Zhu, C.B; Xu, S.F.; Cao, X.D.; Wu, G.C. Selective MT2 melatonin receptor antagonist blocks melatonin-induced 

antinociception in rats. Neurosci. Lett. 2000, 282, 161–164. 

78. Kasper, S.; Hamon, M. Beyond the monoaminergic hypothesis: Agomelatine, a new antidepressant with an innovative 

mechanism of action. World J. Biol. Psychiatry 2009, 10, 117–126. 

79. Long, W.; Fatehi, M.; Soni, S.; Panigrahi, R.; Philippaert, K.; Yu, Y.; Kelly, R.; Boonen, B.; Barr, A.; Golec, D.; et al. Vitamin D is 

an endogenous partial agonist of the transient receptor potential vanilloid 1 channel. J. Physiol. 2020, 598, 4321–4338. 

80. Sears, M.R. Adverse effects of β-agonists. J. Allergy Clin. Immunol. 2002, 110, S322–S328. 

81. Filippi, A.; Caruntu, C.; Gheorghe, R.O.; Deftu, A.; Amuzescu, B.; Ristoiu, V. Catecholamines reduce transient receptor potential 

vanilloid type 1 desensitization in cultured dorsal root ganglia neurons. J. Physiol. Pharmacol. 2016, 67, 843–850. 


